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Abstract

A brief introduction of the Extended Relativity Theory in Clifford Spaces (C-
space) paves the way to the explicit construction of the generalized relativistic
transformations of the Clifford multivector-valued coordinates in C-spaces. The
most general transformations furnish a full mixing of the grades of the multivector-
valued coordinates. The transformations of the multivector-valued momenta follow
leading to an invariant generalized mass M in C-spaces which differs from m. No
longer the proper mass appearing in the relativistic dispersion relation E2−p⃗·p⃗ = m2

remains invariant under the generalized relativistic transformations. It is argued
how this finding might shed some light into the cosmological constant problem,
dark energy, and dark matter. We finalize with some concluding remarks about ex-
tending these transformations to phase spaces and about Born reciprocal relativity.
An appendix is included with the most general (anti) commutators of the Clifford
algebra multivector generators.

Keywords : Clifford algebras; Extended Relativity Theory in Clifford Spaces; String
theory; M-theory; Generalized geometries.

1 Introduction : The Extended Relativity Theory

in Clifford Spaces

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces) and
Clifford-Phase spaces were developed in [1], [11]. The Extended Relativity theory in
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Clifford-spaces (C-spaces) is a natural extension of the ordinary Relativity theory whose
generalized coordinates are Clifford polyvector/multivector valued quantities which incor-
porate the lines, areas, volumes, and hyper-volumes degrees of freedom associated with
the collective dynamics of particles, strings, membranes, p-branes (closed p-branes) mov-
ing in a D-dimensional target spacetime background. C-space Relativity permits to study
the dynamics of all (closed) p-branes, for different values of p, on a unified footing. The
theory has two fundamental parameters : the speed of a light c and a length scale which
can be set equal to the Planck length. The role of “photons” in C-space is played by
tensionless branes.

These multivector valued coordinates can be interpreted as the quenched-degrees of
freedom of an ensemble of p-loops associated with the dynamics of closed p-branes, for
p = 0, 1, 2, ..., D−1, embedded in a target D-dimensional spacetime background. C-space
is parametrized not only by the vector coordinates xµ but also by the bivector coordinates
xµν = −xνµ; trivector coordinates xµνρ (antisymmetric in all of its indices); · · · called also
holographic coordinates, since they describe the holographic projections of 1-loops, 2-loops,
3-loops,..., onto the coordinate planes. By p-loop we mean a closed p-brane; in particular,
a 1-loop is closed string.

The Extended Relativity Theory in C-spaces (Clifford spaces) allows a unified for-
mulation of point particles, strings, membranes and p-branes, moving in ordinary target
spacetime backgrounds, within the description of a single polyparticlemoving in C-spaces.
The degrees of freedom of this polyparticle are provided by the Clifford multivector-valued
coordinates (antisymmetric tensorial coordinates) and have a one-to-one correspondence
with the number of vertices, edges, planes, facets of a simplex (the higher dimensional
analog of a tetrahedron, a regular polytope). For example, a tetrahedron has 4 vertices,
6 edges, 4 faces, a three-dim bulk volume and a center of mass. The total count is
4 + 6 + 4 + 1 + 1 = 16 which matches the 24 = 16-dimensions of the 4D Clifford algebra.

Let X be the Clifford multivector-valued coordinate corresponding to the Cl(3, 1)
algebra in four spacetime dimensions and which can be decomposed as

X = x 1 + xµ γµ + xµν γµ ∧ γν + xµνρ γµ ∧ γν ∧ γρ + xµνρτ γµ ∧ γν ∧ γρ ∧ γτ (1.1)

where we have omitted combinatorial numerical factors for convenience in the expansion
of eq.(1.1). If one imposes the lexicographic ordering of indices µ1 < µ2 < µ3 < · · · then
it is not necessary to include combinatorial numerical factors in the eq.(1.1). To avoid
introducing powers of a length parameter L (like the Planck scale Lp), in order to match
physical units in the expansion of the multivector X in eq-(1.1), we can set it to unity to
simplify matters after adopting the geometrical natural units h̄ = c = G = 1.

The component x in (1.1) is the Clifford scalar component of the multivector-valued
coordinate and dΣ is the infinitesimal C-space proper “time” interval

(dΣ)2 = (dx)2 + dxµ dxµ + dxµν dxµν + . . . (1.2a)

that is invariant under Cl(3, 1) transformations and which are the Clifford-algebraic
extensions of the SO(3, 1) Lorentz transformations [1]. One should emphasize that dΣ is
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not equal to the proper time Lorentz-invariant interval dτ in ordinary spacetime (dτ)2 =
gµνdx

µdxν = dxµdx
µ. The motion of the polyparticle in C-space is described by the

C-space proper “time” Σ dependence of the multivector-valued coordinates

x = x(Σ), xµ = xµ(Σ), xµν = xµν(Σ), xµνρ(Σ), . . . (1.2b)

and which is the generalization of the proper time dependence of the spacetime coordinates
xµ(τ) in ordinary Minkowski space.

The concept of “photons” and generalized velocities in C-space was analyzed by [1].
One can have tachyonic (superluminal) behavior in ordinary spacetime while having non-
tachyonic behavior in C-space. Hence from the C-space point of view there is no violation
of causality nor the Clifford-extended Lorentz symmetry. The analog of “photons” in C-
space are tensionless strings and branes [1].

Let us explicitly insert L and c to keep track of the units, and take the spacetime
signature to be (−,+,+,+, ......,+) and factorize the C-space interval in eq.(1.2) as follows
by bringing the c2(dt)2 factor outside the parenthesis

(dΣ)2 = c2(dt)2
(

L2

c2
(
dx

dt
)2 − 1 +

1

c2
(
dxi

dt
)2 +

1

L2c2
(
dxij

dt
)2 − 1

L2c2
(
dx0i

dt
)2 ........

)
(1.3)

where the spatial index i range is 1, 2, ..., D − 1. The Clifford space associated with the
Clifford algebra in 4D is 16-dimensional and has a neutral/split signature of (8, 8) [1], [2].
For example, the terms (dxo)

2, (dx0i)
2, (dx0ij)

2, (dx0123)
2 will appear with a negative sign,

while the terms (dxi)
2, (dxij)

2, (dxijk)
2 will appear with a positive sign.

There are many possible combination of numerical values for the 2D terms inside
the parenthesis in eq.(1.3). As explained in [1], [2], superluminal velocities in ordinary
spacetime are possible, while retaining the null interval condition in C-space (dΣ)2 = 0,
associated with tensionless branes. For instance, let us set all the higher grade compo-
nents beyond the bivectors in eq.(1.3) to zero, as well as setting dxij = 0, leaving only
the following contributions

(dΣ)2 = c2(dt)2
(

L2

c2
(
dx

dt
)2 − 1 +

1

c2
(
dxi

dt
)2 − 1

L2c2
(
dx0i

dt
)2
)

(1.4)

One can then have the following combinations

L2

c2
(
dx

dt
)2 − 1 = 0,

1

c2
(
dxi

dt
)2 − 1

L2c2
(
dx0i

dt
)2 = 0 (1.5)

as well as the superluminal condition on the standard velocity

1

c2
(
dxi

dt
)2 =

1

c2

(
(
dx1

dt
)2 + (

dx2

dt
)2 + . . . + (

dxD−1

dt
)2
)

> 1 (1.6)

and still obey the null interval condition (dΣ)2 = 0 in C-space.
In 4D, the null interval condition in C-space (dΣ)2 = 0 can be easily attained if each

term inside the parenthesis in eq.(1.3) is ±1, respectively. Since there are 8 positive (+1)

3



terms and 8 negative (−1) terms one has that 8 − 8 = 0 and the null interval condition
(dΣ)2 = 0 is automatically satisfied. Hence in this case one would have a superluminal
behavior such that

1

c2

(
(
dx1

dt
)2 + (

dx2

dt
)2 + (

dx3

dt
)2
)

= 1 + 1 + 1 = 3 > 1 (1.7)

while still preserving the null interval condition in C-space. The three coordinates
x1, x2, x3 in (1.7) represent the center of mass coordinates of the tensionless 2-loop (a
sphere S2 encloses a three-dim bulk region).

A very different combination of numerical values, as compared to the previous ones,
leading also to a null interval condition in C-space (dΣ)2 = 0, as well as a null interval in
ordinary Minkowski spacetime, occurs when

1

c2

(
(
dx1

dt
)2 + (

dx2

dt
)2 + (

dx3

dt
)2
)

= 1 (1.8a)

1

L2c2

(
(
dx12

dt
)2 + (

dx13

dt
)2 + (

dx23

dt
)2
)

=

1

L2c2

(
(
dx01

dt
)2 + (

dx02

dt
)2 + (

dx03

dt
)2
)

(1.8b)

1

L4c2

(
(
dx012

dt
)2 + (

dx013

dt
)2 + (

dx023

dt
)2
)

=
1

L4c2
(
dx123

dt
)2 (1.8c)

1

L6c2
(
dx0123

dt
)2 =

L2

c2
(
dx

dt
)2 (1.8d)

Another description of C-space “photons” can also be given in terms of an effective
temporal variable T comprised of all the temporal coordinates in the interval of eq-(1.3).
In order to simplify matters let us work with D = 3 instead of D = 4. The effective
temporal variable T is defined as

c2(dT )2 ≡ c2(dt)2 +
1

c2
(
dx01

dt
)2 +

1

c2
(
dx02

dt
)2 +

1

L2c2
(
dx012

dt
)2 (1.9)

so that the C-space interval can be rewritten, after factoring out the c2(dT )2 term, as

(dΣ)2 = − c2(dT )2
(
1 − L2

c2
(
dx

dT
)2 − 1

c2
(
dx1

dT
)2 − 1

c2
(
dx2

dT
)2 − 1

L2c2
(
dx12

dT
)2
)

(1.10)
The last expression has the same functional form as the ordinary spacetime interval in
Minkowski space. Namely one can write the C-space interval (dΣ)2 in the form

(dΣ)2 = − c2(dT )2 ( 1 − V 2

c2
) (1.11)

where the generalization of the magnitude-squared of the spatial velocity divided by c2 is
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V 2

c2
≡ L2

c2
(
dx

dT
)2 +

1

c2
(
dx1

dT
)2 +

1

c2
(
dx2

dT
)2 +

1

L2c2
(
dx12

dT
)2 (1.12)

When V = c ⇒ (dΣ)2 = 0 in eq.(1.11), and once more it leads to a null interval in
C-space.

The Extended Relativity Theory in Clifford Spaces (C-space) [3] leads to many in-
teresting novel physical consequences like : (i) generalized dispersion relations, energy-
dependent speed of light propagation, extended Lorentz transformations, relative locality,
generalized Weyl-Heisenberg algebra and uncertainty relations, tensionless branes, super-
luminality, generalized velocities. (ii) Generalized areal, volume, · · · metrics and grav-
itational field equations in C-space. (iii) A unified description of particles, strings and
branes. (iv) Clifford gravity based cosmology and dark energy. (v) Moyal deformations
of Clifford gauge theories of gravity. (vi) N-ary algebras.

The results of this work are new to our knowledge. In 2.1 we write explicitly the
extended relativistic transformations X′ = RXR−1 of the multivector-valued coordinates
in C-spaces in a very special case when the exponential defining the rotor R

R = exp (θ + θµγ
µ + θµνργ

µνρ + θµνρσγ
µνρσ) (1.13)

admits a factorization. One finds that a mixing of bivector/trivector and vec-
tor/quadvector coordinates occurs in the new frame of reference in C-space. In 2.2, the
transformations of the multivector-valued momenta are displayed leading to an invariant
generalized mass M in C-spaces which differs from m. One finds that no longer the
proper mass appearing in the relativistic dispersion relation E2 − p⃗ · p⃗ = m2 is invariant
under the extended transformations. It is argued how this finding might shed some light
into the cosmological constant problem, dark energy, and dark matter. The most general
transformations when the exponential (1.13) does not admit a factorization are displayed
in 2.3, and leading to a full mixing of all the grades of the multivector-valued coordinates.
We finalize with some concluding remarks about how to extend these transformations to
phase spaces and about Born reciprocal relativity. An appendix is included with the most
general (anti) commutators of the Clifford algebra multivector generators.

2 Relativistic Transformations in C-spaces

2.1 Beyond Lorentz Transformations

In this section we shall be using the natural units h̄ = c = G = LP = 1 and working in a
3 + 1-dim spacetime. The time coordinate is t = x1, and x2, x3, x4 are the three spatial
ones. The multivector valued coordinates

x, xµ, xµ1µ2 = − xµ2µ1 , xµ1µ2µ3 = − xµ2µ1µ3 , . . . (2.1)
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are now linked to the basis generators given by 1, vectors γµ, bi-vectors generators γµ∧γν ,
tri-vectors generators γµ1 ∧ γµ2 ∧ γµ3 , ... of the Clifford algebra, including the Clifford
algebra unit element 1 (associated to a scalar coordinate).

We shall present examples of generalized Lorentz transformations in C-space. The
standard Lorentz transformations involves bivector generators. For instance, given the
bivector γ12, the transformation effected by the rotor defined as

R = exp (θ12γ12) = cosh(θ12) + γ12 sinh(θ12) (2.2a)

corresponds to an ordinary Lorentz boost transformation along the x2 direction and in-
volving the temporal variable x1. Under these Lorentz boosts the transformed multivector
X′ is given by

X′ ≡ R X R−1 (2.2b)

with

R−1 = exp ( − θ12γ12 ) = cosh(θ12) − γ12 sinh(θ12) (2.2c)

The vector coordinate components in eq.(2.2b) turn out to be given by the familiar ex-
pressions

t′ = t cosh(2θ12) + x2 sinh(2θ12) (2.3a)

x′
2 = x2 cosh(2θ12) + t sinh(2θ12) (2.3b

x′′
3 = x3, x′′

4 = x4 (2.3c)

where ξ = 2θ12 is the Lorentz boost rapidity parameter ξ such that tanh(ξ) = v. Eqs.(2.3)
yield the quadratic invariant

−(t′)2 + (x′
2)

2 + (x′
3)

2 + (x′
4)

2 = − (t)2 + (x2)
2 + (x3)

2 + (x4)
2 (2.3d)

The bivectors γµν can also be expressed in terms of the commutators [γµ, γν ], such that
the the latter commutators implement a “rotation” along the xµ − xν directions. Hence,
a Lorentz boost along the x2 can be seen as a “rotation” along the x1 − x2 axes.

Generalized Lorentz transformations in flat C-spaces were discussed in [1]. In this work
we shall write these transformations explicitly. Let us begin with the reversion involution
operation † (some authors use the tilde notation for the reversion operation) that is defined
by reversing the order of the wedge products (γ12)

† = γ21 = −γ12, γ
†
123 = γ321 = −γ123, · · ·.

The reversal of a product of two multivectors is (AB)† = B†A†. There is also the
Hermitian conjugation operation denoted by ‡ in both real and complex Clifford algebras
[7] and defined by

X‡ = x∗ + (xµ)
∗ (γµ)

−1 + (xµ1µ2)
∗(γµ1µ2)

−1 + (xµ1µ2µ3)
∗(γµ1µ2µ3)

−1 + . . . (2.4)
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where ∗ is the complex conjugation and (γµ1µ2···µn)
−1 denotes the inverse basis element

(γµ1µ2···µn)
−1(γµ1µ2···µn) = 1. There is also the grade inverse operation which involves

changing the sign of all the basis elements and the Clifford conjugation comprised of a
grade inversion followed by a reversion.

We shall study the most general transformations which leave invariant the quadratic
form

⟨ X† X ⟩ = x2 + xµ xµ + xµν xµν + . . . =

⟨ X′† X′ ⟩ = (x′)2 + x′
µ x′µ + x′

µν x′µν + . . . (2.5)

where the transformed multivector X′ is defined as

X′ ≡ R X R† (2.6)

The bracket symbol < X†X > denotes taking the scalar part of the Clifford geometric
product of two multivectors. It is the analog of the trace of a product of matrices. Such
scalar part can be obtained from the (anti) commutator relations of the Clifford algebra
generators as displayed in the Appendix. For example

< γµ γν > = δνµ, < γµ1µ2 γν1ν2 > = − δ ν1ν2
µ1µ2

< γµ1µ2µ3 γ
ν1ν2ν3 > = − δ ν1ν2ν3

µ1µ2µ3
, < γµ1µ2µ3µ4 γ

ν1ν2ν3ν4 > = δ ν1ν2ν3ν4
µ1µ2µ3µ4

, ...... (2.7)

One should note the presence of ± signs in the right hand side of eqs-(2.7). They are
connected to the even/odd behavior of the reversal operation (γC)

† = ±γC .
Invariance of the quadratic form (2.5) requires that the reversal of the rotor R obeys

the key condition R† = R−1 such that

⟨( R X R−1)† (R X R−1) ⟩ = ⟨ R X† X R−1⟩ = ⟨ R−1 R X† X ⟩ = ⟨ X† X ⟩ (2.8)

resulting from the reversal operation and the cyclic property of the scalar part of the
Clifford geometric product. In the case of complex Clifford algebras the real valued
quadratic form is defined as

⟨ X‡ X ⟩ = x∗ x + x∗
µ xµ + x∗

µν xµν + . . . (2.9)

and the transformed multivector X′ is given by

X′ ≡ R X R‡ (2.10)

The quadratic form remains invariant if R‡ = R−1.
Let us choose now for simplicity the rotor operator in D = 4 given by

R = eθ12γ12 + θ123γ123 ⇒ R† = R−1 (2.11)

where θ12, θ123 are the (antisymmetric) parameters associated with the γ12, γ123 genera-
tors, respectively. As mentioned above, the term θ12γ12 in (2.11) represents a Lorentz
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boost along the spatial x2 direction and whose magnitude is encoded in the θ12 param-
eter. We shall explain below the physical significance of the term θ123γ123. Due to the
commutativity [γ12, γ123] = 0 one can factorize R as

R = eθ12γ12 + θ123γ123 = eθ12γ12 eθ123γ123 =

(cosh(θ12)1 + γ12 sinh(θ12)) (cosh(θ123)1 + γ123 sinh(θ123)) (2.12)

R−1 = e−θ12γ12 − θ123γ123 = e−θ12γ12 e−θ123γ123 =

(cosh(θ12)1 − γ12 sinh(θ12)) (cosh(θ123)1 − γ123 sinh(θ123)) =

(cosh(θ123)1 − γ123 sinh(θ123)) (cosh(θ12)1 − γ12 sinh(θ12)) (2.13)

and which will simplify considerable the transformation defined as

X′′ = R X R−1 (2.14)

The use of double primes in (2.14) is due to the factorization of two separate transforma-
tions leading to a two step procedure X → X′ → X′′. Setting x1 = t to be the temporal
coordinate1, and x2, x3, x4 the three spatial coordinates with ηµν =diag(−1,+1,+1,+1)
the flat metric in 3 + 1-dim, after some lengthy algebra one ends up with

t′′ = t cosh(2θ12) + x2 sinh(2θ12) (2.15)

x′′
2 = x2 cosh(2θ12) + t sinh(2θ12) (2.16)

x′′
3 = x3, (2.17)

x′′
4 = x4 cosh(2θ123) + x1234 sinh(2θ123) (2.18)

x′′
13 = x13 cosh(2θ12) + x23 sinh(2θ12) (2.19)

x′′
23 = x23 cosh(2θ12) + x13 sinh(2θ12) (2.20)

x′′
12 = x12 (2.21)

x′′
14 = x14 cosh(2θ12) cosh(2θ123) + x24 sinh(2θ12) cosh(2θ123) −

x134 sinh(2θ12) sinh(2θ123) − x234 cosh(2θ12) sinh(2θ123) (2.22)

1As a reminder, we chose the units h̄ = c = G = 1
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x′′
24 = x24 cosh(2θ12) cosh(2θ123) + x14 sinh(2θ12) cosh(2θ123) −

x234 sinh(2θ12) sinh(2θ123) − x134 cosh(2θ12) sinh(2θ123) (2.23)

x′′
34 = x34 cosh(2θ123) + x124 sinh(2θ123) (2.24)

x′′
124 = x124 cosh(2θ123) + x34 sinh(2θ123) (2.25)

x′′
234 = x234 cosh(2θ12) cosh(2θ123) + x134 sinh(2θ12) cosh(2θ123) −

x14 cosh(2θ12) sinh(2θ123) − x24 sinh(2θ12) sinh(2θ123) (2.26)

x′′
134 = x134 cosh(2θ12) cosh(2θ123) + x234 sinh(2θ12) cosh(2θ123) −

x24 cosh(2θ12) sinh(2θ123) − x14 sinh(2θ12) sinh(2θ123) (2.27)

x′′
1234 = x1234 cosh(2θ123) + x4 sinh(2θ123) (2.28)

The transformation of the remaining multivector coordinate components are

x′′ = x, x′′
123 = x123 (2.29)

The most salient feature of the above transformations is that the rapidity parameter
θ123 associated with the trivector generator γ123 induces a mixing among multivectors of
different grade. Namely, it induces a mixing among the bivector/trivector ccordinates, and
vector/quadvector coordinates. One can verify that the transformations in eqs.(2.15-2.29)
leave invariant the quadratic form

⟨ X† X ⟩ = x2 + xµ xµ + xµν xµν + . . . = ⟨ X′′† X′′ ⟩ =

(x′′)2 + x′′
µ x′′µ + x′′

µν x′′µν + . . . (2.30)

In particular one finds that the combination

−(t′′)2 + (x′′
2)

2 + (x′′
3)

2 − (x′′
13)

2 − (x′′
12)

2 + (x′′
23)

2 =

−(t)2 + (x2)
2 + (x3)

2 − (x13)
2 − (x12)

2 + (x23)
2 (2.31)

remains invariant.
Also one has the following additional invariant combinations

−(x′′
14)

2 + (x′′
24)

2 + (x′′
34)

2 + (x′′
234)

2 − (x′′
134)

2 − (x′′
124)

2 =
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− (x14)
2 + (x24)

2 + (x34)
2 + (x234)

2 − (x134)
2 − (x124)

2 (2.32)

(x′′
4)

2 − (x′′
1234)

2 = (x4)
2 − (x1234)

2; (x′′)2 = (x)2; (x′′
123)

2 = (x123)
2 (2.33)

so that the net combination of all these invariants eqs.(2.31-2.33) leave invariant the full
quadratic form (2.30) in a straightforward fashion involving a total of 24 = 16 terms.

The quadratic form (2.30) is also invariant under the left/right isometry transforma-
tions [6]

X′ = R X L†, R† R = 1, L† L = 1 ⇒ < X′† X′ > = < X† X > (2.34)

due to the cyclic property of the scalar part projection

< X′† X′ > = < L X† R† R X L†, > = < L X† X L† > =

< L† L X† X > = < X† X > (2.35)

where R,L are Clifford-valued rotors acting on the right and left respectively. These
left/right transformations lead to yet another set of multivector-valued coordinate trans-
formations which differ from eqs.(2.15-2.29) and which we shall not write down. For
instance, if one sets R = 1, or L = 1 it will considerably simplify the transformations.

If one sets θ123 = 0 above in eqs-(2.15-2.29) one ends up with the well known Lorentz
transformations involving the boost rapidity parameter ξ = 2θ12 along the x2 direction
such that tanh(ξ) = β = v ≤ 1, and where no mixing of vector, bivector, trivector, quad-
vector coordinates occurs. Whereas, if one sets θ12 = 0 in eqs.(2.25-2.28) one arrives at the
following transformations leading to amixing of bivector/trivector and vector/quadvector
coordinates

x′
4 = x4 cosh(2θ123) + x1234 sinh(2θ123) (2.36)

x′
1234 = x1234 cosh(2θ123) + x4 sinh(2θ123) (2.37)

x′
14 = x14 cosh(2θ123) − x234 sinh(2θ123 (2.38)

x′
234 = x234 cosh(2θ123) − x14 sinh(θ123) (2.39)

x′
24 = x24 cosh(2θ123) − x134 sinh(2θ123) (2.40)

x′
134 = x134 cosh(2θ123) − x24 sinh(2θ123) (2.41)

x′
34 = x34 cosh(2θ123) + x124 sinh(2θ123) (2.42)
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x′
124 = x124 cosh(2θ123) + x34 sinh(2θ123) (2.43)

The above mixing of the different grades of multivectors in eqs.(2.36-2.43) due to
the γ123 generator (via the θ123 parameter) can be easily understood from the following
commutators leading to the γ123 generator in the right hand side

θ123 [γ1234, γ4] ∼ θ123 γ123, θ123 [γ14, γ234] ∼ θ123 γ123,

θ123 [γ24, γ134] ∼ θ123 γ123, θ123 [γ34, γ124] ∼ θ123 γ123 (2.44)

The first term of eq.(2.44) is associated to eqs.(2.36,2.37) and corresponds to a generalized
boost along the spatial x4 direction but involving now the temporal quadvector coordinate
x1234 : namely, generalized “rotations” along the x4 − x1234 axes.

The second term of eq.(2.44) θ123[γ14, γ234] ∼ θ123γ123 is associated to eqs.(2.38,2.39)
and corresponds to a generalized boost along the spatial trivector x234 direction but
involving now the temporal bivector coordinate x14 : generalized “rotations” along the
x234 − x14 axes.

The third term θ123[γ24, γ134] ∼ θ123γ123 is associated to eqs.(2.40,2.41) and corresponds
to a generalized boost along the spatial bivector x24 direction but involving now the
temporal trivector coordinate x134 : generalized “rotations” along the x24 − x134 axes.

And the last term θ123[γ34, γ124] ∼ θ123γ123 is associated to eqs.(2.42,2.43) and corre-
sponds to a generalized boost along the spatial bivector x34 direction but involving now
the temporal trivector coordinate x124 : generalized “rotations” along the x34−x124 axes.
In this fashion one can find an intuitive physical interpretation of all of the above transfor-
mations involving the γ123 generator (via the θ123 parameter). Note also that the Lorentz
boost transformations involving θ12γ12 leave inert the values of x34, x124 and this explains
the form of the expressions in eqs.(2.24,2.25) which are only affected by the θ123γ123 piece
of the rotor R.

In all of the above equations one used the identities of the hyperbolic functions

cosh2(ξ)− sinh2(ξ) = 1, cosh2(ξ) + sinh2(ξ) = cosh(2ξ), sinh(2ξ) = 2 sinh(ξ) cosh(ξ)
(2.45)

2.2 Generalized Mass and Momentum in C-Space

The on-shell mass condition for a massive polyparticle moving in the 24-dimensional flat
C-space, corresponding to a Clifford algebra in D = 4, can be written in terms of the
multivector-valued momentum components as

p2 + pµ pµ + pµ1µ2 pµ1µ2 + pµ1µ2µ3 pµ1µ2µ3 + pµ1µ2....µ4p
µ1µ2...µ4 = − M2 (2.46)

The scalar part of the momentum multivector can be absorbed into a redefinition of M
as M2 → M2 + p2 = M′2. Both M and p are C-space invariants.
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The C-space transformations of the multivector-valued momentum variables are the
same as the multivector-valued coordinates transformations in eqs.(2.15-2.29). Hence, one
has in particular that

p′′4 = p4 cosh(2θ123) + p1234 sinh(2θ123) (2.47)

p′′1234 = p1234 cosh(2θ123) + p4 sinh(2θ123) (2.48)

E ′′ = E cosh(2θ12) + p2 sinh(2θ12) (2.49)

p′′2 = p2 cosh(2θ12) + E sinh(2θ12) (2.50)

p′′3 = p3, (2.51)

From eqs.(2.47-2.51) one finds that the combinations

−(E ′′)2 + (p′′2)
2 + (p′′3)

2 + (p′′4)
2 − (p′′1234)

2 = −E2 + p22 + p23 + p24 − p21234 (2.52)

remain invariant under the transformations. The most salient feature eq.(2.52) is that
the m2 appearing in the dispersion relation

−E2 + p22 + p23 + p24 = − m2 (2.53)

and p21234 are no longer invariant when θ123 ̸= 0. What is now an invariant is the
very specific combination of the five quantities displayed by eq.(2.52) and which can be
rewritten as

−m2 − p21234 = − κ2 ⇒ κ =
√
m2 + p21234 =

√
(m′′)2 + (p′′1234)

2 (2.54)

where κ2 is the truly invariant quantity under the transformations. An immediate physical
consequence of eq.(2.54) is that one may have in one frame of reference m ̸= 0; p1234 = 0,
while in another frame of reference one has m′′ < m and p′′1234 > 0. Restoring physical
constants, it yields L2

P m2 + L8
P p21234 = κ2 ⇒ LPm ≃ κ after neglecting the contribu-

tion L8
Pp

2
1234. The latter is not negligible when p1234 ∼ M4

P which is the same order of
magnitude as the ultraviolet-cutoff of the vacuum energy density.

One may note that p1234 has the same units (mass per unit volume) as the tension of
a 3-brane (a lump). If one imagines the whole universe as the 3+ 1-dim spacetime region
spanned by the evolution of a 3-brane embedded in higher dimensions (like in the brane-
world model), a zero value of p1234 (like the almost zero value of the observed vacuum
energy density of our universe) would correspond to a tensionless 3-brane. Whereas a
value of p1234 ∼ M4

P corresponds to the ultraviolet-cutoff value of the 3-brane tension.
These findings may shed some light into the cosmological constant problem, dark energy,
and dark matter.
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2.3 The Most General Transformations

In the most general case one cannot factorize the exponential exp(θijγij + θijkγijk) into
products of exponentials. The exponentials of generalized multivectors associated with
real Clifford algebras have been found explicitly by [7], [8] (see also [9]). For simplicity we
shall focus in 3D since the expressions in higher dimensions are very cumbersome. Given
a multivector A = a0 + aiei + aijeij + a123e123

2 its exponential exp(A) = B is another
multivector B = b0 + biei + bijeij + b123e123 whose components (coefficients) b0, bi, bij, b123
are explicitly given in terms of a0, ai, aij, a123. For instance, in the Cl(2, 1) algebra case
corresponding to a D = 2+1 spacetime, with e21 = e22 = 1; e23 = −1, the coefficients found
by [7] are given by

b0 =
1

2
ea0

(
ea123 co(a2+) + e−a123 co(a2−)

)
(2.55a)

b123 =
1

2
ea0

(
ea123 co(a2+) − e−a123 co(a2−)

)
(2.55b)

b1 =
1

2
ea0

(
ea123 (a1 + a23) si(a

2
+) + e−a123 (a1 − a23) si(a

2
−)
)

(2.55c)

b2 =
1

2
ea0

(
ea123 (a2 − a13) si(a

2
+) + e−a123 (a2 + a13) si(a

2
−)
)

(2.55d)

b3 =
1

2
ea0

(
ea123 (a3 − a12) si(a

2
+) + e−a123 (a3 + a12) si(a

2
−)
)

(2.55e)

b12 =
1

2
ea0

(
− ea123 (a3 − a12) si(a

2
+) + e−a123 (a3 + a12) si(a

2
−)
)

(2.55f)

b13 =
1

2
ea0

(
− ea123 (a2 − a13) si(a+) + e−a123 (a2 + a13) si(a

2
−)
)

(2.55g)

b23 =
1

2
ea0

(
ea123 (a1 + a23) si(a

2
+) − e−a123 (a1 − a23) si(a

2
−)
)

(2.55h)

where

a2+ = − (a3 − a12)
2 + (a2 − a13)

2 + (a1 + a23)
2 (2.56a)

a2− = − (a3 + a12)
2 + (a2 + a13)

2 + (a1 − a23)
2 (2.56b)

si(a2±) =
sinh(

√
a2±)√

a2±
, a2± > 0; si(a2±) =

sin(
√
−a2±)√

−a2±
, a2± < 0 (2.57a)

co(a2±) = cosh(
√
a2±), a2± > 0; co(a2±) = cos(

√
−a2±), a2± < 0 (2.57b)

The condition imposed on the rotor R† = R−1 forces to set the parameters a0 = a1 =
a2 = a3 = 0 in eqs-(2.55-2.57), and such that in this particular case one has a2+ = a2−

2I = e123 is a pseudo-scalar in 3D. We are using the notation of [7] for the Clifford algebra generators
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in eqs.(2.56). The components of R−1 are obtained from eqs-(2.55-2.57) by changing the
signs of a12, a13, a23, a123.

The temporal direction in [7], [8] coincides with x3 and the spatial ones are given by
x1, x2. Thus the transformations involving the elements a13e13; e23e23 of the exponential
of a multivector in 2 + 1 spacetime dimensions correspond to Lorentz boosts along the
spatial x1, x2 directions, respectively. While ordinary rotations along the x1 − x2 axes
involve the element a12e12. If one sets a12 = 0 one ends up with the hyperbolic functions
in eqs-(2.57) which are consistent with boosts. Whereas if one sets a13 = a23 = 0 one
ends up with trigonometric functions which are consistent with rotations.

The most general transformations X′ = RXR† associated with the rotor

R = exp ( a12 e12 + a13 e13 + a23 e23 + a123 e123 ) , R† = R−1 (2.58)

in 3D are extremely complex and lead now to a full mixing of all the grades of the
multivector coordinates X′ = X′(X) involving all the parameters a12, a13, a23, a123.

To find the explicit components of the exponential of a multivector associated with a
Clifford algebra in 4D is a more difficult task, let alone writing down the most general
multivector coordinate transformations. The authors [8] more recently have presented for-
mulae to calculate multivector exponentials in a basis-free representation and orthonormal
basis for an arbitrary Clifford geometric algebra in any dimension and signature. The for-
mulae are based on the analysis of roots of the characteristic polynomial of a multivector.
Elaborate examples of how to use the formulas in practice were presented. The results
were generalized to arbitrary functions of a multivector, like the logarithm, hyperbolic
and trigonometric functions and their inverses.

3 Concluding Remarks

The whole construction of the generalized Lorentz transformations in C-spaces presented
in this work can be extended to phase spaces. The simplest way to attain this goal is
to combine multivector-coordinates and momenta into complex variables as Z = X+i P,
and recur to the Hermitian conjugation operation depicted in eq.(2.4), in order to define
the complex transformations by

Z′ = R Z R‡ = R Z R−1 ⇒ ⟨ Z′† Z′ ⟩ = ⟨ Z† Z ⟩ ⇒
(z∗)′ (z)′ + (z∗µ)

′ (zµ)′ + (z∗µν)
′ (zµν)′ + . . . = z∗ z + z∗µ zµ + z∗µν zµν + . . . (3.1)

with
z = x+ ip, zµ = xµ + ipµ, zµν = xµν + ipµν , . . . , (3.2)

The rotor is given by

R = exp ( ao + ai ei + aij eij + aijk eijk + · · · ) (3.3)

where now ao, ai, aij, aijk, · · · are complex-valued. The Hermitian conjugate is

R‡ = exp
(
a∗o + a∗i e−1

i + a∗ij e
−1
ij + a∗ijk e−1

ijk + · · ·
)

(3.4)
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The complex parameters in eq.(3.4) must be restricted in order to obey the key condition
R‡ = R−1. The authors [7] have provided a general rule how to obtain the inverses of
the Clifford multivector generators in a straightforward fashion and found that e−1

I = ±eI
where I is a multivector index. Hence, the provision R‡ = R−1 yields

a∗o = − ao, a∗i1i2···in e−1
i1i2···in = − ai1i2···in ei1i2···in (3.5)

and one finds that the parameters ai1i2···in are either real or purely imaginary, while ao
is purely imaginary. Under the transformations (3.1) the coordinates and momenta are
entangled as it occurs in Born’s reciprocal relativity theory [14], [15]. A phase space
extension of C-space was advanced by [11].

Most of the work devoted to Quantum Gravity has been focused on the geometry of
spacetime rather than phase space per se. The first indication that phase space should
play a role in Quantum Gravity was raised by [12]. The principle behind Born’s recip-
rocal relativity theory [14], [15] was based on the idea proposed long ago by [12] that
coordinates and momenta should be unified on the same footing. Consequently, if there is
a limiting speed (temporal derivative of the position coordinates) in Nature there should
be a maximal force as well, since force is the temporal derivative of the momentum. A
maximal speed limit (speed of light) must be accompanied with a maximal proper force
(which is also compatible with a maximal and minimal length duality) [15]. The principle
of maximal acceleration was advocated earlier on by [13].

We finalize by saying that one has not been trying to “squeeze” new physics out of
Clifford algebras in this work. One the contrary, it was the physics behind string theory,
p-branes that led us to Clifford space relativity in the first place.
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APPENDIX

The Clifford geometric product [4], [5] of the Clifford algebra multivector generators
requires the evaluation of both commutators and anti-commutators. This is instrumental
in deriving the extended Lorentz transformations in C-space described in this work. The
evaluation of the commutators of the Clifford algebra generators can be found in [10]. In
general for pq = odd one has

[γb1b2.....bp , γ
a1a2......aq ] = 2γ

a1a2......aq
b1b2.....bp

−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2
[b1b2

γ
a3....aq ]
b3.....bp]

+
2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4
[b1....b4

γ
a5....aq ]
b5.....bp]

− ...... (A.1)

for pq = even one has

[γb1b2.....bp , γ
a1a2......aq ] = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1
[b1

γ
a2a3....aq ]
b2b3.....bp]

−
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(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1....a3
[b1....b3

γ
a4....aq ]
b4.....bp]

+ ...... (A.2)

The anti-commutators of the Clifford algebra generators can also be found in [10], and
one has the reciprocal situation as in eqs-(2.2,2.3), one has instead that for pq = even

{γb1b2.....bp , γa1a2......aq} = 2γ
a1a2......aq
b1b2.....bp

−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2
[b1b2

γ
a3....aq ]
b3.....bp]

+
2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4
[b1....b4

γ
a5....aq ]
b5.....bp]

− ...... (A.3)

And for pq = odd one has

{γb1b2.....bp , γa1a2......aq} = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1
[b1

γ
a2a3....aq ]
b2b3.....bp]

−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1....a3
[b1....b3

γ
a4....aq ]
b4.....bp]

+ ...... (A.4)
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