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Abstract

Given a set of distinct non-negative integers Xn and a target certificate S
parametrized in: ∃Xk ⊆ Xn,

∑
xi∈Xk xi = S (k = |Xk|, n = |Xn|). We present

a polynomial solution of the subset sum problem with time complexity T ≤ O(n2)
and space complexity S ≤ O(n2), so that P = NP.
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1 Introduction

We consider the subset sum problem: given a set of distinct non-negative integers Xn,
and a value sum (certificate) S, determine if there is a subset Xk of the given set with a
sum equal to the given sum S.

For this problem, exponential [1,2], pseudopolymial [3,4,5,6,7] algorithms and exhaus-
tive search methods based on the “divide and conquer” principle [8] have been developed.
The complexity of algorithms was considered in [9,10,11].

It is proved that the subset sum problem belongs to the NP -complete class problems.
According to the well-known theorem that if there is a polynomial solution to the NP -
complete class problem then P = NP .

To the best of our knowledge, the proposed polynomial solution with time complexity
T ≤ O(n2) and space complexity S ≤ O(n2) is the fastest general algorithm for this
problem and is reduced to the problem of Xn elements’ index selection based on the
solution of auxiliary problem of a one-to-one correspondence of the certificate S (of the
initial problem) with the newly proposed index certificate sk.

The paper is organized as follows:

• given lemma 1 specifies a newly proposed sk;

• given lemma 2 identifies a one-to-one correspondence of the index certificate sk with
the certificate S resulted with selection of subsets Nk among which there is subset
Xk- a solution to initial problem;
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• given theorem estimates selection time for finding subsets Xk based on triangle
two-dimensional matrixes (index combinations) and concatenation operator;

• additionally, in this paper we present: arguments on potency of subset Xk, new
combination algorithms and example to confirm claimed results.

The proposed algorithms can be computed in the form of a separate independent
module (as a software solution for various problems) and implemented in the form of
chips (as a hardware solution).

2 Solution of the subset sum problem

Given a set of distinct non-negative integersXn and a target certificate S parametrized
in:

S : ∃Xk ⊆ Xn,
∑

xi∈Xk

xi = S (1)

Subset Xk is selected using combination function:

Ck
n =

n!

k!(n− k)!
=

n(n− 1)(n− 2)...(n− k + 1)

k!
(2)

We propose a new approach to solve initial problem(1) by solving auxiliary problem:
Let us introduce a sorted set of natural numbersNn = {1, 2, 3, . . . , n} orNn = {0, 1, 2, 3, . . . , n−
1} with potency n = |Nn|. Then the auxiliary problem statement is:

sk : ∃Nk ⊆ Nn,
∑

ni∈Nkni = sk (3)

where sk is index certificate.
Auxiliary problem(3) excludes the accuracy parameter p (number of bits of integers

Xn) from the computational complexity of problem(1), thus facilitates the solution of
problem(1). The subsets Nk are determined based on the combination function(2). Each
subset Nk consists of k elements of the set Nn.

According to the combination function(2), we have the range:

skϵ[s
min
k , smax

k ], (4)

and the number of unique index certificates:

mk = smax
k − smin

k + 1 (5)

where smin
k =

∑k
i=1 i = (k+1)k

2
, smax

k =
∑n

i=n−k+1 i = kn − (k−1)k
2

.The lower index
characterizes the potency k. Range(4) defines all values of the index certificate from smin

k

to smax
k , as well as their quantity.
Lemma1 Let the condition

∑
xi∈Xk xi = S of the initial problem(1) is met. Then

there exist one or more subsets Nk ⊆ Nn with potency k and index certificate sk so that,
there is a solution to auxiliary problem(3).

Proof. Meeting the first condition of Lemma 1 means that we have the sum of k
elements of subset Xk:

xi + xj + ...+ xg + xh = S, i ̸= j... ̸= g ̸= h;xi, xj..., xg, xh ∈ Xk ⊆ Xn. (6)



Indexes i ̸= j ̸= ... ̸= g ̸= h of the subsets Xk ⊆ Xn are selected using combination
function(2). From the equality(6) we find index certificate sk of the auxiliary problem(3):

ni + nj + ...+ ng + nh = sk; i = nj, j = nj, ..., g = ng, h = nh, N
k ⊆ Nn. (7)

With the combination function(2) we find indexes of the subset Nk matching indexes
of the subset Xk. Thus, the solvability of the initial problem(1) results with solvability
of the auxiliary problem(3), namely meeting the condition:

∑
ni∈Nk ni = sk.

Lemma2 There is index certificate sk corresponding to certificate S so that the equal-
ity

∑
ni∈Nk ni = sk is met. Then within the subsets Nk there exist one or more subsets

Nk which describe indexes of at least one subset Xk to meet the equality:
∑

Xi∈Xk xi = S.
Proof. According to the equalities (6) and (7) of the Lemma1 there is a one-to-one

correspondence of the certificate S and the index certificate sk with potency k of the
subsets Xk and Nk. The correspondence we present as:

S ∼ sk (8)

The second condition of Lemma2 means that ∃Nk which describe indexes of subsets
Xk, where at least one subset Xk exists so that the condition

∑
xi∈Xk xi = S is met.

Notice that the correspondence(8) is difficult to represent in the form of a functional
dependence sk = f(S). The advantages of the lemmas(1,2) and the auxiliary problem(3)
are:

1. Nk describes all subsets Xk;

2. the selection time of the subset Xk decreases;

3. the size of the required space S is determined.

New combination algorithms Let’s introduce a counter function:

q = q(sk, N
k) (9)

which counts the quantity of subsets Nk.
Theorem Let a set Nn and index certificate sk are given. Then the selection time of

the subset Nk ⊆ Nn. and the required space satisfy the conditions: T ≤ O(q(sk, N
k)) ≤

O(kn), S ≤ O( (n−1)∗n
2

).

Proof. Initially, we examine all subsets Nk (of potency k) whose indexes vary from
(1,2,..,k) to (n-k+1, n-k+2,. . . ,n-1, n) and are representable in the form of two-dimensional
triangular matrixes of orders (n-k+1)x(n-k+1) up to (1x1) with the use of concatenation
operator ⊕, since the set Nn is a one-dimensional array. Then index certificate sk will be
equal to the sum of indexes of the element of one of the diagonals of these matrixes and
the quantity of elements is determined by the counter function(9). In other words, the
quantity of subsets Nk is equal to the number of elements of the diagonal correspond-
ing to index certificate sk and the selection time of these subsets satisfies the condition
T ≤ O(q(sk, N

k)). In addition to condition(7), condition(6) must be satisfied, so that

q(S,Xk) ≤ q(sk, N
k). Next we find value mk = smax

k − smin
k +1 = kn− (k−1)k

2
− (k+1)k

2
+ 1,

form these formulas we have the estimation mk < kn. Then, according to the proposed
approach, we obtain T≤ O(q(sk, N

k)) ≤ O(mk) ≤ O(kn),S ≤ O( (n−1)∗n
2

). Here the

expression (n−1)∗n
2

defines the maximum size of the required space.



Corollary. Let k = 2 and set Nn is given. Then ∃ s2 = s∗2 so that:

T ≤ O(q(s∗2, N
2)) ≤ O(n

2
) ≤ O(mk) ≤ O(kn), S = O( (n−1)n

2
) .

Proof. We introduce an algorithm for generating two-dimensional triangular matrices
that describe all subsets Nk with k=2. It is enough to use concatenation operator ⊕ and
add a number 1 to the elements of the set Nn starting from the second element and to
the end; then add a number 2 to the elements of this set, starting from the third element
to the end, and so on - until we get the last element (n− 1n), that is:

12 13 . . . 1 n− 1 1 n
23 24 . . . 2 n− 1 2 n

. . .
n− 2 n− 1 n− 2 n

n− 1 n
Quantity of subsets N2 matches the value of the combination function C2

n. This
matrix describes all the necessary indexes by which all subsets of X2 can be found, and
also defines index certificates s2 = ni + nj, ni, nj ∈ Nn. With k=2, the maximization
problem can be formulated as: maxsk∈[smin

k ,smax
k ]q(sk, N

k) = q(s∗k, N
k) then the selection

time of the subset Xk satisfies the inequality T ≤ O(n
2
) ≤ O(kn) and the required space

is S = O( (n−1)n
2

).
It is easy to develop algorithms for generating combinations for k3. In the case

k=3, the maximization problem can be formulated as: max(sk∈[smin
k ,smax

k ])q(sk, N
k) =

q(sk∗, Nk),then we have T ≤ O(n) ≤ O(kn), S ≤ O( (n−1)n
2

) using a recursive way to
store two-dimensional matrixes.

Similar results can obtained with k ≥ 4 with possible additional consideration of
the symmetry property - Ck

n = Cn−k
n , Pascal’s Rule - substitution of indexes - Ck

nC
n−m
k =

Cm
n Cn−k

m , Vandermonde’s convolution -
∑k

r=0 C
r
nC

k−r
m = Ck

n+m and recurrent formula Ck
n =

n−k+1
k

Ck−1
n .

Using the correspondence (8) and the range (4) we have the range for the certificate
S:

S ∈ [Smin
k , Smax

k ] (10)

where based on combination function(2) we determine values Smin
k =

∑k
i=1 xi, S

max
k =∑n

i=n−k+1 xi, xi ∈ Xn, and it is assumed that the set Xn is sorted in ascending order.
Minimum potency k∗ is selected from the inequality:

S ≤ Smax
k∗ (11)

Argument1 Let the certificate S be given. Potency k∗ of the subsets X
k∗ ⊆ Xn, Nk∗ ⊆

Nn are determined from the inequality(11) and index certificate sk∗ is determined from the
correspondence(8). Then, among the quantity of subsets Nk∗ found from

∑
ni∈Nk ni = sk∗

there is at least one subset Nk which describes subset Xk so that
∑

xi∈Xk xi = S.
Proof. The fulfillment of these equalities ensures the solvability of problems (3) and

(1). In this case, the potency k∗ of subsets Xk∗ , Nk∗ is found from the solution of the
minimization problem Smax

k∗
= Smax

k min k for k ≥ 2 taking into account the inequality(11).

To ensure the correspondence(8), it is enough to use the relation [ (n+1)nk∗
2n

]. The rounding

process finds the index certificate sk∗ = [ (n+1)k∗
2

] or sk∗ = [ (n+1)k∗
2

] + 1. Thus, the solution
to the problem

∑
ni∈Nk ni = sk∗ defines quantity of subsets Nk∗ which describe all subsets

Xk∗ , among which there is a subsetXk satisfying the equality
∑

xi∈Xk xi = S. The possible

value of the index certificate sk∗ = [ (n+1)k∗
2

] − 1 takes into account the combinatorics of



the problems being solved. In the case of S = Smax
k∗

, the required subsets Xk∗ are found
and there is no need to solve the auxiliary problem(3).

The maximum potency k∗ is selected from the inequality:

S ≥ Smin
k∗ (12)

Argument2 Let the certificate S be given. Potency k∗ of the subsets Xk∗ ⊆ Xn, Nk∗ ⊆
Nn are determined from the inequality(12) and index certificate sk∗ is determined from the
correspondence(8). Then, among the quantity of subsets Nk∗ found from

∑
ni∈Nk ni = sk∗

there is at least one subset Nk which describes subset Xk so that
∑

xi∈Xk xi = S.
Proof. Here we solve the maximization problem Smin

k∗
= Smin

k max k with k ≥ 2
and taking into account inequality(12). Index certificate is found from the condition

sk∗ ≤ (k∗+1)k∗

2
. In case S = Smin

k∗ the required subsets Xk∗ are found and there is no need
to solve the auxiliary problem(3).

Remark. Considering that there are approaches for choosing elements of the set Xn

based on arithmetic progression, Fibonacci numbers, recurrence relations, subexponential
functions and others, and assuming the possibility that the set Xn consists of elements of
the same order, we can carry out the following values:∑

ni∈Nk

ni = N (13)

∑
xi∈Xn

xi = S (14)

Argument3 With given certificate S of the subset sum problem(1) index certificate s
of the auxiliary problem(3) is found by the formula:

S = [
NS

S
]− 1 ∨ [

NS

S
] ∨ [

NS

S
] + 1. (15)

Proof. Formula(13) defines the sum of all indexes of the set Nn, formula(14) – the
sum of all elements of the set Xn. Then the relation S

s
∼= S

N is true according to the
mean-value theorems. Taking into account the integer divisibility and the combinatorics
of problems (1) and (3), we obtain the required formula (15).

Validation of claimed results. Example. Sets X8 = {10, 14, 17, 20, 36, 38, 43, 47},
N8 = {1, 2, . . . , 8} and certificate S = 60 are given. Based on any argument (1, 2, 3) it
is not difficult to calculate the index certificate s2 with S = 60 because S ∈ [24, 90] and
k = 2, then we have s2 = 10. From Corollary we have: N2 = {2, 8}∨{3, 7}∨{4, 6}. Among
the quantity of subsets N2 there is subset N2 = {3, 7} ⇔ x3 + x7 = 60, X2 = {17, 43},
T ≤ O(q(s2, N

2)) = O(3) ≤ O(m2) = O(15) < O(2n) = O(16), S ≤ O( (n−1)∗n
2

) = 28.
For the indicated setX8, examples with certificates S=57, S=99, S=100, S=105, S=112,S=113,S=120,
S=168 were additionally solved to confirm claimed results.

Conclusions and future work. The article provides lemmas, a theorem, and argu-
ments to solve the subset sum problem based on an auxiliary problem. On the basis of
the results obtained, an initial set indexes’ supervisor engine has been developed. The
proposed algorithms can be easily implemented as software and/or hardware solution in



a variety of applications including: scheduling[12], queries in databases[13], graph prob-
lems[14] and others.

In a view of the fact that the linear (or quadratic) solvability of the subset sum problem
from the NP-complete class is proved, therefore, based on the well-known theorem (stating
that if some NP-complete problem is solvable in polynomial time, then P = NP), the
equality of classes P and NP is claimed.

Further work directions will be focused on:

1. partition of an initial set into subsets (using Vandermonde’s convolution and sym-
metry property);

2. applying combination function properties;

3. optimization of combination algorithms;

4. calculating process paralleling etc.
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