Contraction of Ramanujan Formulas in the Letter to Hardy.

Juan Elías Millas Vera. ${ }^{1}$

Zaragoza (Spain).

August 2023.

0- Abstract:

In this paper we show an approach to the Ramanujan summation of series formulas, proving that it is possible a contracted version of them.

1- Introduction.

Srinivasa Ramanujan (1887-1920), the Hindu genius send to G. H. Hardy a letter in 1903 [1]. In this letter were a few discoveries and advanced (for that time) questions that he made by himself. In this paper we will focus on part " V : Theorems of summation of series". We will do a more modern contraction of the equations with a calculus approach. We will distinguish between "Ramanujan notation" and "Contracted notation".
I will use to contract negative parts of sequences my own operator (Subtractory), if you want to know more about negative-summation operator you can see [2].
As warning I will say that I do not test the veracity of any Ramanujan's equality so it can be wrong as we understand the mathematics in a numeric form today.

2- Section V contractions:

(1.1) Ramanujan notation

$$
\frac{1}{1^{3}} \cdot \frac{1}{2^{1}}+\frac{1}{2^{3}} \cdot \frac{1}{2^{2}}+\frac{1}{3^{3}} \cdot \frac{1}{2^{3}}+\frac{1}{4^{3}} \cdot \frac{1}{2^{4}}+\ldots=\frac{1}{6}(\log 2)^{3}-\frac{\pi^{2}}{12} \log 2+\left(\frac{1}{1^{3}}+\frac{1}{3^{3}}+\frac{1}{5^{3}}+\ldots\right)
$$

(1.2) Contracted notation

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3} \cdot 2^{m}}=\frac{1}{6} \log (2)^{3}-\frac{\pi}{12} \log (2)+\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}}
$$

(2.1) Ramanujan notation

$$
1+9\left(\frac{1}{4}\right)^{4}+17\left(\frac{1 \cdot 5}{4 \cdot 8}\right)^{4}+25\left(\frac{1 \cdot 5 \cdot 9}{4 \cdot 8 \cdot 12}\right)^{4}+\ldots=\frac{2 \sqrt{2}}{\sqrt{\pi}\left\{\Gamma\left(\frac{3}{4}\right)\right\}}
$$

[^0](2.2) Contracted notation
$$
\sum_{n=1}^{\infty} 1+8 n\left(\frac{\prod_{m=0}^{\infty} 1+4 m^{4}}{\prod_{m=1}^{\infty} 4 m}\right)=\frac{2 \sqrt{2}}{\sqrt{\pi}\left\{\Gamma\left(\frac{3}{4}\right)\right\}}
$$
(3.1) Ramanujan notation
$$
1-5 \cdot\left(\frac{1}{2}\right)^{3}+9 \cdot\left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{3}-\ldots=\frac{2}{\pi}
$$
(3.2) Contracted notation
$$
1+2\left(\sum_{n=0}^{\infty} 8 n\left(\frac{\prod_{m=1}^{\infty} 2 m-1}{\prod_{m=1}^{\infty} 2 m}\right)\right)+\left({\underset{n=1}{\infty}}_{n=1}^{P_{m}} 4 n\left(\frac{\prod_{m=1}^{\infty} 2 m-1^{3}}{\prod_{m=1}^{\infty} 2 m}\right)\right)=\frac{2}{\pi}
$$
(4.1) Ramanujan notation
$$
\frac{1^{13}}{e^{2 \pi}-1}+\frac{2^{13}}{e^{4 \pi}-1}+\frac{3^{13}}{e^{6 \pi}-1}+\ldots=\frac{1}{24}
$$
(4.2) Contracted notation
$$
\sum_{n=1}^{\infty} \frac{n^{13}}{e^{(2 n) \pi}-1}=\frac{1}{24}
$$
(5.1) Ramanujan notation
$$
\frac{\operatorname{coth} \pi}{1^{7}}+\frac{\operatorname{coth} 2 \pi}{2^{7}}+\frac{\operatorname{coth} 3 \pi}{3^{7}}+\ldots=\frac{19 \pi^{7}}{56700}
$$
(5.2) Contracted notation
$$
\sum_{n=1}^{\infty} \frac{\operatorname{coth} n \pi}{n^{7}}=\frac{19 \pi^{7}}{56700}
$$
(6.1) Ramanujan notation
$$
\frac{1}{1^{5} \cosh \frac{\pi}{2}}-\frac{1}{3^{5} \cosh \frac{3 \pi}{2}}+\frac{1}{5^{5} \cosh \frac{5 \pi}{2}}-\ldots=\frac{\pi^{5}}{768}
$$
(6.2) Contracted notation
$$
\left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{5} \cosh \frac{(2 n-1) \pi}{2}}\right)+2\left(\sum_{n=1}^{\infty} \frac{1}{(4 n-1)^{5} \cosh \frac{(4 n-1) \pi}{2}}\right)=\frac{\pi^{5}}{768}
$$
(7.1) Ramanujan notation
\[

$$
\begin{aligned}
\left(\frac{1}{\left(1^{2}+2^{2}\right)(\sinh 3 \pi-\sinh \pi)}\right)+ & \left(\frac{1}{\left(2^{2}+3^{2}\right)(\sinh 5 \pi-\sinh \pi)}\right)+\left(\frac{1}{\left(3^{2}+4^{2}\right)(\sinh 7 \pi-\sinh \pi)}\right)+\ldots= \\
& =\frac{1}{2 \sinh \pi}\left(\frac{1}{\pi}+\operatorname{coth} \pi-\frac{\pi}{2} \tanh ^{2} \frac{\pi}{2}\right)
\end{aligned}
$$
\]

(7.2) Contracted notation

$$
\sum_{n=1}^{\infty} \frac{1}{\left(n^{2}+(n+1)^{2}\right) \cdot(\sinh (2 n+1) \pi-\sinh \pi)}=\frac{1}{2 \sinh \pi}\left(\frac{1}{\pi}+\operatorname{coth} \pi-\frac{\pi}{2} \tanh ^{2} \frac{\pi}{2}\right)
$$

(8.1) Ramanujan notation

$$
\frac{1}{\left(25+\frac{1^{4}}{100}\right)\left(e^{\pi}+1\right)}+\frac{3}{\left(25+\frac{3^{4}}{100}\right)\left(e^{3 \pi}+1\right)}+\frac{5}{\left(25+\frac{5^{4}}{100}\right)\left(e^{5 \pi}+1\right)}+\ldots=\frac{\pi}{8} \operatorname{coth}^{2} \frac{5 \pi}{2}-\frac{4689}{11890}
$$

(8.2) Contracted notation

$$
\sum_{n=1}^{\infty} \frac{(2 n-1)}{\left(25+\frac{(2 n-1)^{4}}{100}\right)\left(e^{(2 n-1) \pi}+1\right)}=\frac{\pi}{8} \operatorname{coth}^{2} \frac{5 \pi}{2}-\frac{4689}{11890}
$$

(9.1) Ramanujan notation

$$
\frac{1}{1^{7} \cosh \frac{1}{2} \pi \sqrt{3}}-\frac{1}{3^{7} \cosh \frac{3 \pi}{2} \sqrt{3}}+\ldots=\frac{\pi^{7}}{23040}
$$

(9.2) Contracted notation

$$
\left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{7} \cosh \frac{(2 n-1) \pi}{2} \sqrt{3}}\right)+2\left(\stackrel{\infty}{\mathrm{P}}_{n=1}^{(4 n-1)^{7} \cosh \frac{(4 n-1) \pi}{2} \sqrt{3}}\right)=\frac{\pi^{7}}{23040}
$$

(10.1) Ramanujan notation

$$
\left\{1+\left(\frac{n}{1}\right)^{3}\right\}\left\{1+\left(\frac{n}{2}\right)^{3}\right\}\left\{1+\left(\frac{n}{3}\right)^{3}\right\} \ldots
$$

Can always be exactly found if n is any integer positive or negative.
(10.2) Contracted notation

$$
\prod_{m=1}^{\infty}\left\{1+\left(\frac{n}{m}\right)^{3}\right\}
$$

Can always be exactly found if n is any integer positive or negative.
(11.1) Ramanujan notation

$$
\frac{2}{3} \int_{0}^{1} \frac{\tan ^{-1} x}{x} d x-\int_{0}^{2-\sqrt{3}} \frac{\tan ^{-1} x}{x} d x=\frac{\pi}{12} \log 2+\sqrt{3}
$$

3- Conclusions.

As you can see almost every summation series from Ramanujan (except integral one) can be expressed as calculus contracted notation. I think, and this is just a comment, that nowadays we can do a more technical mathematics, with more precision in our calculus expressions.

4- References.

[1] Ramanujan, Srinivasa. S. Ramanujan to G. H. Hardy. https://www.qedcat.com/misc/ramanujans letter.jpg
[2] Millas Vera, Juan Elías. Resume of the serial operators theory. https://vixra.org/pdf/2109.0029v1.pdf

[^0]: 1 juanmillaszgz@gmail.com

