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ABSTRACT

Mutation validation as a complement to existing applied machine learning validation schemes has
been explored in recent times. Exploratory work for Learning vector quantization (LVQ) based on
this model-validation scheme remains to be discovered. This paper proposes mutation validation as
an extension to existing cross-validation and holdout schemes for Generalized LVQ and its advanced
variants. The mutation validation scheme provides a responsive, interpretable, intuitive and easily
comprehensible score that complements existing validation schemes employed in the performance
evaluation of the prototype-based LVQ family of classification algorithms. This paper establishes
a relation between the mutation validation scheme and the goodness of fit evaluation for four LVQ
models: Generalized LVQ, Generalized Matrix LVQ, Generalized Tangent LVQ and Robust Soft
LVQ models. Numerical evaluation regarding these models complexity and effects on test outcomes,
pitches mutation validation scheme above cross-validation and holdout schemes.

Keywords Learning vector quantization · Mutation validation

1 Introduction

Machine learning model validation plays an essential role in the practice of applied machine learning ( Zhang et al.
[2021] ). For practitioners, the qualification state of a learned model is based on the metric employed in its evaluation
( Brownlee [2020] ). An appropriate evaluation metric remains vital for any meaningful learning ( Sun et al. [2009]
). Nonetheless, selecting the proper evaluation metric must fit in the right framework of a validation scheme in order
to ensure the benefits thereof ( Ferri et al. [2009] ). Cross-validation and holdout schemes are mostly verified and
preferred validation schemes used chiefly in machine learning projects ( Ma and He [2013], Zhang et al. [2021] ). Even
though these schemes enjoy popularity in use-case scenarios, utilization has been challenging regarding keeping a small
but sizeable fraction of the input data as a test set for validation purposes ( Ma and He [2013], Pham et al. [2020] ).
The problems of the size of a training data set, imbalances in class distribution as well as the selection of instances
into the test set for validation may affect the outcome of the evaluation score of a learned model ( Brownlee [2020],
Piironen and Vehtari [2017] ). A validation scheme that uses a whole data set in training and evaluation provides an
immediate answer to the compromise faced with cross-validation and holdout schemes ( Zhang et al. [2021], Gronau
and Wagenmakers [2019] ). Mutation validation is based on a single interpretable score which measures the ability of a
leaner to withstand perturbation in the target space while the input space remains unadulterated ( Zhang et al. [2021] ).
The mutation validation score provides a measure by which practitioners could further ascertain, complementarily, the
goodness of fit state for prototype-based LVQ classification models based on utilizing the entire training set with no
credence to a holdout set.

2 Classification Learning with Learning Vector Quantization

Learning vector quantization (LVQ) remains a robust and highly interpretable machine learning algorithm and has
a formulation that is mathematically precise and highly comprehensible ( Kohonen [1990] ). Learning prototypes
with generalized class responsibilities is based on a winner take all rule ( Kohonen and Kohonen [1995] ). The
mathematical formulation for LVQ follows that given X = {x1,x2,x3, . . . ,xN} ⊆ Rn as training set with targets



c (x) ∈ C = {1, 2, . . . , C} and atleast per class prototype based on a set of vectors W = {w1,w2, . . . ,wM} ⊆ Rn ,
the learning goal of attaining a generalised, representative and interpretable set of prototypes is characterized by the
winner takes all rule f : x → c (x) ⇐⇒ argminjd (x,wj) is satisfied ∀ x ∈ X with d being any computable
dissimilarity measure usually chosen as the Euclidean distance ( Kohonen and Kohonen [1995] ). Based on the
attraction and repulsion of prototypes, LVQ classifiers can attain representative class distributions ( Kohonen [1990] ).
To minimize errors associated with classification, a cost function approach based on SGD learning is presented by (
Sato and Yamada [1995] ) as

JGLVQ (X,ϕ) =

N∑
i=1

ϕ (µ (xi)) (1)

where µ (xi) is the discriminant function with a monotonically increasing ϕ as the activation function given respectively
as

µ (x) =
d (x,w+)− d (x,w−)

d (x,w+) + d (x,w−)
(2)

with d+ (x) = d (x,w+) indicating the correct best distance and d− (x) = d (x,w−) incorrect best distance based
on w+ ∈ W that best correctly assign x and w− ∈ W that best incorrectly assign x based on a differentiable
dissimilarity measure d ( Sato and Yamada [1995] ).

ϕθ (k) =
(
1 + a.e

(k−k0)

2θ2

)−1

(3)

The classifier function in (2) attains a hard state for SGD preservation when θ ∈ (0, 1] ↘ 0 implying ϕ (k) ↘ H (k)
with

H(k) =

{
1, if k ≤ 0.
0, otherwise. (4)

( Kästner et al. [2013], Villmann et al. [2018] ). For Matrix-GLVQ, the differentiable dissimilarity measure d is
expressed along with a positive definite relevant matrix specification as dΩ (x,w) = (Ω (x−w))

2 with Ω ∈ Rm×n

utilized for projection purpose, a generalized and numerically stable learner is realized ( Hammer and Villmann [2002],
Biehl [2006], Villmann et al. [2017] ). The projection parameter m accounts for the intended dimension of the
relevance matrix Ω and its regularization through dimension reduction allows GMLVQ to attain a robust learner
designation whenever m < n ( Schneider et al. [2010] ). Learning of prototypical representation in GLVQ is based on
(5)

∆w± ∝ −∂ϕ

∂µ
· ±2d∓ (x)

(d+ (x) + d− (x))
2 · ∂d (x,w

±)

∂w± (5)

similarly, prototype updates and Ω adaptation in Matrix-GLVQ is based on (7) and (6)

∆Ω ∝ −∂ϕ

∂µ

(
∂µ

∂d+Ω (x)
·
∂d+Ω (x)

∂Ω
+

∂µ

∂d−Ω (x)
·
∂d−Ω (x)

∂Ω

)
(6)

∆w± ∝ −∂ϕ

∂µ
·

±2d∓Ω (x)(
d+Ω (x) + d−Ω (x)

)2 · ∂dΩ (x,w±)

∂w± (7)

A tangent distance-based GLVQ where prototypes W = {(w1,W1) , (w2,W2) , . . . , (wM ,WM )} are defined from
the affine subspace of the input space for the approximation of class-based variations is introduced ( Saralajew and
Villmann [2016] ). For a given instance x ∈ X , the translation vector wK and the m-dimensional orthonormal basis
WM ∈ Rn×m are used to compute the minimum Euclidean distance to the k-th affine subspace by

min {d (x,wk +Wkθ) | θ ∈ Rm} = d
(
x,wk +WkW

T
k (x−wk)

)
(8)
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where for the k-th affine subspace, the closest prototype is determined by wk +WkW
T
k (x−wk) ( Saralajew and

Villmann [2016] ). Optimization of the affine-subspaces in W is based on (1) and (5) using SGD learning.

A probabilistic variant of LVQ that utilizes a soft model predictor based on the assumption that the prototypical
representation regarding the input space will be the centers of a Gaussian mixture model is introduced by (Seo and
Obermayer [2003]) as Robust Soft LVQ. Learning in RSLVQ follows probabilistic approach hence maximizes the
mutual information between the predicted probability vector pW (x) = (pW (1|x) , pW (2|x) , . . . , pW (C|x))T and
actual class target probability vector p (x) = (p1 (x) , . . . , pC (x))

T by minimizing the cross-entropy loss. The soft
model predictor is given by

pw (c|x) =

∑
j:c(wj)=c exp

(
− ((x−wj))

2
)

∑
l exp

(
− ((x−wl))

2
) (9)

and for Matrix-RSLVQ, − (Ω (x−wj))
2 replaces − ((x−wj))

2 in equation (9). 1

3 Mutation Validation for Learning Vector Quantization

Consider the training pair T = {xi, c (xi)}Ni=1 ∈ {Rn, C}N and T̂ = {xi, ĉ (xi)}Ni=1 ∈ {Rn, C}N as original and
mutated sets respectively. We define from the GLVQ discriminant function (2) the following relation µd : x → [−1, 1]
with ϕ : µd (x) → c (x) ∈ C and similarly, µ̂d (x) → [−1, 1] with ϕ : µ̂d (x) → ĉ (x) ∈ C
The expected risk of the loss function used in GLVQ (1) is given by

LR = Ex,c(x) [ϕ (µd (xi))] (10)

and for a given pair of instances with the perturbed target in T̂ , we have

LR̂ = Ex,c(x) [ϕ (µ̂d (xi))] (11)

with

ĉ (x) =

{
c (x) , p (c (x)) = 1− φx.
j\c (x) , p (j) = φ̄x.

(12)

where the pair (µd (x) , µ̂d (x)) ∈ H3
s with delta loss ∆L (x) = ϕ (µd (x))− ϕ (µ̂d (x)) and delta loss rate ∆R (x) =

∆L(x)
φ . The expectation of the delta loss rate follows for symmetric perturbation as

Ex,c(x) [∆R (x)] = Ex,c(x)

[
(1− φ)ϕi (µ̂d (x)) +

φ
C−1

∑
j ̸=i ϕj (µ̂d (x))− ϕi (µd (x))

φ

]
(13)

Ex,c(x) [∆R (x)] = Ex,c(x)

 (1− φ)

φ
ϕi (µ̂d (x)) +

1

C − 1

∑
j ̸=i

ϕj (µ̂d (x))−
1

φ
ϕi (µd (x))

 (14)

Ex,c(x) [∆R (x)] =
(1− φ)

φ
LR̂ +

J − LR̂

C − 1
− LR

φ
(15)

Ex,c(x) [∆R (x)] =

(
1

φ
− C

C − 1

)
LR̂ − 1

φ
LR +

J

C − 1
(16)

1In applications a = 1, k0 = 0 and θ > 0 ( Villmann et al. [2018] ). The magnitude of the orientation of the discriminant
function in (2) determines the extent of the classification decision with µ ∈ [−1, 1] meaning for incorrect classification, d

(
x,w+

)
>

d
(
x,w−) and vice-versa. When m = n, the positive definite matrix Λ = ΩTΩ ∈ Rn×n and H is the Heaviside function herein

obtained by transitioning through the Sigmoid function in (3). Robustness in Matrix-GLVQ can be improved by a regularization
technique which involves a penalized dimension ( Schneider et al. [2010], Bunte et al. [2012] ).

3



since GLVQ loss function (1) minimizes classification error ( Sato and Yamada [1995] ), J1 is taken as 1.

Ex,c(x) [∆R (x)] =

(
1

φ
− 2

)
LR̂ − 1

φ
LR + 1 (17)

LR = (1− 2φ)LR̂ − φEx,c(x) [∆R (x)] + φ (18)

for a specified evaluation metric ξ, we have

ξ (ϕi (µd (x))) = 1− Ex,c(x) [ϕ (µd (xi))] and ξ (ϕj (µ̂d (x))) = 1− Ex,c(x) [ϕ (µ̂d (xi))] based on (10) and (11)

mv = (1− 2φ) ξ (ϕj (µ̂d (x))) + φEx,c(x) [∆R (x)] + φ (19)

mv = (1− 2φ) ξT (ϕj (µ̂d (x))) + φ
ξT (ϕi (µd (x)))− ξT̂ (ϕj (µ̂d (x)))

φ
+ φ (20)

mv = (1− 2φ) ξT (ϕj (µ̂d (x))) + ξT (ϕi (µd (x)))− ξT̂ (ϕj (µ̂d (x))) + φ (21)

where ξT (ϕi (µd (x))), ξT (ϕj (µ̂d (x))) and ξT̂ (ϕj (µ̂d (x))) are specified evaluation metric scores with respect to
{T , T̂} and to reflect the disposition to LVQ with regards to the accuracy metric,

ξT (ϕi (µd (x))) =
#
{
(x, c (x)) ∈ T | c(x) = c(ws(x))

}
#T

(22)

ξT (ϕj (µ̂d (x))) =
#
{
(x, ĉ (x)) ∈ T̂ | c(x) = ĉ(ws(x))

}
#T

(23)

ξT̂ (ϕj (µ̂d (x))) =
#
{
(x, ĉ (x)) ∈ T̂ | ĉ(x) = ĉ(ws(x))

}
#T̂

(24)

and hence referred to as training accuracy (TA), robust mutation training accuracy (RMTA) and mutation training
accuracy (MTA) respectively for equations (22, 23 and 24).

mv = (1− 2φ)RMTA+ TA−MTA+ φ (25)

It follows from equation (25), for the best-case scenario, the LVQ learners are expected to possess two properties,
namely (1) good generalization and (2) numerical stability and hence equation (23) is almost not susceptible to target
space perturbation implying RMTA ↘ 1 and a magnified difference for (TA−MTA) ↘ φ and with a constant φ
in a limited target space perturbation, mv ↘ 1 and this follows same conclusions derived by ( Zhang et al. [2021] ).
The mv scores are reminiscent of the interpretability of existing model validation scores such as CV but with extra
information depicting the goodness of fit of LVQ learners.

The evaluation metric employed here must be selected informatively based on a specific variant of LVQ with regard to
its associated cost function. The GLVQ cost function minimizes the classification error ( Sato and Yamada [1995] ) and
hence may not be overly appropriate to learn prototypes for imbalanced training sets. In this regard, users must opt for a
variant of GLVQ that uses a threshold parameter γ in the classifier function in (2) and is referred to as ROC-LVQ (
Villmann et al. [2018] ). However, a bi-directional approach focusing on a learner’s susceptibility to perturbation in the
input space and corresponding mutation in the target space may require using the relu (triplet loss) and the GLVQ-loss
for optimization. Further investigation is needed in this regard. The mutation of labels is executed based on a fixed
user-defined rate φ. 2

2Hs is the hypothesis space and is identical. The perturbation method must be chosen cautiously based on prior knowledge of the
target space distribution. This paper recommends global or uniform target space mutations for randomly selected instances when the
target space is balanced. The balanced class-aware swap scheme should be used for an imbalanced target space. The mutation degree
must be fixed ( [Zhang et al., 2021] ). The feature space is not affected thereof.
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Label Perturbation

Algorithm 1 Target space perturbation

Require: Training set T = {xn, c (xn)}Nn=1 ∈ {Rn, C}N
1: Initialize a fixed φ ∈ [0, 0.5]
2: Select randomly φ labels of the target space by global, uniformly class-aware or balance class-aware schemes.
3: Perturb the selected labels either by swap-next or swap randomly but uniquely method
4: Return the perturbed data set T̂ = {xn, ĉ (xn)}Nn=1 ∈ {Rn, C}N

Mutation Validation

Algorithm 2 MV Algorithm for LVQ

Require: Training set T = {xn, c (xn)}Nn=1 ∈ {Rn, C}N
1: Perturb T using the target space perturbation algorithm in (1)
2: Setup specified LVQ model with fixed hyper-parameters and learn prototypes using T
3: Evaluate and record the model performance ξT (ϕi (µd (x)))

4: Train a reinitialized but same model-type on same hyper-parameters used in step 3. based on T̂
5: Evaluate and record the model performance ξT (ϕj (µ̂d (x))) and ξT̂ (ϕj (µ̂d (x)))
6: Compute MV score using eqn. (21)

The evaluation metric must be cautiously chosen based on model cost function type, target space distribution and
learning goals.

4 Experimentation

This section illustrates the aforementioned approach with two artificial sets S1 and S2 and two real-world data sets,
namely WDBC from the UCI data set ([Blake, 1998]) and MNIST handwritten data ([Deng, 2012]).

Since the complexity of LVQ models scales with a high cardinality of prototypes, care must be taken in choosing the
optimal number of prototypes per class to avoid over-fitting ( Villmann et al. [2018] ). However, further research has
revealed that increasing the number of prototypes for GLVQ and GTLVQ leads to improved generalization ability and
robustness ([Saralajew et al., 2020a]). This paper investigates the relationship between the mutation validation score and
the behavior of the decision boundary of an LVQ learner regarding the model complexity. This paper also investigates,
for a fixed perturbation ratio φ, the relation to the size of the data set and learner complexity bearing that, performance
of LVQ learners may be affected for extensive data ( Villmann et al. [2017] ).Furthermore, this paper investigates the
relationship between existing model validation schemes (CV and hold-out) and the proposed MV scheme for evaluating
and selecting LVQ classification algorithms before deployment.

To reflect the behavior of mutation validation score concerning the decision boundary of a learner herein considered, a
signed delta significance for decision-making is introduced and indicated as

δd =

{
+v, if MV ≥ CV .
−v, otherwise. (26)

with v = |MV − CV |, when δd > 0 means the decision boundary will be insensitive to mutant labels in the target
space and for δd < 0 the sensitivity of the decision boundary to mutant labels is brought to bear. In comparison, v
accounts for the extent of the observed sensitivity. In use case scenarios, any model selected by the mutation validation
scheme is only deployed based on steps (2) and (3) in the MV Algorithm for LVQ (2) since by this way, practitioners
can make adequate use of the entire data set for training without compromise. The implementation of the algorithms (1)
and (2) in Python is made accessible by the author at ( Otoo [2023])

4.1 Artificial data sets

The toy sets S1 and S2 with two attributes each where|S1| < |S2| for binary classes {0 : 75, 1 : 75} and {0 : 120, 1 :
80} were respectively generated. The prototypes were selected by random initialization from the feature space, with
focus on unique labels.The proven robust learners GLVQ and GTLVQ ( Bunte et al. [2012], Kaden et al. [2014],
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Saralajew et al. [2020a,b], Voráček and Hein [2022] ), some-what robust1 Matrix-GLVQ learner([Schneider et al., 2010,
Saralajew et al., 2020a]) and the yet to be proven robust RSLVQ leaner were used for the experiments ([Saralajew
et al., 2020a]). The mutation validation, cross-validation and holdout results are investigated for an equal prototype
distribution with a learning rate chosen as 0.01 and fixed for both learning models using the SGD optimizer. Presented
below are the results and learner behavior for a fixed φ with a five-fold cross validation and 0.2 holdout scheme using
the accuracy metric.

(a) S1 (b) S1 mutated with φ = 0.2 based on 1

Figure 1: Visualization of the artificial training data set S1 and class distributions generated for the experiments.

Table 1: classification accuracies with delta significance for the artificial data set S1

GLVQ GMLVQ GTLVQ RSLVQ

Method 1|1 5|5 1|1 5|5 1|1 5|5 1|1 5|5
MV(φ = 0.2) 78.40% 98.93% 91.20% 100.00% 89.33% 94.80% 87.33,% 88.00%
CV 80.67% 95.33% 86.67% 91.33% 86.00% 90.00% 86.00% 86.00%
Holdout 75.56% 97.78% 84.40% 84.40% 80.00% 93.3% 80.00% 84.44 %

δd −2.27% +3.60% +4.53% +8.67% +3.33% +4.80% +1.33% +2.00%

# param. 4 20 8 40 8 40 4 20

The results in Table 1 indicate a true reflection of the decision boundary behavior by the mutation validation scores.
The CV and Holdout scores do not depict extra information regarding the response of the discriminant function when
faced with mutants during learning. In Figures (2a,2b,2c), MV and CV scores increase along with the model complexity
with slight exception in the RSLVQ learner, where fair but steady undulating validation scores are recorded. The MV
scores capture the behavior of the learning dynamic and offer a complementary insight into numerical stability based on
mutant training.

The obtained MV scores show that the models in Figure (2) can resist perturbation despite increased complexity. From
Figure (2c), the Holdout evaluation scores stabilize and tend to be higher than the MV scores for increased learner
complexity. The observed behavior of the Holdout scores in Figure (2c) is an attestation of the existence of a much
less complex LVQ learner (few prototypes per class) with an appreciably close and similar performance. Moreover,
whenever the CV scores rise, it implies a much more complex LVQ learner (more prototypes per class) with a higher
MV score exist. In consequence, the corresponding δd for the observed cases indicates a good fit for all the models
considered.

From Table 1, MV scores for the GMLVQ model rise more rapidly than CV scores, indicating the ability to capture the
goodness of fit of the learner concerning increasing learner complexity. The MV scores for the GLVQ and GTLVQ
models are more significant than the CV scores. Regarding RSLVQ, which is not a proven robust learner against
adversarial attacks (Saralajew et al. [2020b]), Figure (2d) indicates how MV scores capture the RSLVQ learner behavior
with regards to mutant instances.
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(a) GLVQ (b) GMLVQ (c) GTLVQ

(d) RSLVQ

Figure 2: MV, CV and Holdout accuracy scores against model complexity for the S1 artificial data set

This behavior suggests how responsive the training by mutation validation reflects the response of the decision boundary
regarding model complexity and susceptibility to mutant labels in the training data. The results in Table 1 indicate
the extent of a learner’s susceptibility to fit perturbations in the training data as the model complexity increases.
Thus, a practitioner can select the best model according to training by mutation validation, which compliments the
corresponding CV scores.

In order to gather further insights regarding the behavior of the proposed mutation validation scheme for learning
vector quantization, the second generated artificial set S2 with a much less even distribution (skewed) and considerably
imbalanced target size (3) is used for further experiments. The observed numerical evaluation for the MV, CV and
Holdout schemes is presented below.

(a) S2 (b) S2 mutated with φ = 0.2 (1)

Figure 3: Visualization of artificial training data set S2 and class distributions generated for the experiments.
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Table 2: classification accuracies with delta significance for the artificial data set S2

GLVQ GMLVQ GTLVQ RSLVQ

Method 1|1 5|5 1|1 5|5 1|1 5|5 1|1 5|5
MV(φ = 0.2) 94.30% 97.00% 97.20,% 96.70% 94.80% 70.20% 94.50% 97.00%
CV 93.00% 95.00% 95.00% 94.50% 92.00% 74.00% 95.00% 95.00%
Holdout 91.67% 93.00% 93.30% 91.67% 93.33% 83.33% 90.00% 91.67 %

δd +1.30% +2.00% +2.20% +2.20% +2.80% −3.80% −0.50% +2.00%

# param. 4 20 8 40 8 40 4 20

(a) GLVQ (b) GMLVQ (c) GTLVQ

(d) RSLVQ

Figure 4: MV, CV and Holdout accuracy scores against model complexity for the S2 artificial data set

From Table 2 and Figures (4a,4b,4d), the MV scores pitch above CV scores for all the learners used for the training.
However, the rising (4a, 4d ), rising but fairly steady (4b) and decreasing (4c) behaviors observed indicates how well
mutation validation captures informatively the faithful response of the decision boundary regarding the goodness of fit of
the learners. Interpreting the MV scores indicates that the goodness of fit of GLVQ and RSLVQ rises with an increasing
number of prototypes per class. GMLVQ has a reasonably stable goodness of fit and GTLVQ has a decreasing goodness
of fit for an increasing number of prototypes. The analysis of learner(s) behavior in Figure (4) is an indication of the
fact that whenever the Holdout scores decrease, stabilize and are less than the CV scores, there exists a less complex
learner with better MV performance. Moreover, when the Holdout scores rise and stabilize, a much more complex
learner with better MV performance exists. Hence, for the analyzed cases, the corresponding δd of the LVQ learner(s)
indicates good fit.

In Figure (4c), the Holdout evaluation metric scores get more significant for an increased number of prototypes per
class as compared to MV scores and hence notifies the presence of a learner with few prototypes per class but having
appreciably equivalent or better performance. Thus, the MV scores are very responsive and can capture the learning
dynamics and numerical stability in a single interpretable score.
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4.2 Real data sets

The WDBC data set from the UCI data repository was used to investigate the process for real-world cases. WDBC is a
binary class data set with the non-infectious and infectious classes, with a total cardinality of 562 instances ( Blake
[1998] ).

The GLVQ, GTLVQ, GMLVQ and RSLVQ models were employed for the training using a uniform prototype distribution
with a learning rate of 0.01 fixed for all prototype-based models considered. The goodness of fit relation is explored
using the mutation validation algorithm for LVQ described in (2). Target space perturbation is executed accordingly
using (1) based on a fixed φ along with five-fold CV and 0.2 holdout evaluated with the accuracy metric.

Table 3: classification accuracies with delta significance for the artificial data set WDBC
GLVQ GMLVQ GTLVQ RSLVQ

Method 1|1 5|5 1|1 5|5 1|1 5|5 1|1 5|5
MV(φ = 0.2) 88.30% 89.49% 88.75% 88.82% 88.44% 66.89% 37.08% 91.60%
CV 85.93% 87.51% 88.40% 88.40% 89.10% 71.53% 56.81% 88.93%
Holdout 85.96% 87.13% 86.55% 85.96% 87.13% 87.13% 31.58% 88.89 %

δd +2.37% +1.98% +0.35% +0.42% −0.66% −4.64% −19.73% +2.67%

# param. 4 20 8 40 8 40 4 20

(a) GLVQ (b) GMLVQ (c) GTLVQ

(d) RSLVQ

Figure 5: MV, CV and Holdout accuracy scores against model complexity for the WDBC data set

From Table 3 and Figure 5, the MV scores (5a,5b,5d) pitch above the CV scores for all the learners. It is also worth
noting that the MV scores tend to increase with model complexity for the GLVQ and RSLVQ models and stabilize
with increased complexity for GMLVQ. In contrast, for GTLVQ (5c), the MV scores decrease with regard to increased
model complexity. This behavior is a notifier regarding the sensitivity of MV scores to capture the true reflection of
decision boundary behavior. Regarding increasing learner complexity, the Holdout evaluation metric scores tend to be
higher than the matching MV scores for GTLVQ (5c). The implication of the observation in (5c) is the existence of a
less complex LVQ learner (few prototypes per class) with an appreciably close and almost similar performance. In such
cases, practitioners must opt for learners with less complexity. Moreover, analysis of learner(s) behavior in Figures (5)
shows that whenever the Holdout scores fall, stabilize and are less than the CV scores, there exists a less complex LVQ
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learner with better MV performance. Conversely, when the Holdout scores rise and stabilize, a complex LVQ learner
with a better MV score exists. Consequently, for the above-observed cases, using (26), the matching δd, indicates no
susceptibility of the learners to mutants in the target space and therefore MV scores provide complement information
needed for model selection.

In order to investigate the suggested validation process for non-tabular data with large size, the MNIST handwritten
database ([Deng, 2012]) with the pair cardinalities {train : 60000, test : 10000} is used for the holdout validation
scheme while the pair union of 70000 images used for the CV and MV schemes. A uniform prototype distribution with
a target space mutation degree φ = 0.2 was utilized.

(a) Extract of MNIST data set (b) Extract of MNIST data set mutated with φ = 0.2 (1)

Figure 6: Visualization of MNIST handwritten training data set.

The results from Table (4) and Figure (7) indicate stable behavior for GLVQ, GMLVQ and GTLVQ. The MV scheme
pitch ahead of the CV and Holdout model evaluation schemes and is indicative of the faithful response of the decision
boundary of the learner(s) regarding the goodness of fit to the training set. Numerical evaluation of learner(s) behavior
in Figures (7) shows that whenever the Holdout scores rise and stabilize, there exists a complex LVQ learner with a
better MV score. Using (26) and results from (7), the learners exhibit a good fit regarding the behavior of the decision
boundary to mutant labels in the target space.

The mutation validation scheme for LVQ provides an informative and responsive alternative to existing machine learning
validation schemes. In most cases, it complements or replaces the CV and holdout model validation schemes. The MV
scheme for LVQ is an additional but complementary model selection tool for applied prototype-based machine learning
practitioners.

Table 4: classification accuracies with delta significance for the artificial data set MNIST
GLVQ GMLVQ GTLVQ

1Method 1|1 3|3 1|1 3|3 1|1 3|3
MV(φ = 0.2) 83.75% 88.76,% 90.46,% 91.24% 92.75% 93.16%
CV 80.76% 86.37% 88.32% 89.22% 91.58% 91.73%
Holdout 81.62% 87.16% 88.44% 89.36% 91.98% 92.36%

δd +2.99% +2.39% +2.14% +2.02% +1.17% +1.43%

# param. 7.8 K 23.5 K 622 K 638 K 227 K 682 K
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(a) GLVQ (b) GMLVQ (c) GTLVQ

Figure 7: MV, CV and Holdout accuracy scores against model complexity for the MNIST data set

5 Discussion

The analysis of outcomes in this paper shows that the MV scheme offers a faithful evaluation irrespective of the inherent
distributions within the data set, the training data set size and the complexity of the prototype learners used for the
experiments. Also, by the aforementioned MV scheme, a careful study of the outcomes presents an interpretable score
by which practitioners can select learners based on a range of learnable parameters influencing model complexity. This
study establishes a relationship between the MV scheme and existing model validation schemes( CV and Holdout), with
recommendations for practitioners regarding their complementary use during the model selection process. Hence, a vital
note would be for prototype-based machine learning practitioners to opt for the MV scheme in research areas where
training data is diminutive and inadequate for the CV and Holdout evaluation schemes. The MV scheme is a useful tool
in applied machine learning problems where critical evaluation of model selection is required before deployment.

6 Conclusion

A mutation validation scheme (MV) for prototype-based learning vector quantization classifiers has been presented
in this paper. This work establishes a relationship between this model validation scheme and existing facts relating
to the goodness of fit of the highly interpretable prototype-based LVQ classification algorithms. The mathematical
formulation for this complimentary model validation scheme for LVQ classifiers has been introduced in this paper. The
numerical evaluation of experimental results indicates that this model validation scheme captures well the behavior of
the decision boundary regarding the model complexity of the LVQ classifiers. The MV score offers an interpretable
reflection of the goodness of fit measurement during the model selection process for LVQ classifiers. The mutation
validation scheme introduced can be implemented in parallel with existing validation schemes in machine learning
pipelines and executed during runtime. Posited and confirmed is a new model validation for LVQs. Future work will
investigate the application of the MV scheme as a replacement for the existing holdout evaluation of feature selection
tasks for LVQs.
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