An Algebraic Structure of Music Theory

SHAO-DAN LEE

Abstract We may define a binary relation. Then a nonempty finite set equipped with the binary relation is called a circle set. And we define a bijective mapping of the circle set, and the mapping is called a shift. We may construct a pitch structure over a circle set. And we may define a tonic and step of a pitch structure. Then the ordered pair of the tonic and step is called the key of the pitch structure. Then we define a key transpose along a shift. And a key transpose is said to be regular if it consists of stretches, shrinks and a shift. A key transpose is regular if and only if it satisfies some hypotheses.

CONTENTS

1. Introduction	1
2. Preliminaries	2
3. An Algebraic Structure of Music Theory	2
References	8

1. INTRODUCTION

In definition 3.1, we define a binary relation ' \odot '. Then a non-vacuous finite set *P* equipped with the binary relation \odot is called a circle set, and we define a bijective mapping δ that is called shift if the mapping is compatible with \odot , see definition 3.2.

A circle set has no heads, but we may select a member as a head. Hence we define a tonic (cf. [4]) τ of P in definition 3.3.

Let $\mathbb{S} := \{-, -, \otimes\}$ be a set. The members of \mathbb{S} is called scales(cf. [4]), and we define a function $\lambda: P \times P \to \mathbb{S}$ given by assigning to an ordered pair of P a scale, see definition 3.4 for more details.

Two unary relations ' \sharp ' and \flat ' on a circle set *P* are defined in definitions 3.5 and 3.6, respectively.

Let $\mathfrak{L} := \{\lambda, \tau, \mathbb{S}, \mathfrak{S}\}$ be a language. Then we may construct a partial structure **M** of the language \mathfrak{L} over a circle set *P*, and the partial structure **M** is called the pitch structure, see definition 3.7 for more details.

Then we obtain a sequence of the scales, the sequence is called the step of the pitch structure \mathbf{M} , and denoted by $SS_{\tau_M}(\mathbf{M})$, see definition 3.8 for more details. The ordered pair $\langle \tau_M, SS_{\tau_M}(\mathbf{M}) \rangle$ is called the key(cf. [4]) of \mathbf{M} , see definition 3.9.

Suppose that M, N are two pitch structures over a circle set P. Then a bijective mapping κ : $SS(M) \rightsquigarrow SS(N)$ is called a key transpose(cf. [4]) along a shift δ if the mapping κ satisfies the hypotheses of definition 3.10.

Date: April 12, 2023.

²⁰²⁰ Mathematics Subject Classification. 08A62.

Key words and phrases. Universal Algebra, Finite Partial Structure, Music Theory.

We say that a key transpose κ is regular if κ consists of stretches, shrinks and a shift, see definitions 3.11 and 3.12 for details. And some members of *P*, that is invariant under κ , are called κ -invariant, see definition 3.13. A key transpose κ is regular if and only if lemma 3.1 and lemma 3.2 holds, see proposition 3.2 for more details.

2. PRELIMINARIES

We recall some definitions in universal algebra.

Definition 2.1 ([2,3]). An ordered pair (L, σ) is said to be a (first-order) **language** provided that

- *L* is a nonempty set,
- $\sigma: L \to \mathbb{Z}$ is a mapping.

A language (L, σ) is denoted by \mathfrak{L} . If $f \in \mathfrak{L}$ and $\sigma(f) \ge 0$ then f is called an **operation symbol**, and $\sigma(f)$ is called the **arity** of f. If $r \in \mathfrak{L}$ and $\sigma(r) < 0$, then r is called a **relation symbol**, and $-\sigma(r)$ is called the **arity** of r. A language is said to be **algebraic** if it has no relation symbols.

Definition 2.2 ([2]). Let X be a nonempty class and n a nonnegative integer. Then an *n*-ary **partial operation** on X is a mapping from a subclass of X^n to X. If the domain of the mapping is X^n , then it is called an *n*-ary **operation**. And an *n*-ary **relation** is a subclass of X^n where n > 0. An operation(relation) is said to be **unary**, **binary** or **ternary** if the arity of the operation(relation) is 1, 2 or 3, respectively. And an operation is called **nullary** if the arity is 0.

Definition 2.3 ([2]). An ordered pair $\mathbf{A} := \langle A, \mathfrak{L} \rangle$ is said to be a **structure** of a language \mathfrak{L} if A is a nonempty class and there exists a mapping which assigns to every n-ary operation symbol $f \in \mathfrak{L}$ an n-ary operation f^A on \mathbf{A} and assigns to every n-ary relation symbol $r \in \mathfrak{L}$ an n-ary relation r^A on \mathbf{A} . If all operation on \mathbf{A} are partial operations, then \mathbf{A} is called a **partial structure**. A (partial)structure \mathbf{A} is said to be a (**partial)algebra** if the language \mathfrak{L} is algebraic.

Definition 2.4 ([2, 3]). Let A, B be (partial)structures of a language \mathfrak{L} . A mapping $\varphi: A \to B$ is said to be a **homomorphism** provided that

 $\varphi(f^A(\alpha_1,\ldots,\alpha_n)) = f^B(\varphi(\alpha_1),\ldots,\varphi(\alpha_n))$ for every *n*-ary operation *f*;

 $r^{A}(\alpha_{1},\ldots,\alpha_{n}) \Longrightarrow r^{B}(\varphi(\alpha_{1}),\ldots,\varphi(\alpha_{n}))$ for every *n*-ary relation *r*.

A homomorphism φ is called an **isomorphism** if φ is bijective.

3. AN ALGEBRAIC STRUCTURE OF MUSIC THEORY

Definition 3.1. Suppose that *P* is a nonempty finite set. We may define a binary relation ' \otimes ' on *P* as follows. For every $s \in P$,

- there is exactly one $u \in P$ such that $u \otimes s$, and
- there is exactly one $v \in P$ such that $s \otimes v$.

Remark. The binary relation '⊗' is *not* an order relation.

Definition 3.2. A **circle set** is a nonempty finite set equipped with the binary relation ' \otimes ' defined in definition 3.1. Let *P* be a circle set. Then a bijective mapping $\delta: P \to P$ is said to be a **shift** if δ preserves the order of *P*, i.e., $\delta(p_i) \otimes \delta(p_j)$ if and only if $p_i \otimes p_j$.

Example 3.1. The set $X := \{x \in \mathbb{N} \mid x \mod 7\}$ can be regarded as a circle set.

And it is a shift that a mapping is defined by $i \mapsto ((i + 1) \mod 7)$ for $i \in X$.

Example 3.2. Let A be a non-vacuous finite ordered set, B a non-vacuous countable ordered set. Suppose that $(a_0, b_0), (a_1, b_1) \in A \times B$. If we define

(3.1)
$$(a_0, b_0) \le (a_1, b_1) \text{ if } \begin{cases} a_0 \le a_1 & \text{for } b_0 = b_1; \\ b_0 \le b_1 & \text{for } b_0 \ne b_1, \end{cases}$$

then $A \times B$ is an ordered set. Now, let $(a_0, b_0) \sim (a_1, b_1)$ if $a_0 = a_1$. It is clear that \sim is an equivalence relation. Then the quotient[1] set $(A \times B)/\sim$ can be regarded as a circle set.

A circle set P has no head members. But we may select a member τ as a head.

Definition 3.3. Suppose that *P* is a circle set. Let $\tau := p$ for an arbitrary $p \in P$. We call τ a **tonic** of *P*.

And we have the following important definitions.

Definition 3.4. Suppose that *P* is a circle set. Let \mathbb{S} be the set {----, \otimes }. We may define a function $\lambda: P \times P \to \mathbb{S}$ given by

(3.2)
$$\lambda(p,p') = \begin{cases} \hline or & \text{if } p \otimes p', \\ \otimes & \text{otherwise.} \end{cases}$$

And the elements of the set \mathbb{S} is called **scales**.

Recall the definition of unary relations which is defined in definition 2.2. And we have the following definitions.

Definition 3.5. Suppose that P is a circle set. Let \sharp be a unary relation on P such that

(1)
$$\lambda(\sharp(s), \sharp(p)) = \lambda(s, p);$$

(2)
$$\lambda(s,\sharp(p)) = \begin{cases} & \text{if } \lambda(s,p) = -, \\ \otimes & \text{if } \lambda(s,p) = -; \end{cases}$$

(3)
$$\lambda(\sharp(s),p) = \begin{cases} - & \text{if } \lambda(s,p) = - \\ \otimes & \text{if } \lambda(s,p) = - \end{cases}$$

for every $s, p \in P$ with $s \otimes p$.

Definition 3.6. Suppose that P is a circle set. Let \flat be a unary relation on P such that

(1)
$$\lambda(b(s), b(\rho)) = \lambda(s, \rho);$$

(2)
$$\lambda(s, \flat(p)) = \begin{cases} - & \text{if } \lambda(s, p) = -, \\ \otimes & \text{if } \lambda(s, p) = -; \end{cases}$$

(3)
$$\lambda(b(s), p) = \begin{cases} & \text{if } \lambda(s, p) = -, \\ \otimes & \text{if } \lambda(s, p) = - \end{cases}$$

for every $s, p \in P$ with $s \otimes p$.

Assumption 3.1. Let P be a circle set. For simplicity, we assume that

$$\lambda(\flat(p), \sharp(q)) = \otimes;$$

$$\lambda(\sharp(p), \flat(q)) = \otimes,$$

for all $p, q \in P$. Since \sharp and \flat are unary relations, we have that $\sharp(\sharp(p)), \sharp(\flat(p)), \flat(\sharp(p))$ and $\flat(\flat(p))$ are invalid for all $p \in P$. So we have not 'double sharp' and 'flat flat'.

Remark 3.1. In fact, that \ddagger and \flat are *not* real unary relations.

Let $M = P \cup \{-, -, \otimes\}$. By definitions 3.4 to 3.6, we have that λ is a partial binary operation on M, and that -, - and \otimes are nullary operations. Hence we may define a partial structure[definition 2.3] of a language[definition 2.1] \mathfrak{L} . Then we have the following definitions.

Definition 3.7. A partial structure $\mathbf{M} \coloneqq \langle M, \mathfrak{L} \rangle$ of the language \mathfrak{L} is called a **pitch structure** over a circle set *P* provided that the underlying set $M = P \cup S$ where *P* equipped with \mathfrak{S} is a circle set[definition 3.2], and the language is defined to be the set $\mathfrak{L} \coloneqq \{\lambda, \tau, S, \mathfrak{S}\}$ where λ is a partial binary operation defined in definition 3.4, \mathfrak{S} is a binary relation defined in definition 3.1, τ is a nullary operation defined in definition 3.4.

Suppose that **M** is a pitch structure over a circle set *P*. We may assume that |P| = n and $\tau := m_0$ for $m_0 \in P$. If $m_i \otimes m_{((i+1) \mod n)} \in P$, then $\{\lambda(m_i, m_{((i+1) \mod n)})\}$ constitutes a scale sequence, e.g., $\{-, -, -, -, -, -\}$.

Definition 3.8. Let M be a pitch structure over a circle set P, |P| = n, and $\tau := m_0$ for $m_0 \in P$. Then we define $SS_{\tau_M}(M)$ to be the following sequence

(3.3) $\{\lambda(m_0, m_1), \lambda(m_1, m_2), \dots, \lambda(m_{n-2}, m_{n-1}), \lambda(m_{n-1}, m_0)\},\$

if we have $m_0 \otimes m_1 \otimes m_2 \otimes \cdots \otimes m_{n-2} \otimes m_{n-1} \otimes m_0 \in P$. And the sequence $SS_{\tau_M}(\mathbf{M})$ is called a **step** of the pitch structure \mathbf{M} at the tonic m_0 .

Remark. For all pitch structure **M**, we have $\otimes \notin SS_{\tau}(\mathbf{M})$.

Proposition 3.1. Suppose that M, N are two pitch structures. We have that $M \cong N$ implies $SS_{\tau_M}(M) = SS_{\tau_N}(N)$.

Proof. Let $\varphi : \mathbf{M} \to \mathbf{N}$ be an isomorphism. Since the scales in set $\mathbb{S} = \{-, -, \otimes\}$ and τ_M are nullary operations of \mathbf{M} , we have that $\varphi \upharpoonright \mathbb{S}$ is an identity mapping of \mathbb{S} and $\varphi(\tau_M) = \tau_N$. Observe that λ is a binary operation. By definition 2.4, it is obvious that $SS_{\tau_M}(\mathbf{M}) = SS_{\tau_N}(\mathbf{N})$.

Remark 3.2. Suppose that M, N are pitch structures. If there exists a homomorphism $\varphi: M \to N$, then φ must be an isomorphism. This is an immediate consequence of definitions 2.4 and 3.1. The isomorphism φ is unique. If we assume that M, N have same underlying set $M = \mathbb{S} \cup P$, then it is clear that $\varphi \upharpoonright P$ is a shift. Suppose that M, N are pitch structures over a circle set P. Let $\tau_M = \tau_N$ and $M \ncong N$. Then it follows $\lambda_M \neq \lambda_N$.

4

Definition 3.9. Suppose that **M** is a pitch structure over a circle set *P*, and the tonic $\tau = m_0$. Then the ordered pair $\langle \tau_M, SS_{\tau_M}(\mathbf{M}) \rangle$ is called the **key** of **M**.

Definition 3.10. Suppose that M, N are pitch structures over a circle set P, and $\tau_M = m_i, \tau_N = m_j$ for $m_i, m_j \in P$. Let δ be a shift[definition 3.2] which assigns m_j to m_i . Then a bijective mapping $\kappa : SS_{\tau_M}(M) \rightsquigarrow SS_{\tau_N}(N)$ is called a **key transpose** along δ provided that κ assigns $\lambda_N(\delta(m), \delta(m'))$ to $\lambda_M(m, m')$ for every $m, m' \in P$ with $m \otimes m'$.

Remark. We have that $\mathbf{M} \cong \mathbf{N}$ implies that $\mathbf{\kappa}$ is an identity mapping.

Example 3.3. Suppose that $P := \{m_0, m_1, m_2, m_3, m_4\}$ is a circle set, **M** is a pitch structure over *P*, and $\tau := m_0$. Let $SS(\mathbf{M}) = \{-, -, -, -, -\}$. If we take \sharp, \flat on some members of **M**, e.g., $\sharp(m_0)$ and $\flat(m_2)$, then we obtain a new sequence

 $\{\lambda(\sharp(m_0), m_1), \lambda(m_1, \flat(m_2)), \lambda(\flat(m_2), m_3), \lambda(m_3, m_4), \lambda(m_4, \sharp(m_0))\}$

where the unary relations \ddagger and \flat are defined in definitions 3.5 and 3.6.

Example 3.4. With the notations of example 3.3, if we change the value of τ , e.g., let $\tau \coloneqq m_2$, then we also obtain a new sequence

Definition 3.11. Suppose that *M* is a pitch structure over a circle set *P*, and

 $P := \{ m_0 \otimes m_1 \otimes \cdots \otimes m_{n-1} \otimes m_0 \}.$

Let $m_i, m_j \in \mathbf{M}$ with $m_i \otimes m_j$ for $0 \le i \le n-1, j = (i + 1) \mod n$. The scale of $\langle m_i, m_j \rangle$ is said to be **shrinkable** if $\lambda(m_i, m_j) = -$. By definitions 3.5 and 3.6, we have that both $\lambda(\sharp(m_i), m_j)$ and $\lambda(m_i, \flat(m_j))$ are -. Hence we call $\lambda(\sharp(m_i), m_j)$ and $\lambda(m_i, \flat(m_j))$ at \sharp -shrink and \flat -shrink, respectively. The scale of $\langle m_i, m_j \rangle$ is said to be stretchable if $\lambda(m_i, m_j) = -$. And we have that $\lambda(m_i, \sharp(m_j))$ and $\lambda(\flat(m_i, m_j))$ are a \sharp -stretch and \flat -stretch, respectively.

Example 3.5. Let the hypotheses be as in example 3.3. We have that the scale of (m_0, m_1) is shrinkable, the scale of (m_4, m_0) is stretchable. And we have that $\lambda(\sharp(m_0), m_1)$ and $\lambda(m_4, \sharp(m_0))$ are a \sharp -shrink and \sharp -stretch respectively, and $\lambda(\mathfrak{b}(m_2), m_3)$ and $\lambda(m_1, \mathfrak{b}(m_2))$ are a \mathfrak{b} -stretch and \mathfrak{b} -shrink respectively.

We may take the two classes of the transposition in examples 3.3 and 3.4 on a pitch structure **M** simultaneously.

Example 3.6. Let the notations be as in examples 3.3 and 3.4. Suppose that **N** is a pitch structure over the circle set *P*, and $\tau_N \coloneqq m_2$. Let δ be a shift which assigns m_2 to m_0 , and $\kappa \colon SS_{\tau_M}(\mathbf{M}) \rightsquigarrow SS_{\tau_N}(\mathbf{N})$ a key transpose along δ . If we assume that

$$SS_{\tau_N}(\mathbf{N}) := \{---, --, --\}$$

then it is clear that κ is equivalent to the process which is defined as follows:

I. Take \sharp and \flat on m_0 and m_2 respectively, as described in example 3.3.

II. Let $\tau_M = m_2$, as described in example 3.4.

Therefore, we may say that the key transpose κ consists of a stretch, shrink and shift. And the order of the process is not important.

Definition 3.12. Suppose that M, N are pitch structures over a circle set P. If SS(M) is transposed to SS(N) by a key transpose κ in such a way that is described in examples 3.3, 3.4 and 3.6, that is, the key transpose consists of stretches[definition 3.11], shrinks[definition 3.11] and a shift[definition 3.2], then we say that the key transpose κ is **regular**.

Remark. A key transpose may be not regular.

Example 3.7. Suppose that *M* is a pitch structure over a circle set *P*, and |P| = n. For every $0 \le i \le n - 1$, there are two **trivial** key transposes. One is

 $\{\#(m_i), \#(m_{(i+1) \mod n}), \ldots, \#(m_{((i+n-1) \mod n)}), \#(m_i)\},\$

and the other is

 $\{b(m_i), b(m_{(i+1) \mod n}), \dots, b(m_{((i+n-1) \mod n)}), b(m_i)\}.$

They are regular. And there are no changes on all of scales in the case of the trivial key transpose.

Definition 3.13. Suppose that M, N are two pitch structures over a circle set P. Let $\kappa : SS_{\tau_M}(M) \rightsquigarrow SS_{\tau_N}(N)$ be a nontrivial regular key transpose and $m \in P$. The element m is said to be κ -**invariant** if there are not $\sharp(m)$ and $\flat(m)$ under the key transpose κ .

Definition 3.14. Suppose that **M** is a pitch structure over a circle set *P*. Let $P := \{m_0 \otimes m_1 \otimes \cdots \otimes m_{n-1} \otimes m_0\}$. Then the directions 3.4 and 3.5 are called **clockwise** and **anticlockwise**, respectively.

$$m_0 \otimes m_1 \otimes \cdots \otimes m_{n-1} \otimes m_0$$

(3.4) _____

(3.5) ←

We shall see what properties a key transpose satisfies if it is regular.

Lemma 3.1 (\sharp -shrink $\iff \sharp$ -stretch). Suppose that **M**, **N** are pitch structures over a circle set P, and

$$P := \{p_0 \otimes p_1 \otimes \cdots \otimes p_{n-1} \otimes p_0\}.$$

Let κ : $SS_{\tau_M}(\mathbf{M}) \rightsquigarrow SS_{\tau_N}(\mathbf{N})$ be a nontrivial key transpose along a shift δ which assigns to $\tau_M \tau_N$, and $\lambda_M(p_i, p_j) = -$, $\lambda_N(p_i, p_j) = -$ for $p_i \otimes p_j \in P$. Then the scale of $\langle p_i, p_j \rangle$ is transformed from $\lambda_M(p_i, p_j)$ to $\lambda_N(p_i, p_j)$ under the key transpose κ via a \sharp -shrink, i.e., $\lambda_M(\sharp(p_i), p_j)$ if and only if there exist $p_{i'} \otimes p_{j'} \in P$ with $\lambda_M(p_{i'}, p_{j'}) = -$, $\lambda_N(p_{i'}, p_{j'}) = -$ such that

- (1) $j' = (i + d) \mod n$ with $d \le 0$, i.e., in the anticlockwise,
- (2) the scale of $\langle p_{i'}, p_{j'} \rangle$ is transformed from $\lambda_M(p_{i'}, p_{j'})$ to $\lambda_N(p_{i'}, p_{j'})$ under κ via a \sharp -stretch, i.e., $\lambda_M(p_{i'}, \sharp(p_{i'}))$, hence $p_{i'}$ is κ -invariant, and
- (3) κ makes no changes on the scales of the consecutive members pairs in $\{p_{i'} \otimes \ldots \otimes p_i\}$ if $p_{i'} \neq p_i$.

Proof. We assume $p_{i'} \otimes p_i \otimes p_j$. Since $\lambda_M(\sharp(p_i), p_j)$ and assumption 3.1, we have that either

$$(3.6) \qquad \qquad \lambda_N(p_{i'},p_i) = \lambda_M(p_{i'},p_i),$$

or

(3.7)
$$\lambda_N(p_{i'}, p_i) = -$$

Hence if (3.7) holds, then the proof is complete. Now we assume that equation (3.6) holds, and observe assumption 3.1. Then there exists a $p_{j'} \in P$ such that κ makes no changes on the scales of the consecutive members pairs in $\{p_{j'} \otimes \ldots \otimes p_i\}$ by induction. Hence we have that κ takes \sharp on all of elements in $\{p_{j'} \otimes \ldots \otimes p_i\}$. It follows that there exists a $p_{i'}$ with $p_{i'} \otimes p_{j'}$ such that $\lambda_M(p_{i'}, p_{j'}) = -$, $\lambda_N(p_{i'}, p_{j'}) = -$, and the scale of $\langle p_{i'}, p_{j'} \rangle$ is transformed from the former to the latter under κ via a \sharp -stretch, i.e., $\lambda_M(p_{i'}, \sharp(p_{j'}))$. Otherwise, the nontrivial key transpose hypotheses would not hold. Hence it is clear that $p_{i'}$ is κ -invariant. On the other hand, we may assume $p_{i'} \otimes p_{j'} \otimes p_{j}$. Then the proof of the converse is similar. This completes the proof.

Remark 3.3. Let κ be a key transpose along δ . Then we have that κ sends $\lambda_M(p_i, p_j)$ to $\lambda_N(\delta(p_i), \delta(p_j))$ for $p_i \otimes p_j \in P$, cf. definition 3.10. But in lemmas 3.1 and 3.2, we observe $\lambda_M(p_i, p_j)$ and $\lambda_N(p_i, p_j)$.

We have the following lemma that is similar to lemma 3.1.

Lemma 3.2 (b-shrink $\iff b$ -stretch). Suppose that M, N are pitch structures over a circle set P, and

$P := \{p_0 \otimes p_1 \otimes \cdots \otimes p_{n-1} \otimes p_0\}.$

Let $\kappa: SS_{\tau_M}(\mathbf{M}) \rightsquigarrow SS_{\tau_N}(\mathbf{N})$ be a nontrivial key transpose along a shift δ which assigns to $\tau_M \tau_N$, and $\lambda_M(p_i, p_j) = -$, $\lambda_N(p_i, p_j) = -$ for $p_i \otimes p_j \in P$. The scale of $\langle p_i, p_j \rangle$ is transformed from $\lambda_M(p_i, p_j)$ to $\lambda_N(p_i, p_j)$ under the key transpose κ via a b-shrink, i.e., $\lambda_M(p_i, b(p_j))$ if and only if there exist $p_{i'} \otimes p_{j'} \in P$ with $\lambda_M(p_{i'}, p_{j'}) = -$, $\lambda_N(p_{i'}, p_{j'}) = -$ such that

- (1) $i' = (j + d) \mod n$ with $d \ge 0$, i.e., in the clockwise,
- (2) the scale of $\langle p_{i'}, p_{j'} \rangle$ is transformed from $\lambda_M(p_{i'}, p_{j'})$ to $\lambda_N(p_{i'}, p_{j'})$ under κ via a b-stretch, i.e., $\lambda_M(b(p_{i'}), p_{j'})$, hence $p_{j'}$ is κ -invariant, and
- (3) κ makes no changes on the scales of the consecutive members pairs in $\{p_j \otimes \ldots \otimes p_{i'}\}$ if $p_j \neq p_{i'}$.

Proof. This is similar to the proof of lemma 3.1.

Remark 3.4. Let κ be a nontrivial key transpose. We observe lemmas 3.1 and 3.2. We shall find that a \sharp -shrink must be adjoint to a \sharp -stretch, and a \flat -shrink must be adjoint to a \flat -stretch. And we have that κ makes no changes on the scales of the consecutive members pairs between an adjoint pair.

Proposition 3.2. Suppose that M, N are two pitch structures over a circle set P. Let κ : SS(M) \rightsquigarrow SS(N) be a non-trivial key transpose. Then the key transpose κ is regular if and only if lemma 3.1 and lemma 3.2 hold.

Proof. Immediate from definitions 3.10 and 3.12 and lemmas 3.1 and 3.2.

Remark 3.5. Suppose that \mathbf{M} , \mathbf{N} are pitch structures over a circle set P. Let $\varphi \colon \mathbf{M} \to \mathbf{N}$ be a homomorphism. Observe remark 3.2. We have that φ is an isomorphism. By proposition 3.1, we have $SS_{\tau_M}(\mathbf{M}) = SS_{\tau_N}(\mathbf{N})$. And it is clear that $\delta := \varphi \upharpoonright P$ is a shift[definition 3.2] which assigns τ_N to τ_M . If κ is a key transpose along δ then κ is an identity mapping, since we have definition 3.10. And if κ is regular then κ consists of shrinks, stretches and a shift, even if κ is an identity mapping, cf. remark 3.3.

Corollary 3.2.1. Suppose that M, N are two pitch structures over a circle set P. Let $\kappa : SS(M) \rightsquigarrow SS(N)$ be a non-trivial key transpose. Then the key transpose κ is regular if and only if the key transpose κ^{-1} is regular.

П

Proof. It is clear that lemma 3.1 and lemma 3.2 hold for κ^{-1} if the lemmas hold for κ , and vice versa.

References

- [1] Thomas W. Hungerford, Algebra, Springer, 1974.
- [2] Jaroslav Ježek, Universal algebra, 1st ed., 2008.
 [3] S.Burris and H.P.Sankappanavar, A course in universal algebra, 2012.
- [4] Catherine Schmidt-Jones, Understanding basic music theory, Open Textbooks for Hong Kong, 2015. Email address: leeshuheng@icloud.com