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Abstract

We uncover an implicit volume-preserving mapping from the C4

space of a bispinor onto the past cone belonging to an arbitrary space-
time point in R3,1. The quotient group SO(3, 1) is shown to be given
by SO(8)/U(1)× U(1)× SO(3) and a simple geometrical interpreta-
tion is presented. We conclude by showing that the novel mapping
allows the reformulation of many equations of motion of boson and
fermion fields as integral equations over null cones that are devoid of
field derivatives.

1 Introduction

A radical simplification of certain QFT calculations was reported in a num-
ber of groundbreaking papers [2, 3, 4, 5] published in the early years of
this century. This led us to explore whether points, field derivatives, dis-
placements and metrics could be eliminated from quantum field calculations
entirely. Whilst the current introductory paper does not establish a direct
link with the twistor programme, the family resemblence is undeniable in
that it too is founded on the notion of spinorial spaces that become real
physical quantities through bilinear forms.

2 Integration over the causal past cone

Integration over unbounded spacetime corresponds to the relativistically in-
variant delta in momentum space:∫∫∫∫ ∞

−∞
eikνx

ν
d4x = δ4(kv)

..but what becomes of the RHS if the integration is restricted to the causal
past relative to some arbitrary origin ? Since we have been unable to find
the answer in the literature, we will perform an explicit calculation.
With no loss of generality, we choose a point in momentum space kµ =

1



{ω, 0, 0, k}. Then∫∫∫∫
xνxν≥0

eikνx
ν
d4x =

∫ ∞

0
dt

∫ t

0
ei(ωt+ukr)r2 dr dΩ

=
2π

ik

∫ ∞

0
dt

∫ t

0

[
ei(ωt+kr) − ei(ωt−kr)

]
r dr

=
2π

ik

∫ ∞

0

[
ei(ω+k)t

k(ω + k)
+

ei(ω−k)t

k(ω − k)
− 1

k2
[
ei(ωt+kr) − ei(ωt−kr)

]t
0

]
dt

=
2π

k

[
1

k(ω + k)2
+

1

k(ω − k)2
− 1

k2(ω + k)
+

1

k2(ω − k)

]
=

4π

(kνkν)2
(1)

This result is unsurprising - it had after all to be a Lorentz invariant function
of homogeneous degree minus 4 - but interesting all the same, because it
suggests that the past cone can be decomposed into a simple product of two
independent null surfaces, each of which contributes one 1

k2
factor.

3 One cone

Spinors transform under one or other of the restricted Lorentz SU(2) sub-
groups. As discussed in Section III of [6], null displacement vectors can be
constructed from a spinor Λ according to the following prescription:

xν = Λ†σνΛ σ0 = I2

Parametrizing the spinor using radial coordinates

Λ =

(
λ↑e

iϕ↑

λ↓e
iϕ↓

)
Λ† =

(
λ↑e

−iϕ↑ λ↓e
−iϕ↓

)
we obtain explicitly, in an arbitrary Lorentz frame:

x0 = λ2↑ + λ2↓
x1 = 2λ↑λ↓ cosϕ

x2 = 2λ↑λ↓ sinϕ

x3 = λ2↑ − λ2↓

(2)

where we have used the clarifying substitution ϕ = ϕ↑ − ϕ↓. The overall
phase Φ = ϕ↑ + ϕ↓ corresponds to a space-time degeneracy and is reflected
in the nullity condition: xν x

ν = detΛΛ† = 0
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0

xν(Λ)

t

The correspondence of an infinitesimal volume element in the linear R4 (
C2) space of the spinor:

dΛ = λ↑λ↓ dλ↑ dλ↓ dϕ dΦ

to an infinitesimal surface element on the null cone: dx1dx2dx3|x0=r is given
by the Jacobian:

∂(x1, x2, x3)

∂(λ↑, λ↓, ϕ)
= 8

∣∣∣∣∣∣
λ↓ cosϕ λ↑ cosϕ −λ↑λ↓ sinϕ
λ↓ sinϕ λ↑ sinϕ λ↑λ↓ cosϕ
2λ↑ −2λ↓ 0

∣∣∣∣∣∣ = 8λ↑λ↓(λ
2
↑ + λ2↓)

So

dΛ = λ↑λ↓ dλ↑ dλ↓ dϕ dΦ = λ↑λ↓
∂(λ↑, λ↓, ϕ)

∂(x1, x2, x3)
dx1 dx2 dx3 dΦ =

1

8r
dx1 dx2 dx3 dΦ

(3)
Following trivial integration over the complex phase, Φ we obtain the well-
known result in momentum representation space∫

eikνx
ν
dΛ = 4π

∫
eikνx

ν
rdr =

1

k2
(4)

which suggests that the past cone that yielded 4π
k4

in momentum space cor-
responds to the product of two spinorial spaces. We will now confirm this
by an explicit real-space calculation.

4 Two cones generated by a bispinor

Consider a bispinor consisting of two null cone spinors transforming respec-
tively as (1/2,0) and (0,1/2) representations of the SO(3, 1) Lorentz group.

Λ :=

(
Λa

Λb

)
Λ :=

(
Λ†
b Λ†

a

)
The total displacement vector is given by the sum of the two null displace-
ments, or in gamma matrix notation:

Xν = ΛγνΛ = {t, r} (5)
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where {
t = ra + rb

r = ra − rb
(6)

0

xa,ν(Λa)

t

Xν(Λa,Λb)

To investigate the mapping into space-time from the R8 (C4) space spanned
by the bispinor, we note first that

XνX
ν = 2xa,νx

ν
b = 2(rarb − ra · rb) ≥ 0

This means that every point in the R8 (C4) space of Λa × Λb maps onto a
space-time point Xν within the causal past relative to the origin.
According to (3), the 8-dimensional integral F over the R8 spinor space of
an arbitrary real space function f(xν) can be expressed in terms of hybrid
real and phase coordinates by

F =

∫
f(xν)dΛa dΛb =

∫
f(xν)

64rarb
dxa,1 dxa,2 dxa,3 dΦa dxb,1 dxb,2 dxb,3 dΦb

=

∫
π2Rf(x)

32rarb

∂R2

∂t |x,y,z
dx dy dz dt du dϕR =

∫
π3Rf(x)

16rarb

∂R2

∂t |x,y,z
dx dy dz dt du

(7)

where R := ra + rb and we have chosen the polar axis in R to be along r,
with cosine u := r ·R/rR
ϕR is the azimuthal angle in the plane perpendicular to r. It can be simply
integrated out and replaced by a 2π factor, just like the spinor phases Φa,Φb.
We now set about obtaining expressions for R, ra, rb in terms of r, t, u.

2t = |R+ r|+ |R− r| =⇒ R2 =
t4 − r2t2

t2 − u2r2
(8)

=⇒ ∂R2

∂t
=

2t(t4 − 2u2r2t2 + u2r4)

(t2 − u2r2)2
(9)
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4rarb =
√
(R2 + r2)2 − 4r2R2u2 =

√
t8 − 2u2r4t4 + u4r8 − 4u2r2(t4 − r2t2)(t2 − u2r2)

t2 − u2r2
(10)

=
t4 − 2u2r2t2 + u2r4

t2 − u2r2

So combining (8, 9, 10) we obtain:

R

4rarb

∂R2

∂t
=

2t2
√
t2 − r2

(t2 − u2r2)
3
2

=
2τ2

√
τ2 − 1

(τ2 − u2)
3
2

Integrating over u:∫ 1

−1

R

4rarb

∂R2

∂t
du = 2τ2

√
τ2 − 12

∫ 1

−1

du

(τ2 − u2)
3
2

= 4 (τ = t/r)

where we have used indefinite integral No. 198 in the table published in [7]
So finally (7) becomes:

F =

∫
f(xν)dΛadΛb = π3

∫
t≥r

f(xν)dx dy dz dt (11)

This confirms that the mapping from the R8 space of the bispinor into
Lorentz invariant volume elements of Minkowski spacetime relative to an
arbitrary origin is indeed completely homogeneous. The 8 real dimensions
of C4 are seen to map into the R3,1 spacetime, one phase angle for each spinor
and an SO(3) describing the ellipsoid traced out by all possible junctions of
the two null displacement vectors. In other words,

SO(8) → SO(3, 1)× SO(3)× U(1)× U(1)

5 Applications

So far we have established how to get k−2n integrals, however odd-power
integrals k−2n−1 are also possible by virtue of the easily obtained identity

i

∫
xµe

ikνxν
dΛ =

4πkµ
k4

(12)

(4) and (12) taken together allow a great number of differential field equa-
tions to be recast as cone integrals in which field derivatives make no explicit
appearance. For example, the free Dirac equation can be transformed into

i

∫
/xψ dΛ +m

∫∫
ψdΛadΛb = 0 (13)

This however turns out to be a vast subject that we will expound upon in
subsequent papers.
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Finally the complex Minkowski space MC that is central to with twistor
theory is also spanned by two cones according to the following modified
form of (14)

XC
ν = Λ†γνΛ (14)

where
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