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Abstract: 

This paper explores the Null Algebra and traditional Algebra resolutions for the complex 

number 𝑖𝑖.  It explains the apparent differences between the Null Algebra resolutions, and those 

of traditional Algebra, which uses the substitution 𝑖 = 𝐞𝑖
𝜋

2  .  The methods shown herein explore 

the full set of subspace equations implied by a given equation whose output results in 𝑖𝑖 for a 

specific input.  It is shown that the values obtained from the various possible resolutions of 𝑖𝑖 are 

found on some aspect of the given equation, or its expanded subspace equation sets.  It shows 𝑖𝑖 

equals -1 and +0.20788. 

  
  It is assumed the reader has read and understood Null Algebra, as well as Null Algebra Extensions I and II in addition 

to standard Algebra and Trigonometry.  The Null Algebra texts are available for download at (https://vixra.org/abs/2103.0131), 

(https://vixra.org/abs/2206.0135) and (https://vixra.org/abs/2304.0205).  If you have not yet read these texts and attempted the 

examples contained therein for yourself it is highly suggested you do so before reading further as some concepts explained in 

detail there, are given only cursory review here.  Without reading these prerequisites you may not fully understand the reasoning 

behind logic used in the equations of this text.  

 

 This version of the paper is submitted as a correction to original submission on 9 August 2023 of the same title.  The 

explanation of how various solutions were arrived at, and the graphs of those solutions plotted, did not include a necessary step 

addressing ⨁ numbers, raised to ⨁ exponents.  Those errors have been corrected in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1.0—Review of Logs and Exponents: 

Before exploring complex exponentiation and their Null Algebra resolutions it’s important to 

understand the common rules for logarithms and exponents.  Where exponents raise a base value 

to a given power, logarithms provide the power necessary to obtain a result from a given base.  

Logs are the inverse of exponentiation.  It is hoped these will provide the reader with a refreshed 

understanding of exponentiation and logarithms, to better facilitate understanding during 

progression through the text. 

 

 

1.1.a—Exponentiation and Logarithm definition: 

 

Exponentiation:     Logarithm: 

 

𝑎𝑛 = 𝑚      log𝑎 𝑚 = 𝑛 

 

Note, if the base value 𝑎 = 𝐞 ≈ 2.71828 the nomenclature used is the natural log:  ln 

 

 

 

1.1.b—Rules of Logs, and Natural Logs: 

 

Log Product Rule  ln(𝑥 ⋅ 𝑦) = ln(𝑥) + ln(𝑦) log𝑎(𝑥 ⋅ 𝑦) = log𝑎(𝑥) + log𝑎(𝑦) 

 

Log Quotient Rule  ln (
𝑥

𝑦
) = ln 𝑥 − ln 𝑦  log𝑎 (

𝑥

𝑦
) = log𝑎(𝑥) − log𝑎(𝑦) 

 

Log Reciprocal Rule  ln (
1

𝑥
) = − ln(𝑥)  log𝑎 (

1

𝑥
) = − log𝑎(𝑥) 

 

Log Power Rule  ln(𝑥𝑦) = 𝑦 ⋅ ln(𝑥)  log𝑎(𝑥𝑦) = 𝑦 ⋅ log𝑎(𝑥) 

 

Logs of negative values ln(−𝑥) = ∅   log𝑎(−𝑥) = ∅ 

 

Log of 0   ln(0) = ∅   log𝑎(0) = ∅ 

 

    lim
𝑥→0+

ln 𝑥 = −∞  lim
𝑥→0+

log𝑎 𝑥 = −∞ 

 

 

Log of 1   ln(1) = 0   log𝑎(1) = 0 

 

Log of  ∞   ln(∞) = ∞   log𝑎(∞) = ∞ 

 

Argument = base value ln(𝒆𝑥) = 𝑥   log𝑎(𝑎𝑥) = 𝑥 

 

  If 𝑥 = 1 ln(𝐞) = 1   log𝑎(𝑎) = 1 

 

 



 

 

Value raised to power of 

a log with same base  𝒆ln(𝑥) = 𝑥   𝑎(log𝑎 𝑥) = 𝑥 

 

Log Derivative  
𝑑

𝑑𝑥
ln 𝑥 =

1

𝑥
   

𝑑

𝑑𝑥
log𝑎(𝑥) =

1

𝑥 log 𝑎
 

 

 

Log Integral   ∫ ln(𝑥)  𝑑𝑥 = 𝑥 ⋅ ln(𝑥) − 𝑥 + 𝐶 

 

    ∫ log(𝑥)  𝑑𝑥 = 𝑥 ⋅ log(𝑥) − 𝑥 + 𝐶 

 

 

Euler Identity   ln(−1) = 𝑖𝜋   𝐞𝑖𝜋 = −1 

 

 

Change of base  log𝑎(𝑥) =
log𝑏(𝑥)

log𝑏(𝑎)
 

 

 

* Miller’s Identity:  1𝑖 = 1    Reciprocal-i Identity:  𝑖 = −
1

𝑖
 

 

 

Exponentiation of a Product:  For: 𝑎 = 𝑏 ⋅ 𝑐  Let:  𝑎𝑛 = 𝑑 

 

Then: 𝑎𝑛 = 𝑑    ≡     (𝑏 ⋅ 𝑐)𝑛 = 𝑏𝑛 ⋅ 𝑐𝑛 = 𝑑 

 

 

 

 

Rules for Exponents: 

𝑛0 = 1    𝑛1 = 𝑛   𝑛𝑎 ⋅ 𝑛𝑏 = 𝑛(𝑎+𝑏) 

 

 
𝑛𝑎

𝑛𝑏
= 𝑛(𝑎−𝑏)   𝑛−𝑎 =

1

𝑛𝑎
  (𝑛𝑎)𝑏 = 𝑛𝑎𝑏 

 

 

(𝑛𝑚)𝑎 = 𝑛𝑎𝑚𝑎  (
𝑛

𝑚
)

𝑎

=
𝑛𝑎

𝑚𝑎 

 

 

 

 

 

 
* I apologize for the small arrogance here.  I could not find another reference to this identity beside that which I published at 

https://vixra.org/abs/2307.0124 on 24 July 2023.  It seems an important identity.  I have to call it something. 



 

 

2.0—Aspects of 𝒊𝒊: 

Null Algebra resolutions of 𝑖 move values 

away from the complex plane into a real space, 

which includes one or more subspaces.  The 

calculation of values using 𝑖 as a base or as an 

exponent have more commonly been resolved 

using standard trigonometric properties to provide 

solutions.  Even when the result of a trigonometric 

substitution is a real number it still can be thought 

of as possessing an imaginary part of ±0𝑖. 
The standard calculation of 𝑖𝑖 will provide a 

real number solution.  However, this is still on the 

complex plane.  The trigonometric substitutions of 

i are still on the complex plane whereas the Null 

Algebra resolutions are removed to a plane 

composed of real and subspace axis. 

 

 

This real value, 𝑖𝑖 ≈ 0.20788, on the complex plane is simply not displaced along the i-

axis; it represents an output value, defined as a two-dimensional number of the form 𝑎 ± 𝑏𝑖 for 

which the complex magnitude 𝑏 = 0. 

 

𝑖𝑖 ≈ 0.20788. . .  ± 0𝑖 
 

The Complex Plane is used as an output plane, showing single values of the output 

variable.  For an equation of the form 𝑦 = 𝑓(𝑥), the complex plane is composed of a real x-axis 

and the imaginary i-axis.  We plot on it two-dimensional points for each y-axis output value in 

terms of x and i, as defined by a given 𝑦 = 𝑓(𝑥) equation.  So, though we plot points for 

equations of the form 𝑦 = 𝑓(𝑥) on the Central Plane (the XY-Plane), we do not see the actual 

output y-axis of the central plane or any of the subspace axis associated with either the x, or the y 

axis.  We see the Complex Plane, the entire expanse of which represents the two-dimensional y-

axis output points. 

 

More complicated is the trigonometric property used to obtain a value for 𝑖𝑖.  It removes 

the i from the equation.  This results in the standard value of ≈0.20788, obtained through 

Hyperbolic Trigonometry.  The following sections will explore the calculation of 𝑖𝑖 and its 

resolution from the complex plane to subspace hyperplanes. 

 

 

2.1—Traditional Algebraic and Trigonometric calculation of 𝒊𝒊: 

Usage of trigonometric identities and a Maclaurin series expansion on 𝑖𝑖 yields the following: 

 

𝑖𝑖 ≈ 0.20788 … 

 

This value is slightly larger than 𝟏
𝟓⁄  , by not quite eight-thousandths.  It is also a real number.  

Before we explore how this value is reached by traditional methods let’s explore the immediately 



 

 

obvious Null Algebra resolution, which appears to stand in direct contradiction to the 

approximate 0.20788 value. 

 

2.1.a: 

Null Algebra resolves instances of 𝑖 at their place of occurrence for a given equation on the 

central plane to its positive, up value, and to its negative, down value on the corresponding co-

adjoining subspace.  For an equation of the form 𝑦 = 𝑓(𝑥), where elements of 𝑓(𝑥) produce i-

multiples for inputs of x, we have 

 

𝑦 = 𝑖 = ⨁1 = {
𝑥𝑦 − Plane     𝑦 = 1̂   →  +1

 
𝑠𝑦 − Plane     𝑦 = 1̌   →  −1

 

 

This result is the standard way of resolving a plus and minus number.  One example of how this 

can arise would be an equation of the form 𝑦 = √−|𝑥|.  However in the given example equation 

we will use in this paper, 𝑦 = √𝑥
√𝑥

 we have a ⊕ number being raised to a ⊕ power for sections 

of the domain which generate i-multiples.  In this instance we must apply the ⊕ sign as an 

exponential power before resolving other features, which results in a squaring of the sign.  It will 

also cause for this example 𝑦 = 𝑖𝑖 to resolve to −1 on both the xy and sy planes.  Failure to 

follow this augmentation to rules of operations will result in incorrect values.  This will be 

shown in more detail momentarily. 

 

2.1.b: 

If we use the equation, 𝑦 = √𝑥
√𝑥

 

 

• The point 𝑖𝑖, occurs when 𝑥 = −1.  It is but one of an infinite number of points on this 

graph. 

 

Thus for 𝑥 = −1 

 

If we ignore the need to raise the base plus-and-minus number to its plus-and-minus exponent we 

receive the following erroneous result. 

 

 2.1.b.i: 

 

  𝑦 = √−1
√−1

≐ ⊕ 1⊕1  ≐  1̂1̂  ≐ 1 

 

If we apply the exponential value first it results in the correct answer. 

 

 2.1.b.ii: 

 

𝑦 = √−1
√−1

≐ ⊕ 1⊕1 ≐  −11 = −1 

 

The exact process for this and reasoning for these steps are covered later. 



 

 

2.1.b.iv—The Apparent Contradiction between Algebraic, Trigonometric and Null Algebra: 

 

Algebraic:  𝑖𝑖  Trigonometric: 𝑖𝑖 = 0.20788  Null Algebra: 𝑖𝑖 = −1 

 

Which of these is correct?  They all are.  As we explore the xy, sy, xu and su planes.  We’ll find 

on these graphs both 𝑦 = −1 and  𝑢 = 0.20788. 

 

2.1.c—Calculating 𝒊𝒊 using Euler’s Identity: 

Euler’s Identity is derived from the Maclaurin expansion of 𝐞𝑖𝑥 for the value 𝑥 = 𝜋.  This can be 

used to assist in calculating values on the complex plane. 

 

 Euler’s Identity: 𝐞𝑖𝜋 = −1 

 

 This is a 180 degree turn on the complex plane.  So to reach 𝑖 we need only a 90° 

 rotation of half Pi. 

 

    𝐞𝑖
𝜋

2 = 𝑖 
 

Thus the expression 𝑖𝑖 may be rewritten as: 

 

    𝑖𝑖 = (𝐞𝑖
𝜋

2)
𝑖

= 𝐞−
𝜋

2 

 

All that remains then is to raise the base value of e to the power of −
𝜋

2
. 

 

   𝐞−
𝜋

2 ≈ 2.71828−1.570796 ≈
1

2.718281.570796 ≈ 0.20788 

 

 

 

2.1.d—The Hyperbolic Calculation of 𝐞−
𝝅

𝟐: 

Recall that the Maclaurin Series expansion for approximating a function centered at the point x = 

0, is given by: 

 

∑
𝑓𝑛(0) ⋅ 𝑥𝑛

𝑛!

∞

𝑛=1

 

 

2.1.d.i: 

When performing the Maclaurin Series expansion on 𝐞𝑥 and 𝐞−𝑥 (with no i in the exponent) the 

resulting series components are equated to 𝐞𝑥 = cos 𝑥 + sin 𝑥, and 𝐞−𝑥 = cos 𝑥 − sin 𝑥.  This 

results in the Hyperbolic Pythagorean identity for which the nomenclature of cosh and sinh are 

used to ensure understanding that hyperbolic trigonometry is being used. 

 

𝐞𝑥 = cosh 𝑥 + sinh 𝑥  𝐞−𝑥 = cosh 𝑥 − sinh 𝑥 

 



 

 

𝐞𝑥 ⋅ 𝐞−𝑥 = 1 = cosh2 𝑥 − sinh2 𝑥 

 

From this perspective you can easily verify that 𝐞−
𝜋

2 ≈ 0.20788 

 

𝐞𝑥 = cosh 𝑥 + sinh 𝑥  for  𝑥 = −
𝜋

2
= −1.5707963 

 

𝐞−
𝜋
2 = cosh(−1.5707963) + sinh(−1.5707963)    →    2.509178478658 − 2.3012989 

 

𝐞−
𝜋
2 ≈ 0.20788 … 

 

 

3.0—Rationalizing Null-Algebraic and Traditional Algebraic Solutions of 𝒊𝒊: 

Thus 2.1.c provides a confirmed algebraic solution for 𝑖𝑖.  2.1.d provides a confirmed 

trigonometric solution for the same.  The two methods of approach are in agreement that  

 

𝑖𝑖 ≈ 0.20788 … 

 
• Remember this is still a real-only component of a number 𝑧 = 𝑎 + 𝑏𝑖  =   𝑎 + 0𝑖.  It is still on the complex 

plane.   Null Algebra resolutions translate values onto planes composed of real and subspace axis.  Due to 

these differences there is no reason to believe the value obtained from the trigonometric exchange, which is 

really a different equation than the given equation will appear on the XY-Plane, or even at the same input.. 

 

3.1—Is 𝑖𝑖 ≈ 0.20788 on the y-axis? 

 The trigonometric substitutions used to derive the ≈ 0.20788 solution involves squaring 

an i. 

 3.1.a: 

𝑖𝑖 = (𝐞𝑖
𝜋
2)

𝑖

= 𝐞𝒊⋅𝒊 
𝜋
2 =  𝐞−

𝜋
2 ≈ 0.20788 

 

 Null algebra and traditional algebra are in agreement that a 𝑖2 equals −1 

 

 3.1.b: 

𝑖2 = 𝑖 ⋅ 𝑖 = −1 

 

 The Null Algebra resolutions indicate this value could be on one of two given axis.  𝑖2 =
−1 represents a 180 degree rotation on the complex plane.  Null Algebra Extension II indicates, 

given an equation of the form 𝑦 = 𝑓(𝑥), when squaring 𝑖 we are referring to a boundary between 

the Central Plane and the Co-adjoining Subspace.  The arguments provided in Null Algebra 

Extension II focus on the input values.  If instead we are talking about the output y-axis, that 

same boundary could be referring to the Central Plane, the Posterior Subspace or the Transverse 

Plane.  Once we determine which of these axis that value pertains to, we would also expect to 

find its opposite sign value (its conjugate) on the paired subspace axis.  See Null Algebra 

Extension II for more detailed analysis of this topic. 

 



 

 

 So because we have squared i the value we get according to Null Algebra Extension II the 

value obtained could occur on a real axis or its parried subspace.  The trigonometric substitution 

is in fact made against the y-axis output value.  The equation which generates 𝑖𝑖 is dependent 

upon the x-axis input, 𝑦 = √𝑥
√𝑥

 and occurs when 𝑥 = −1.  But the value 𝑦 = 𝑖𝑖 is an 

unresolved, two-dimensional number value, plotted for this example, on only the y-axis. 

 

 3.1.c: 

 

𝒚 = 𝒊𝒊 = (𝐞𝒊
𝝅
𝟐)

𝒊

= 𝐞𝒊⋅𝒊 
𝜋
2 =  𝐞−

𝜋
2 ≈ 0.20788 ± 0𝑖 

 

 

 So this value 0.20788 could be on either the y or u axis.  Another reason for this that the 

resolution, (e𝑖
𝜋

2)
𝑖

, though equal to 𝑖𝑖, the general equation which produces that substitution is not 

identical to our example equation producing 𝑖𝑖.  It just happens that for 𝑥 = −1 on the 𝑦 =

√𝑥
√𝑥

, we have the trigonometric identity 𝑖 = e𝑖
𝜋

2  which can be used to swap out for the base i.  

As a general equation it the source of the trigonometric substitution has the form 

 

 3.1.d: 

 

For −∞ < 𝑥 ≤ 0 in 𝑦 = √𝑥
√𝑥

= 𝑟𝑖𝑟𝑖 where 𝑟 = √|𝑥| 
 

Then,  𝑟𝑖𝑟𝑖 = (𝑟e𝑖
𝜋

2)
𝑟𝑖

= 𝑟𝑟𝑖 ⋅ e−𝑟
𝜋

2  

 

It is only when 𝑥 = −1 that 𝑟 = 1 and 𝑟𝑟𝑖 ⋅ e−𝑟
𝜋

2 = e−
𝜋

2. 

 

This substitution provides a value for 𝑖𝑖 but comes from a different equation than our given 

example equation of the 𝑦 = √𝑥
√𝑥

.   So although it shares one value with our given equation, 

which we can use to obtain a resolution for 𝑖𝑖, there is no guarantee that value will actually be on 

the y-axis, nor is there any guarantee that value occurs when 𝑥 = −1.  Afterall the two-

dimensional y-axis complex points, are composed of un-resolved values containing the number i.  

Resolving these values expands us into a series of subspace equations.  The same situation 

occurs with resolving 𝑟𝑟𝑖 ⋅ e−𝑟
𝜋

2 .   So, 𝑖𝑖 = 0.20788 may occur on the u-axis at an input value as 

yet unknown in terms of either x or s.  The resolved instances of these numbers shows where 

values exist on several planes.  We will find that the above listed solutions of −1 and 0.20788 are 

both present. 

 

 

 

 

 

 



 

 

4.0—Resolving ⨁ number raised to ⨁ powers: 

The following steps show the methods or resolving plus-and-minus numbers raised to plus-and-

minus powers. 

 

Direct Resolution of 𝑖 
 

𝑦 = 𝑓(𝑥) = √𝑥
√𝑥

  for 𝑥 = −1 

 

 

 

𝑦 = 𝑖𝑖 = ⨁1⨁1 

 

 

 

 

𝑦 = 𝑖𝑖 = ({⨁}2  ⋅ 1)1 

 

 

 

Given equation and a specified value. 

Results in 𝑖𝑖 for 𝑥 = −1 

 

 

Null Algebra resolution of 𝑖 = ⨁1.  Applied to both 

instances of 𝑖. 
 

In the standard trigonometric substitution 𝑖𝑖 =

(𝐞𝑖
𝜋

2)
𝑖

= 𝐞−
𝜋

2 results when i in outside position is 

multiplied by the i inside the parentheses.  This is 

consistent with rules for exponents on page 3, that 

(𝑛𝑎)𝑏 = 𝑛𝑎𝑏.    It results in a squared ⨁ sign for Null 

Algebra. 

 
** See note below 

** 

 

Due to the Null Algebra resolution of 𝑖 = ⨁1, we are now dealing with a sign rather than a 

number:  (𝐞⨁
𝜋

2)
⨁1

= (𝐞
(⨁)2 ⋅𝜋

2)
1

= 𝐞−
𝜋

2.  The ⨁ sign in the 𝑦 = 𝑖𝑖 = ({⨁}2  ⋅ 1)1 is simply a 

resolved i .  In this resolved state, we distribute the outer ⨁ sign, leaving the expression raised 

to a given positive value, and now multiplies the base value by a squared sign. 

 

The only way we can apply the sign, is as follows: 

The situation of (⨁)⨁ tells us the plus-and-minus sign in the parenthesis is both (⨁)+1 and 

(⨁)−1.  Meaning (⨁)⨁ =
⨁

⨁
≡ (⨁ ⋅ ⨁) = (⨁)2 = −1. 

 
To review the result of squaring a ⨁ sign see text on Null Algebra: The Math of Division by Zero and The 

Negative Radical (https://vixra.org/abs/2103.0131). 
 

 

𝑦 = ({⨁}2 ⋅ 1)1 = (−1 ⋅ 1)1 = −1 

 

 

 

All values are resolved. 

 

For 𝑥 = −1   𝑦 = √𝑥
√𝑥

= −1 

 

 

 

 

 



 

 

 

Substitution, Then Resolution of 𝑖 
 

 

𝑖𝑖 = (𝐞𝑖
𝜋
2)

𝑖

≐ (𝐞⊕1
𝜋
2)

⊕1

 

 

(𝐞⊕1
𝜋
2)

⊕1

= (𝐞
(⊕)2𝜋

2)
1

 

 

 

(𝐞
(⊕)2𝜋

2)
1

= 𝐞−
𝜋
2 ≈ 0.20788 

 

 

 

 

i values resolved to ⊕ 1  

 

 

i exponent distributed as ⊕ into base value 

 

 

 

Fully resolved value of 0.20788. 

 

5.0—Analyzing graphs and values: 

The graphs of the various equations are shown below, exploring the nature of the full subspace 

expansion of our given equation, 𝑦 = √𝑥
√𝑥

.  Both −1 and 0.20788 are valid solutions, occurring 

on some section of the overall subspace hyper-plane sets.   

5.1.a—𝑦 = √𝑥
√𝑥

   For 0 ≤ 𝑥 < ∞ 

The graph of this function is shown here in Figure 1 over its traditionally valid domain.  Its 

straight forward traditional algebra. For simplicity the graphs shown display only the positive 

output values for the roots.   

 

 
 



 

 

5.1.b— 𝑦 = √𝑥
√𝑥

   For −∞ < 𝑥 ≤ 0: 

Figure 1a shows the output values for the roots, resolved from their i-multiple, to real number 

values using the methods discussed above in section 4.0. 

 

You can force a graphing utility to graph the function by the following steps. 

 

𝑦 = 𝑓(𝑥) = √𝑥
√𝑥

  for 𝑥 = −1 

 

 

𝑦 = √−𝑥
√−𝑥

   

 

 

 

 

 

 

 

𝑦 = ⨁√−𝑥
⨁√−𝑥

 

 

 

 

𝑦 = {⨁}2√−𝑥
√−𝑥

 

 

𝑦 = −√−𝑥
√−𝑥

 

 

 

 

Given equation and a specified value. 

Results in 𝑖𝑖 for 𝑥 = −1 

 

The inputs are switched with their negative value to 

force a standard graphing utility to graph the negative 

inputs.  But we are still really using 𝑦 = √𝑥
√𝑥

  which 

generates i-multiples for each input over the domain 

−∞ < 𝑥 ≤ 0. 
 

The recognize that the roots of the equation 𝑦 = √𝑥
√𝑥

 

will be ⨁ number, resolved from an i-multiple state.  

We keep track of that by inserting the ⨁ sign in front 

of each radical. 

 

The ⨁ signs are squared in accordance with section 4.0 

above.  The equation is then simplified to its final state.  

Note this version of the equation of the one needed to 

force a graphing utility graph this function.  The actual 

equation we are graphing is 𝑦 = √𝑥
√𝑥

 over the domain 

−∞ < 𝑥 ≤ 0. 
 

It is seen in Figure 1a. 
 

 

 

 

 

 

In Figure 1aThe graph of 𝑦 = √𝑥
√𝑥

 over the domain −∞ < 𝑥 ≤ 0 shows clearly the domain 𝑦 =
−1 when the domain 𝑥 = −1. 



 

 

 
 

 

5.1.c: 

We can put these two graphs directly together.  Using the Null Algebra resolutions we see the full 

graph of 𝑦 = √𝑥
√𝑥

.  See Figure 1b. 

 

 



 

 

5.2.a—The Co-Adjoining Subspace  𝒚 = 𝒇(𝒔), For −∞ < 𝒙 ≤ 𝟎 

Using the equation 𝑦 = √𝑥
√𝑥

 we use a subspace transform on the x input to obtain the s-axis 

subspace values which comprise the co-adjoining subspace equation. 

 

 

5.2.a.i: 

 

𝑥 = −
1

𝑠
  𝑦 = 𝑓(𝑠) = √−

1

𝑠

√−
1

𝑠

 

 

 

5.2.a.ii: 

𝑦 = 𝑓(𝑠) is defined under the traditional Algebra domain of −∞ < 𝑠 ≤ 0.  This is shown in  

Figure 2a. 

 

 
 

 

 

 

5.2.b: 

The extended domain of 0 ≤ 𝑠 < ∞ will result in i-multiples.  These plus-and-minus numbers 

we resolve to their down values on the s-axis of the co-adjoining subspace. 

 

Using the same reasoning shown in section 5.1.b we can force a graphing utility to graph the 

equation as follows: 

 

 

 

 

 



 

 

 

𝑦 = √−
1

𝑠

√−
1

𝑠

  for 0 ≤ 𝑠 < ∞ 

 

 

 

 

 

𝑦 = √
1

𝑠

√1
𝑠

 

 

 

 

 

 

 

𝑦 = ⨁√
1

𝑠

⨁√1
𝑠

 

 

 

 

 

𝑦 = −√
1

𝑠

√1
𝑠

 

 

Given equation and a specified value. 

Results in 𝑖𝑖 for 𝑠 = 1 which corresponds to the value 

𝑦 = 𝑖𝑖 when 𝑥 = −1 .  The 𝑠 = 1 is the corresponding 

subspace value for 𝑥 = −1.    
‡ We should expect to find 

the output value 𝑦 = −1 when 𝑠 = 1.  This is the 

squared value discussed in section 2.1.a above. 

 

The inputs are switched with their positive value, 

removing the negative sign.  This will force a standard 

graphing utility to graph the positive inputs.  But we 

are still really using 𝑦 = √−
1

𝑠

√−
1

𝑠

. 

 

It generates i-multiples for each input over the domain 

0 ≤ 𝑠 < ∞. 
 

The recognize that the roots of the equation 𝑦 = √−
1

𝑠

√−
1

𝑠

 

will be ⨁ number, resolved from an i-multiple state.  

We keep track of that by inserting the ⨁ sign in front 

of each radical. 

 

The ⨁ signs are squared in accordance with section 4.0 

above.  The equation is then simplified to its final state.  

Note this version of the equation is the one needed to 

force a graphing utility graph this function.  The actual 

equation we are graphing is 𝑦 = √−
1

𝑠

√−
1

𝑠

 over the 

domain 0 ≤ 𝑠 < ∞. 

 

It is seen in Figure 2b. 
 

 



 

 

 
  

‡ Indeed when 𝑠 = 1, we find 𝑦 = −1. 

 

 5.2.c: 

The combined graphs showing the full domain of the 𝑓(𝑠) function is shown in Figure 2c. 

 

 
 

 

6.0—The Posterior Subspace 𝒖 = 𝒇(𝒙): 

Using the definition of section 6.0 we have the following. 

 

𝑦 = √𝑥
√𝑥

  𝑢 = −
1

𝑦
  𝑢 = 𝑓(𝑥) = −

1

√𝑥
√𝑥

 

 



 

 

6.1: 

The function is traditionally defined over the domain of 0 ≤ 𝑥 < ∞ and may be graphed directly.  

It is shown in figure 3a. 

 
6.2: 

The extended domain will result in i-multiples for −∞ < 𝑥 ≤ 0.  We can force a graphing utility 

to graph the equation in accordance with section 4.0. 

 

 

 

𝑢 = −
1

√𝑥
√𝑥

 

 

 

𝑢 = −
1

√−𝑥
√−𝑥

 

 

 

 

 

𝑢 = −
1

⨁√−𝑥
⨁√−𝑥

 

 

 

 

 

𝑢 = −
1

−√−𝑥
√−𝑥

 =  
1

−√−𝑥
√−𝑥

 

 

 

 

Given equation and a specified value. 

Results in 𝑖𝑖 for 𝑥 = −1. 
 

The inputs are switched with their negative value.  This 

will force a standard graphing utility to graph the 

negative inputs.  But we are still really using 𝑢 = −
1

√𝑥
√𝑥

. 

It generates i-multiples for each input over the domain 

−∞ < 𝑥 ≤ 0. 

 

 

We recognize that the roots of the equation 𝑢 = −
1

√𝑥
√𝑥

 

will be ⨁ number, resolved from an i-multiple state.  

We keep track of that by inserting the ⨁ sign in front 

of each radical. 

 

 

The ⨁ signs are squared in accordance with section 4.0 

above.  The equation is then simplified to its final state.  

Note this version of the equation is the one needed to 

force a graphing utility graph this function.  The actual 

equation we are graphing is 𝑢 = −
1

√𝑥
√𝑥

 over the domain 

−∞ < 𝑥 ≤ 0. 

 



 

 

It is seen in Figure 3b. 
 

 

 
6.3: 

The full graph of 𝑢 = −
1

√𝑥
√𝑥

 is shown in Figure 3.c. 

 

 
 

 
 

7.0—The Transverse Plane 𝒖 = 𝒇(𝒔): 

𝑢 = 𝑓(𝑠) is obtained by the following subspace transformations 

 

𝑦 = √𝑥
√𝑥

  𝑢 = −
1

𝑦
 𝑠 = −

1

𝑥
 𝑥 = −

1

𝑠
 𝑢 = 𝑓(𝑠) = −

1

√−
1

𝑠

√−
1
𝑠

 

 



 

 

7.1: 

The function is traditionally defined over the domain of −∞ < 𝑥 < 0 and may be graphed 

directly.  If is shown in Figure 4a. 

 

 
 

7.2 

The extended domain will result in i-multiples for 0 ≤ 𝑥 < ∞.  We can force a graphing utility to 

graph the function over this domain in the following way, according to section 4.0. 

 

𝑢 = −
1

√−
1
𝑠

√−
1
𝑠

 

 

 

𝑢 = −
1

√1
𝑠

√1
𝑠

 

 

 

 

 

 

 

 

𝑢 = −
1

⨁√1
𝑠

⨁√1
𝑠

 

 

 

 

 

 

Given equation and a specified value. 

Results in −
1

𝑖𝑖 
 for 𝑠 = 1. 

 

 

 

The inputs are switched with their positive value by 

removing the negative signs.  This will force a standard 

graphing utility to graph the positive inputs.  But we 

are still really using 𝑢 = −
1

√−
1

𝑠

√−
1
𝑠

 

It generates i-multiples for each input over the domain 

0 ≤ 𝑥 < ∞. 

 

 

We recognize that the roots of the equation 𝑢 = −
1

√−
1

𝑠

√−
1
𝑠

 

will be ⨁ number, resolved from an i-multiple state.  

We keep track of that by inserting the ⨁ sign in front 

of each radical. 

 

 

The ⨁  signs are squared in accordance with section 

4.0 above.  The equation is then simplified to its final 

state.  Note this version of the equation is the one 



 

 

𝑢 = −
1

(⨁2)√1
𝑠

√1
𝑠

=
1

√1
𝑠

√1
𝑠

 

 

 

needed to force a graphing utility graph this function.  

The actual equation we are graphing is 𝑢 = −
1

√−
1

𝑠

√−
1
𝑠

 over 

the domain 0 ≤ 𝑥 < ∞ 

It is seen in Figure 4b. 
 

 

 
 

 

7.3: 

The full graph of 𝑢 = −
1

√−
1

𝑠

√−
1
𝑠

 is shown in Figure 4c. 

 

 
 

 

 

 

 



 

 

7.3.a: 

If we zoom in we can see the value obtained for 𝑖𝑖 = (𝐞𝑖
𝜋

2)
𝑖

= 𝐞−
𝜋

2 ≈ 0.20788 is on this graph, 

as was suggested in section 3.1.d above.  The function 𝑢 = 𝑓(𝑠) = 0.20788 when 𝑠 = 0.22519.   

See Figure 4d. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

7.4—Additional Graphs: 

The following graphs are three-directional hypervolumes.  These are graphed parametrically as 

specified below. 

 

Figure 5a: 

Graph of xsy-hypervolume: 𝑥 = 𝑡  𝑠 = −
1

𝑡
  𝑦 = √𝑡

√𝑡
  

 

For −∞ < 𝑡 ≤ 0 in blue. Graphing y as  𝑦 = −√−𝑡
√−𝑡

 in accordance with section 4.0. 

 

For 0 ≤ 𝑡 < ∞ in gold. Graphing y as  𝑦 = √𝑡
√𝑡

. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 5b: 

Graph of xsu-hypervolume: 𝑥 = 𝑡  𝑠 = −
1

𝑡
  𝑢 = −

1

√𝑡
√𝑡

  

 

For −∞ < 𝑡 ≤ 0 in blue. Graphing u as  𝑢 =
1

√−𝑡
√−𝑡

 in accordance with section 4.0. 

 

For 0 ≤ 𝑡 < ∞ in gold. Graphing u as  𝑢 = −
1

√𝑡
√𝑡

. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 5c: 

Graph of xyu-hypervolume: 𝑥 = 𝑡  𝑦 = √𝑡
√𝑡

   𝑢 = −
1

√𝑡
√𝑡

  

 

For −∞ < 𝑡 ≤ 0 in blue. Graphing u as  𝑢 =
1

√−𝑡
√−𝑡

 

 

    Graphing y as  𝑦 = −√−𝑡
√−𝑡

 

 

    Both in accordance with section 4.0. 

 

 

For 0 ≤ 𝑡 < ∞ in gold. Graphing u as  𝑢 = −
1

√𝑡
√𝑡

 

 

    Graphing y as  𝑦 = √𝑡
√𝑡

 

 

 
 


