On the Zeta distribution $\zeta(s)$ and the Riemann hypothesis

by Yahya Grari (yahyagrari@gmail.com)
August 18, 2023

It seems very curious that such an important random variable $\zeta(s)$ is so little studied in probability theory and yet, it can be the basis for several discoveries in arithmetic.

Origin of the Zeta Law $\boldsymbol{\zeta}(\boldsymbol{s})$
The Zeta law originates from the search for a uniform distribution in the set of integers $N^{*}=\{1,2, . .$. Such a uniform law does not exist, but there are asymptotic laws that tend towards this law.
And precisely, we will show that by tending s towards 1, we obtain almost the "same universe" as a uniform law.
Indeed, let X be a uniform random variable in the set $\{1,2, \ldots, N\}$
Let (p) be the sequence of primes $2,3,5, \ldots$
According to the fundamental theorem of arithmetic, X is uniquely written as:

$$
X=\prod_{p} p^{X_{p}} \text { with } X_{p} \in\{0,1,2, \ldots\}
$$

Distribution of random variables X_{p}

$$
P\left(X_{p} \geq k\right)=P\left(p^{k} \text { divise } X\right)=\frac{\left[\frac{N}{p^{k}}\right]}{N} \text { with } k \in\{0,1,2, \ldots\}
$$

It can be seen that when $N \rightarrow+\infty$, the random variable X_{p} tends to a geometric random variable of parameter $1-\frac{1}{p}$
Thanks to this very simple random variable, we can revisit the very famous formula, that of Legendre. if X follows a uniform random variable in the set $\{1,2, \ldots, N\}$, then $E(\ln (X))$ is equal to:

$$
\frac{1}{N} \sum_{n=1}^{N} \ln (n)=\frac{1}{N} \ln \left(\prod_{n=1}^{N} n\right)=\frac{1}{N} \ln (N!)
$$

Likewise $\ln (X)=\sum_{p} X_{p} \ln (p) \Rightarrow E(\ln (X))=\sum_{p} E\left(X_{p}\right) \ln (p)$

$$
E\left(X_{p}\right)=\sum_{k=0}^{+\infty} k\left(\frac{\left[\frac{N}{p^{k}}\right]}{N}-\frac{\left[\frac{N}{p^{k+1}}\right]}{N}\right)=\sum_{k=0}^{+\infty} k \frac{\left[\frac{N}{p^{k}}\right]}{N}-\sum_{k=1}^{+\infty}(k-1) \frac{\left[\frac{N}{p^{k}}\right]}{N}=\sum_{k=1}^{+\infty} \frac{\left[\frac{N}{p^{k}}\right]}{N}
$$

We can therefore write:

$$
\frac{1}{N} \ln (N!)=\sum_{p} \sum_{k=1}^{+\infty} \frac{\left[\frac{N}{p^{k}}\right]}{N} \ln (p)=\frac{1}{N} \ln \left(\prod_{p} p^{\sum_{k=1}^{+\infty}\left[\frac{N}{p^{k}}\right]}\right)
$$

Hence it is concluded that:

$$
N!=\prod_{p} p^{\sum_{k=1}^{+\infty}\left[\frac{N}{p^{k}}\right]}
$$

better known as Legendre's formula.

In the same way, it can be shown that random variables $\left(X_{p}\right)$ become independent when $N \rightarrow+\infty$ Now it is assumed that $X_{p} \sim G\left(1-\frac{1}{p^{s}}\right)$ and are independent.
To tender $s \rightarrow 1$ or $N \rightarrow+\infty$, brings us back to the same "universe", that of usual Arithmetic.
It is shown in this case that $X \sim \zeta(s)$ i.e. $P(X=x)=\frac{1}{\zeta(s) x^{s}}$ avec $x=1,2,3, \ldots$
Let's calculate the probability of choosing a number at random and that it is even:

$$
P(X \text { pair })=P\left(X_{2} \geq 1\right)=\frac{1}{2^{s}}
$$

[^0]$$
P(X \text { impair })=P\left(X_{2}=0\right)=1-\frac{1}{2^{s}}
$$

When $s \rightarrow 1$, these two probabilities equalize and tend towards $1 / 2$. This confirms the intuition that: "there is a one in two chance of drawing an even number at random."

Thanks to this zeta law, we will revisit many famous arithmetic results.
Let be the function $F(X)=\prod_{p} f\left(X_{p}\right)$ and therefore $E(F(X))=\prod_{p} E\left(f\left(X_{p}\right)\right.$
What gives

$$
\begin{equation*}
\sum_{n=1}^{+\infty} \frac{F(n)}{n^{s}}=\prod_{p} \sum_{k=0}^{+\infty} \frac{f(k)}{p^{s k}} \tag{1}
\end{equation*}
$$

I. Eulerian product

Cases where i.e. $f(k)=1, \forall k \geq 0 F(n)=1, \forall n \geq 1$

$$
\sum_{n=1}^{+\infty} \frac{1}{n^{s}}=\prod_{p} \sum_{k=0}^{+\infty} \frac{1}{p^{s k}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
$$

II. Möbius function

Cases where i.e. $f(k)=1_{k \leq 1}(-1)^{k} \quad \forall k \geq 0 F(n)=\mu(n), \forall n \geq 1$

$$
\sum_{n=1}^{+\infty} \frac{\mu(n)}{n^{s}}=\prod_{p} \sum_{k=0}^{1} \frac{(-1)^{k}}{p^{s k}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)=\frac{1}{\zeta(s)}
$$

III. Probability of being square-free

Cases where i.e. $f(k)=1_{k \leq 1} \quad \forall k \geq 0 F(n)=|\mu(n)|, \forall n \geq 1$

$$
\sum_{n=1}^{+\infty} \frac{|\mu(n)|}{n^{s}}=\prod_{p} \sum_{k=0}^{1} \frac{1}{p^{s k}}=\prod_{p}\left(1+\frac{1}{p^{s}}\right)=\frac{\zeta(s)}{\zeta(2 s)}
$$

$\sum_{n=1}^{+\infty} \frac{|\mu(n)|}{\zeta(s) n^{s}}=\frac{1}{\zeta(2 s)}$ refers to the probability of choosing a number at random and that it is squarefree.

When $s \rightarrow 1$, this probability tends to $\frac{1}{\zeta(2)} c^{\prime}$ està dire $\frac{6}{\pi^{2}}$

Proof of the Riemann hypothesis (yet another)

Now, we will be very optimistic and give what seems to be a probabilistic argument in favor of the Riemann hypothesis through Denjoy's version.
It seems that the Riemann hypothesis $(R H)$ is very much related to the Möbius function and that ultimately RH is equivalent to the fact that $P(\mu(n)=+1)=P(\mu(n)=-1)$
We have $P(\mu(n)=+1)+P(\mu(n)=-1)=\frac{1}{\zeta(2 s)}$
Similarly, i.e. $E(\mu(X))=\frac{1}{\zeta(s)^{2}} P(\mu(n)=+1)-P(\mu(n)=-1)=\frac{1}{\zeta(s)^{2}}$
So we have and $P(\mu(n)=+1)=\frac{1}{2}\left(\frac{1}{\zeta(2 s)}+\frac{1}{\zeta(s)^{2}}\right) P(\mu(n)=-1)=\frac{1}{2}\left(\frac{1}{\zeta(2 s)}-\frac{1}{\zeta(s)^{2}}\right)$
When $s \rightarrow 1$, these two probabilities tend to $\frac{3}{\pi^{2}}$
Suppose that X and Y are two random variables according to $\boldsymbol{\zeta}(\boldsymbol{s})$
Let $Z=X Y$ be the product of X and Y.
Z is defined in the set N^{*}, as X and Y.
$P(Z=z)=P(X Y=z)$

[^1]\[

$$
\begin{aligned}
\mathrm{P}\left(\prod_{p} p^{X_{p}+Y_{p}}\right. & \left.=\prod_{p} p^{z_{p}}\right)=P\left(X_{p}+Y_{p}=z_{p}, \forall p\right)=\prod_{p} P\left(X_{p}+Y_{p}=z_{p}\right) \\
& =\prod_{p} \sum_{x_{p}=0}^{z_{p}} P\left(X_{p}=x_{p}\right) P\left(Y_{p}=z_{p}-x_{p}\right) \\
& =\prod_{p} \sum_{x_{p}=0} \frac{1}{p^{s x_{p}}}\left(1-\frac{1}{p^{s}}\right) \frac{1}{p^{s\left(z_{p}-x_{p}\right)}}\left(1-\frac{1}{p^{s}}\right)=\prod_{\mathrm{p}}\left(\mathrm{z}_{\mathrm{p}}+1\right) \frac{1}{\mathrm{p}^{s z_{\mathrm{p}}}}\left(1-\frac{1}{\mathrm{p}^{s}}\right)^{2}=\frac{\tau(\mathrm{z})}{\mathrm{z}^{s} \zeta(\mathrm{~s})^{2}}
\end{aligned}
$$
\]

Another way to translate the fundamental theorem into probabilistic terms is as follows:
Let X be a random variable according to $\zeta(\boldsymbol{s})$
$X=\prod_{p} p^{X_{p}}$ with $X_{p} \in\{0,1,2, \ldots\}$
with that and are independent $X_{p} \sim G\left(1-\frac{1}{p^{s}}\right)$
We can say that i.e. the entropy of X is the sum of the entropies of $\cdot H(X)=\sum_{p} H\left(X_{p}\right) X_{p}$
After fairly simple calculations, we find $s \sum_{p} \ln (p) \frac{\frac{1}{p^{s}}}{1-\frac{1}{p^{s}}}+\ln (\zeta(s))$ that unfortunately tends towards $+\infty$ quand $s \rightarrow 1$

Today, I just discovered "on the internet" a formula that gives the p-adic valuations of a number according to this number:

$$
\text { if } X=\prod_{p} p^{X_{p}} \text { then } X_{p}=\log _{p}\left(\operatorname{pgcd}\left(X, p^{\left[\log _{p}(X)\right]}\right)\right.
$$

Thanks to these formulas, I managed to make calculations on Excel of the function of Möbius or Mertens. This is my first graph of the Mertens function with the first 200 primes (up to $p=1223$)

I think we need to deepen the study of areas where the Mertens function "leaves the x-axis" to get lost, we speak of positive or negative peaks.

[^2]The graph of the function $\frac{M(x)}{\sqrt{x}}$

The Mertens situation states that $\forall x>1,|M(x)|<\sqrt{x}$
If this conjuncture were true, it would have implied the Riemann hypothesis. Unfortunately, it turned out to be wrong and the counterexample is beyond 1030
(see http://www.dtc.umn.edu/~odlyzko/doc/arch/mertens.disproof.pdf)
DGMP Act and MCPP
Suppose X and $Y \sim \zeta(s)$
$Z=\operatorname{gcd}(X, Y)$ and $T=\operatorname{lcm}(X, Y)$
It is demonstrated without too great difficulty that:

$$
P_{(Z, T)}(z, t)=\frac{1}{(z t)^{s}} \frac{1}{\zeta(s)^{2}} \prod_{p}\left(1+\operatorname{signe}\left(t_{p}-z_{p}\right)\right)
$$

Special case:
Choosing two numbers at random, what is the probability that they are prime to each other and that their smallest common multiple is equal to t ?

We find this probability equal to with $w(t)$ which denotes the number of primes that divide t. It is very clear that this probability tends towards 0 when s tends towards 1 . This means that in real arithmetic, this probability is zero. $\frac{2^{w(t)}}{t^{s}} \frac{1}{\zeta(s)^{2}}$

[^3]The domain of definition of this probability distribution is as follows:

$z t$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																				
2	0		0		0		0		0		0		0		0		0		0	
3	0	0		0	0		0	0		0	0		0	0		0	0		0	0
4	0	0	0		0	0	0		0	0	0		0	0	0		0	0	0	
5	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0	
6	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0			
7	0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0
8	0	0	0	0	0	0	0		0	0	0	0	0	0	0		0	0	0	0
9	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0
10	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	
11	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

We see that this function is defined if z is a divisor of t and is zero if z does not divide t. Which is trivial since by definition $z(\mathrm{gcd})$ must necessarily divide t (lcm).

Can this distribution law bring something new about prime numbers?
Marginal distributions are simple to find. Horizontally, the totals give a zeta distribution of parameter 2 s .

Vertically, it's more complicated.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
1	1	2	2	2	2	4	2	2	2	4	2	4	2	4	4	2	2	4	2	4	53
2	0	1	0	2	0	2	0	2	0	2	0	4	0	2	0	2	0	2	0	4	23
3	0	0	1	0	0	2	0	0	2	0	0	2	0	0	2	0	0	3	0	0	12
4	0	0	0	1	0	0	0	2	0	0	0	2	0	0	0	2	0	0	0	2	9
5	0	0	0	0	1	0	0	0	0	2	0	0	0	0	2	0	0	0	0	2	7
6	0	0	0	0	0	1	0	0	0	0	0	2	0	0	0	0	0	2	0	0	5
7	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0	0	0	0	0	0	3
8	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0	0	0	3
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
10	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2	3
11	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
12	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
13	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1

16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	1	3	3	5	3	9	3	7	4	9	3	15	3	9	9	9	3	14	3	15	130

We check that gcd follows a zeta(2) law but lcm is more irregular.

Distribution of the DGMP

[^4]

MCPP Distribution
The distribution of lcm depends on the number of divisors of t.

[^5]
[^0]: " On the Zeta distribution $\zeta(s)$ and the Riemann hypothesis
 " Work done by Yahya GRARI (yahyagrari@gmail.com) page 1

[^1]: " On the Zeta distribution $\zeta(s)$ and the Riemann hypothesis
 " Work done by Yahya GRARI (yahyagrari@gmail.com) page 2

[^2]: " On the Zeta distribution $\zeta(s)$ and the Riemann hypothesis
 " Work done by Yahya GRARI (yahyagrari@gmail.com) page 3

[^3]: " On the Zeta distribution $\zeta(s)$ and the Riemann hypothesis
 " Work done by Yahya GRARI (yahyagrari@gmail.com) page 4

[^4]: " On the Zeta distribution $\zeta(s)$ and the Riemann hypothesis
 " Work done by Yahya GRARI (yahyagrari@gmail.com) page 6

[^5]: " On the Zeta distribution $\zeta(s)$ and the Riemann hypothesis
 " Work done by Yahya GRARI (yahyagrari@gmail.com) page 7

