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Abstract: 

This paper explores the Null Algebra and traditional Algebra resolutions for the complex 

number 𝑖𝑖.  It explains the apparent differences between the Null Algebra resolutions, and those 

of traditional Algebra, which uses the substitution 𝑖 = 𝐞𝑖
𝜋

2 .  The methods shown herein explore 

the full set of subspace equations implied by the given equation, as well as why powers of 𝑖 
resulting from the trigonometric substitution must be considered in deriving those equations.  It 

is shown that the values obtained from the various possible resolutions to 𝑖𝑖 are found on some 

aspect of the given equation, or its expanded subspace equation sets.  It shows 𝑖𝑖 equals +1, -1, 

+4.81047738 and +0.20788. 

 
 It is assumed the reader has read and understood Null Algebra, as well as Null Algebra Extensions I and II in addition 
to standard Algebra and Trigonometry.  The Null Algebra texts are available for download at (https://vixra.org/abs/2103.0131), 
(https://vixra.org/abs/2206.0135) and (https://vixra.org/abs/2304.0205).  If you have not yet read these texts and attempted 
the examples contained therein for yourself it is highly suggested you do so before reading further as some concepts explained 
in detail there, are given only cursory review here.  Without reading these prerequisites you may not fully understand the 
reasoning behind logic used in the equations of this text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1.0—Review of Logs and Exponents: 

Before exploring complex exponentiation and their Null Algebra resolutions it’s important to 

understand the common rules for logarithms and exponents.  Where exponents raise a base value 

to a given power, logarithms provide the power necessary to obtain a result from a given base.  

Logs are the inverse of exponentiation.  It is hoped these will provide the reader with a refreshed 

understanding of exponentiation and logarithms, to better facilitate understanding during 

progression through the text. 

 

 

1.1.a—Exponentiation and Logarithm definition: 

 

Exponentiation:     Logarithm: 

 

𝑎𝑛 = 𝑚      log𝑎𝑚 = 𝑛 

 

Note, if the base value 𝑎 = 𝐞 ≈ 2.71828… the nomenclature used is the natural log: ln 

 

 

 

1.1.b—Rules of Logs, and Natural Logs: 

 

Log Product Rule  ln(𝑥 ⋅ 𝑦) = ln(𝑥) + ln(𝑦) log𝑎(𝑥 ⋅ 𝑦) = log𝑎(𝑥) + log𝑎(𝑦) 
 

Log Quotient Rule  ln (
𝑥

𝑦
) = ln 𝑥 − ln 𝑦  log𝑎 (

𝑥

𝑦
) = log𝑎(𝑥) − log𝑎(𝑦) 

 

Log Reciprocal Rule  ln (
1

𝑥
) = − ln(𝑥)  log𝑎 (

1

𝑥
) = − log𝑎(𝑥) 

 

Log Power Rule  ln(𝑥𝑦) = 𝑦 ⋅ ln(𝑥)  log𝑎(𝑥
𝑦) = 𝑦 ⋅ log𝑎(𝑥) 

 

Logs of negative values ln(−𝑥) = ∅   log𝑎(−𝑥) = ∅ 

 

Log of 0   ln(0) = ∅   log𝑎(0) = ∅ 

 

    lim
𝑥→0+

ln 𝑥 = −∞  lim
𝑥→0+

log𝑎 𝑥 = −∞ 

 

 

Log of 1   ln(1) = 0   log𝑎(1) = 0 

 

Log of  ∞   ln(∞) = ∞   log𝑎(∞) = ∞ 

 

Argument = base value ln(𝒆𝑥) = 𝑥   log𝑎(𝑎
𝑥) = 𝑥 

 

  If 𝑥 = 1 ln(𝐞) = 1   log𝑎(𝑎) = 1 

 

 



 

 

Value raised to power of 

a log with same base  𝒆ln(𝑥) = 𝑥   𝑎(log𝑎 𝑥) = 𝑥 

 

Log Derivative  
𝑑

𝑑𝑥
ln 𝑥 =

1

𝑥
   

𝑑

𝑑𝑥
log𝑎(𝑥) =

1

𝑥 log𝑎
 

 

 

Log Integral   ∫ ln(𝑥)  𝑑𝑥 = 𝑥 ⋅ ln(𝑥) − 𝑥 + 𝐶 

 

    ∫ log(𝑥)  𝑑𝑥 = 𝑥 ⋅ log(𝑥) − 𝑥 + 𝐶 

 

 

Euler Identity   ln(−1) = 𝑖𝜋   𝐞𝑖𝜋 = −1 

 

 

Change of base  log𝑎(𝑥) =
log𝑏(𝑥)

log𝑏(𝑎)
 

 

 

* Miller’s Identity  1𝑖 = 1 

 

 

Exponentiation of a Product:  For: 𝑎 = 𝑏 ⋅ 𝑐  Let:  𝑎𝑛 = 𝑑 

 

Then: 𝑎𝑛 = 𝑑    ≡     (𝑏 ⋅ 𝑐)𝑛 = 𝑏𝑛 ⋅ 𝑐𝑛 = 𝑑 

 

2.0—Aspects of 𝒊𝒊: 
Null Algebra resolutions of 𝑖 move values 

away from the complex plane into a real space, 

which includes one or more subspaces.  The 

calculation of values using 𝑖 as a base or as an 

exponent have more commonly used standard 

trigonometric properties to provide solutions.  Even 

when the result of a trigonometric substitution is a 

real number it still can be thought of as possessing 

an imaginary part of ±0𝑖. 
The standard calculation of 𝑖𝑖 will provide a 

real number solution.  However, this is still on the 

complex plane.  The trigonometric substitutions of 

i are still on the complex plane whereas the Null 

Algebra resolutions are removed to a plane 

composed or real and subspace axis. 

 

 

 
* I apologize for the small arrogance here.  I could not find another reference to this identity beside that which I published at 
https://vixra.org/abs/2307.0124 on 7/24/2023.  It seems an important identity.  I have to call it something. 



 

 

This real value, 𝑖𝑖 ≈ 0.20788…, on the complex plane is simply not displaced along the 

i-axis; it represents an output value, defined as a two dimensional number of the form 𝑎 ± 𝑏𝑖 for 

which the complex magnitude 𝑏 = 0. 

 

𝑖𝑖 ≈ 0.20788…± 0𝑖 
 

The Complex Plane is used as an output plane, showing single values of the output 

variable.  For an equation of the form 𝑦 = 𝑓(𝑥), the complex plane is composed of a real x-axis 

and the imaginary i-axis.  We plot on it two-dimensional points for each y-axis output value in 

terms of x and i, as defined by a given 𝑦 = 𝑓(𝑥) equation.  So, though we plot points for 

equations of the form 𝑦 = 𝑓(𝑥) on the Central Plane (the XY-Plane), we do not see the actual 

output y-axis of the central plane or any of the subspace axis associated with either the x, or the y 

axis on the Complex Plane.  Instead the entire plane represents the individual y-axis output 

points. 

 

More complicated is the trigonometric properties used to obtain a value for 𝑖𝑖.  These 

methods remove the i from the equation.  This results in the standard value of 0.20788… and 

equates the solution with Hyperbolic Trigonometry.  The following sections will explore the 

calculation of 𝑖𝑖 and its resolution from the complex place to a subspace hyperplane. 

 

 

2.1—Traditional Algebraic and Trigonometric calculation of 𝒊𝒊: 
Usage of trigonometric identities and a Maclaurin series expansion on 𝑖𝑖 yields the following: 

 

𝑖𝑖 ≈ 0.20788… 

 

This value is slightly larger than 𝟏 𝟓⁄ .  Its larger by not quite eight-thousandths.  It is also a real 

number.  Before we explore how this value is reached by traditional methods let’s explore the 

immediately obvious Null Algebra resolution, which appears to stand in direct contradiction to 

the approximate 0.20788 value. 

 

2.1.a: 

Null Algebra resolves instances of 𝑖 at their place of occurrence for a given equation on the 

central plane to its positive, up value, and to its negative, down value on the corresponding co-

adjoining subspace.  For an equation of the form 𝑦 = 𝑓(𝑥), where elements of 𝑓(𝑥) produce i-

multiples for inputs of x, we have 

 

𝑖 = ⨁1 = {
𝑥 − 𝑎𝑥𝑖𝑠     1̂   →  +1

 
𝑠 − 𝑎𝑥𝑖𝑠     1̌   →  −1

 

 

2.1.b: 

If we use the equation, 𝑦 = √𝑥
√𝑥

 

 



 

 

• The point 𝑖𝑖 is but one of an infinite number of points on this graph occurring when 𝑥 =
−1. 

Thus for 𝑥 = −1 

 

  𝑦 = √−1
√−1

≐ ⊕ 1⊕1  ≐  1̂1̂  ≐ 1 

 

 

2.1.b.i—The Apparent Contradiction: 

 

  +1 ≠ 0.20788 ≠ 1̂   →  +1 

 

Later we’ll more deeply explore the sy, xu and su planes.  You’ll find as we explore those graphs 

the approximate 0.20788 by way of the Null Algebra resolutions is on the transverse plane.  We 

will explore the explanation for why the values appear where they do. 

 

 

2.1.c—Calculating 𝒊𝒊 using Euler’s Identity: 

Euler’s Identity is derived from the Maclaurin expansion of 𝐞𝑖𝑥 for the value 𝑥 = 𝜋.  This can be 

used assist in calculating values on the complex plane. 

 

 Euler’s Identity: 𝐞𝑖𝜋 = −1 

 

 This is a 180 degree turn on the complex plane.  So to reach 𝑖 we need only a 90° 
 rotation or half Pi. 

 

    𝐞𝑖
𝜋

2 = 𝑖 
 

Thus the expression 𝑖𝑖 may be rewritten as: 

 

    𝑖𝑖 = (𝐞𝑖
𝜋

2)
𝑖

= 𝐞−
𝜋

2 

 

All that remains then is to raise the base value of e to the power of −
𝜋

2
. 

 

   𝐞−
𝜋

2 ≈ 2.71828−1.570796 ≈
1

2.718281.570796
≈ 0.20788 

 

 

2.1.d—The Hyperbolic Calculation of 𝐞−
𝝅

𝟐: 

Recall that the Maclaurin Series expansion for approximating a function centered at the point x = 

0, is given by: 

 

∑
𝑓𝑛(0) ⋅ 𝑥𝑛

𝑛!

∞

𝑛=1

 



 

 

 

 

2.1.d.i: 

When performing the expansion on 𝐞𝑥 and 𝐞−𝑥 (with no i in the exponent) the resulting series is 

equated to cos 𝑥 + sin 𝑥, and cos 𝑥 − sin 𝑥 respectively.  This results in the Hyperbolic 

Pythagorean identity for which the nomenclature of cosh and sinh are used to ensure 

understanding of hyperbolic trigonometry being used. 

 

 

𝐞𝑥 = cosh 𝑥 + sinh 𝑥  𝐞−𝑥 = cosh 𝑥 − sinh 𝑥 

 

𝐞𝑥 ⋅ 𝐞−𝑥 = 1 = cosh2 𝑥 − sinh2 𝑥 

 

From this perspective you can easily verify that 𝐞−
𝜋

2 ≈ 0.20788 

 

𝐞−
𝜋
2 = cosh(−1.5707963) + sinh(−1.5707963)    →    2.509178478658 + −2.3012989 

 

𝐞−
𝜋
2 ≈ 0.20788… 

 

 

 

3.0—Rationalizing Null-Algebraic and Traditional Algebraic Solutions of 𝒊𝒊: 
Thus 2.1.c provides a confirmed algebraic solution for 𝑖𝑖, and 2.1.d provides a confirmed 

trigonometric solution for the same.  The two methods of approach are in agreement that  

 

𝑖𝑖 ≈ 0.20788… 

 
• Remember this is still a real-only component of a number 𝑧 = 𝑎 + 𝑏𝑖  =   𝑎 + 0𝑖.  It is still on the complex 

plane.   Null Algebra resolutions translate values onto planes composed of real and subspace axis.  Due to 
these differences there is no reason to believe the value obtained from the trigonometric exchange, which is 
really a different equation than the given equation in this example will appear on the XY-Plane. 

 

3.1.a: 

There is another difference in values which results depending on when you decide to apply Null 

Algebra resolutions to the 𝑖 multiples.  Consider the two methods shown here below: 

 

Direct Resolution of 𝑖 Substitution, Then Resolution of 𝑖 
For 𝑦 = 𝑓(𝑥) equation: 

 

 

x-axis: 𝑖𝑖 ≐⊕ 1⊕1 ≐ 1̂1̂ ≐ 1̇1̇ = 1 

 

s-axis:                       ≐ 1̌1̌ ≐ −1−1 = −1 

 

 

 

𝑖𝑖 = (𝐞𝑖
𝜋
2)

𝑖

≐ (𝐞⊕1
𝜋
2)

⊕1

≐ {
(𝐞1̂

𝜋
2)
1̂

≐ 𝐞
𝜋
2

 

𝐞
(⊕1)2

𝜋
2 ≐ 𝐞−

𝜋
2

 

 

  



 

 

 

 

3.1.a.i: 

These steps show we have four possible solutions to the expression 𝑖𝑖 depending on when and 

how we select to resolve the i-multiple values.  The expression can be said to be 

 

𝑖𝑖 = {1 , −1 , 𝐞
𝜋
2  , 𝐞−

𝜋
2 

 

• All of these are valid resolutions, and they all occur somewhere on the full expansion of subspace equations 
implied by the given equation in this example. 

 

The given equation, for the negative domain on 𝑦 = √𝑥
√𝑥

 results in expressions that indicate the 

y-axis values are represented in the form of y = 0 + bi before being resolved by either Null 

Algebra or Traditional Algebra methods.  The Null Algebra resolutions will involve y but also its 

subspace of u.  We should anticipate to find these four solution values on either the y-axis or u-

axis output.  The direct resolution of 𝑖 using Null Algebra in this example produces +1 and -1 

values on the xy-plane and sy-plane respectively. 

 

The substitution of 𝑖 = 𝐞𝑖
𝜋

2  then permits again either direct substitution of (𝐞𝑖
𝜋

2)
𝑖

= (𝐞1̂
𝜋

2)
1̂

≐ 𝐞
𝜋

2 

or the squaring of plus-and-minus 1 via 

 

 

 

Null Algebra (𝐞𝑖
𝜋
2)

𝑖

≐ (𝐞⊕1
𝜋
2)

⊕1

≐ 𝐞−
𝜋
2

     

(𝐞𝑖
𝜋
2)

𝑖

 ⟶  𝐞−
𝜋
2

 

 

 

Traditional Algebra 

 

3.1.a.ii: 

Note (𝐞⊕1
𝜋

2)
⊕1

≐ 𝐞−
𝜋

2 is not the only method of arriving at the 𝐞−
𝜋

2 

 

From the section above on Substitution, Then Resolution of 𝑖, the top row of the resolution 

process, (𝐞1̂
𝜋

2)
1̂

 will resolve to (𝐞
𝜋

2). 

 

However if we chose to specify the presence of the +1 coefficient in both exponents as (𝐞1
𝜋

2)
1

 

we may then further choose to keep track of these as resolved i-multiples by including their 

dotted value accent marks: 

 

(𝐞1̇
𝜋
2)
1̇

 

 



 

 

These dotted values, indicate these are resolved components of plus-and-minus numbers and 

as such, when multiplied together it is identical to squaring the plus and minus sign, which will 

result in a negative sign. 

 

(𝐞1̇
𝜋
2)
1̇

= 𝐞
(1̇)2

𝜋
2 = 𝐞−

𝜋
2 

 

 

 

4.0—Analyzing graphs and values: 

The graphs of the various equations are shown below, exploring the nature of all four solution 

values.  All four are in fact valid, occurring on some section of the overall subspace hyper-plane 

set. 

 

4.1.a: 

The values of +1 and -1 require no special explanation; they follow known Null Algebra 

resolutions.  We have likewise explored the trigonometric resolution value of 𝐞−
𝜋

2 ≈ 0.20788.  

This leaves us to evaluate 𝐞
𝜋

2. 

 

 

𝐞
𝜋

2 ≈ (2.71828… )(1.57079632… ) ≈ 4.81047738 

 

 

𝐞
𝜋

2 ≈ cosh (
𝜋

2
) + sinh (

𝜋

2
)  ≈ 2.509178478658 + 2.30129890230 

≈ 4.81047738 

 

All four of these values, 1, -1, 0.20788 and 4.81047738 will appear somewhere on the subspace 

expansions of the given equation 𝑦 = √𝑥
√𝑥

. 

 

 

4.2.a 

𝑦 = √𝑥
√𝑥

   For 0 ≤ 𝑥 < ∞ 

 

The graph of this function is shown here in Figure 1 over its traditionally valid domain.  Its 

straight forward traditional algebra. For simplicity the graphs shown display only the positive 

output values for the roots.  Figure 1a shows the output values for the roots, resolved from their 

i-multiple, to their positive, up value; the value positive-and-negative numbers take when 

resolved on the central plane over the extended domain of −∞ < 𝑥 ≤ 0. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.a.i: 

We can put these two graphs directly together.  Using the Null Algebra resolutions we see the full 

domain of the graph of 𝑦 = √𝑥
√𝑥

.  See Figure 1b. 

 

 
 

4.2.a.ii: 

We can see by zooming in that the output value of 𝑦 = 1 is present for the input value, 𝑥 = −1.  

In fact, it also equals +1 when 𝑥 = +1.  Additionally we can see this graph also contains the 

output values of 𝑦 = 4.81047738 when 𝑥 = 4.440711085 and −4.440711085. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.b: 

𝑦 = √𝑥
√𝑥

   For −∞ < 𝑥 ≤ 0 using 𝐞𝑥 resolution: 

We have graphed functions generating i-multiples before in Null Algebra Extension II.  In those 

graphs we showed the traditional output xi-plane used to plot two-dimensional points 

representing y, and later the same functions as three-directional xiy-volumes with both inputs and 

outputs showing all three axis together.  Thereafter we resolved the i-multiples and showed the 

final xsy-hyperplane graph. 

 

The issue here is every input in the domain of −∞ < 𝑥 ≤ 0 produces an output of the form 𝑟𝑖𝑟𝑖.  
Without resolving the i values, what does it mean to raise an imaginary number (or for that 

matter any number) to an imaginary exponential power?  Even on the output plot, complex xi-

plane it’s not defined what it means to raise a number 𝑟𝑖 to a power, 𝑟𝑖. 
 

 
• I am using r within the text to represent the magnitude of the root of a negative argument such that 

 √−𝑛 = 𝑟𝑖. 

 



 

 

In this instance, without resolving the i-multiples we use the expression 𝑖 = 𝐞𝑖
𝜋

2 .  Because each x 

input for the domain −∞ < 𝑥 ≤ 0 will produce i-multiples for both the base value and the 

exponent in the equation 𝑦 = √𝑥
√𝑥

 we may make the following substitutions. 

 

Let:    𝑟 = √|𝑥|  𝑟𝑖 = √−𝑥    𝑖 = 𝐞𝑖
𝜋

2  

 

Then for: −∞ < 𝑥 ≤ 0  𝑦 = √𝑥
√𝑥
    →   𝑟𝑖𝑟𝑖   =  (𝑟𝐞𝑖

𝜋

2)
𝑟𝑖

 =   𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2   

  

  

4.2.b.i: 

Without resolving the 𝑖 value in the exponent on the first term, we cannot actually graph 

𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2  on a Cartesian style plane.  We would be limited to using the complex plane.  It is only 

when 𝑥 = −1, that 𝑦 = √𝑥
√𝑥
= 𝑟𝑟𝑖 ⋅ 𝐞−

𝑟𝜋

2 = 0.20788, a completely real number.  All other 

values for the negative domain, will produce some complex number with an imaginary only part 

when using the trigonometric substitution.  For all values 𝑥 ≠ −1 in the negative domain, the 

outputs will have no real part and are plotted directly on the i-axis at varying heights, confined to 

the complex plane. 

 

0.20788 is one point on negative domain of the complex equation √|𝑥|
√|𝑥|𝑖

⋅ 𝐞−
√|𝑥|𝜋

2 .  This 

equation is only equal to √𝑥
√𝑥

 when 𝑥 = −1.  Though the output value resulting from the 

trigonometric substitution is valid and may be used to substitute and solve for 𝑖𝑖 when not using 

Null Algebra substitutions, the two equations are not identical.  So we should not be surprised the 

general form of the equation derived from the trigonometric substitution is not only different 

from the 𝑦 = 𝑓(𝑥) equation, but also results in complex numbers for all but one input value over 

the negative domain. 

 

 

4.3: 

So we have two separate resolution methods for 𝑖𝑖.  One which solves for the general equation 

𝑦 = √𝑥
√𝑥

 using Null Algebra resolutions over the negative domain, and another which uses 

trigonometric substitutions for the complex number 𝑖𝑖 but provides a value for only one point, 

which is not guaranteed to be on the XY-Plane.  The trigonometric substitution can be used to 

derive a completely different general equation that happens to provide a real number output, to 

the same expression 𝑖𝑖, for the same input value shared on both non-identical general equations. 

 

 

 

 

 

 

 

 



 

 

4.3.a 

The differences between some key values can be summarized thus: 

 

 4.3.a.i 

 For: 𝑦 = √𝑥
√𝑥

  Over Domain:  −∞ < 𝑥 ≤ 0,  At 𝑥 = −1 

 

Null Algebra Resolution  +1 

 

Trigonometric Resolution   ≈ + 0.20788 

 

 

4.3.a.ii 

To understand these apparent differences we’ll need to examine the graphs involving the x, y, s 

and u axis. 

 

 

4.3.a.iii: 

Remember that the substitution of (𝐞𝑖
𝜋

2)
𝑖

≈ 0.20788 though a real number, does not remove us 

from the complex plane.  Its generalized equation over the negative domain is of the form: 

 

 √𝑥
√𝑥
= √|𝑥|𝑖√|𝑥|𝑖 = (√|𝑥| ⋅ 𝐞𝑖

𝜋

2)
√|𝑥|𝑖

= √|𝑥|
√|𝑥|𝑖

⋅ 𝐞−
√|𝑥|𝜋

2 = 𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2  

 

 

4.3.a.iv: 

The outputs for this equation, over the negative domain will result in complex numbers of the 

form a + bi as defined below: 

 

 For:  𝑥 ≠ −1  and −∞ < 𝑥 ≤ 0  𝑧 = 0 + 𝑏𝑖 
 

 For:  𝑥 = −1  and −∞ < 𝑥 ≤ 0  𝑧 = 𝑎 + 0𝑖 
 

 

Thus the value obtained from the trigonometric substitution is still on the complex plain.  It just 

simply has no imaginary part.  𝑧 = 𝑎 + 0𝑖.  In other words a complex number with a zero 

magnitude imaginary component. 

 

4.3.a.v: 

Another factor to consider with (𝐞𝑖
𝜋

2)
𝑖

, is that it results in squaring 𝑖.  Recall from Null Algebra 

Extension II this will result in a 180 degree rotation on the complex plane, something that places 

us on the border between values that apply to the given real space axis in the upper quadrants of 

the complex plane and the corresponding subspace values in the lower quadrants of the complex 

plane.  This will become important in showing the resolution to the value 0.20788 as well as the 

axis it lays on. 



 

 

4.3.a.vi: 

The ≈ 0.20788 value will be found on the expanded graphs.  However we should not assume 

this output value will occur at the value of 𝑥 = −1.  This is because the 𝑖𝑖 at 𝑥 = −1 is generated 

by 𝑦 = √𝑥
√𝑥

.  The substitution of (𝐞𝑖
𝜋

2)
𝑖

 provides a solution which is equivalent to 𝑖𝑖 but is itself 

generated by a different equation, 𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2 , which remains on the complex plane and shares 

only one point with 𝑦 = √𝑥
√𝑥

. 

 

 

4.3.a.vii: 

When 𝑥 = −1, the equation 𝑦 = 𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2  equals 𝐞−
𝜋

2, the value equivalent to the 𝑖𝑖 at 𝑥 = −1 

on the equation 𝑦 = √𝑥
√𝑥

.  Because the result 0.20788 comes from 𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2 , as a result of a 

substitution, defining a different general equation than the given equation, the result of 0.20788 

occurring at 𝑥 = −1  on 𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2 , may not occur at the same input value of 𝑥 = −1 on any part 

of the expanded subspace equations of 𝑦 = √𝑥
√𝑥

.  And yet it will occur on some portion of the 

expanded set of subspace equations of the given 𝑦 = √𝑥
√𝑥

 equation. 

 

 

4.3.a.viii: 

In other words: 

 

𝑦 = √𝑥
√𝑥

  ≠  𝑦 = √|𝑥|
√|𝑥|𝑖

⋅ 𝐞−
√|𝑥|𝜋

2 = 𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2  

 

For 𝑥 = −1  𝑦 = √𝑥
√𝑥
= 𝑖𝑖 =  𝑦 = 𝐞−

𝜋

2 ≈ 0.20788… 

 

 

   𝑦 = √𝑥
√𝑥
= 𝑖𝑖 ≢  𝑦 = 𝐞−

𝜋

2 ≈ 0.20788… 

 

 

*** 𝑖𝑖 = 𝐞−
𝜋

2, but 𝑖𝑖 ≢ 𝐞−
𝜋

2.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4.4—The Co-Adjoining Subspace  𝒚 = 𝒇(𝒔): 

Using the equation 𝑦 = √𝑥
√𝑥

 we use a subspace transform on the x input to obtain the s-axis 

subspace values which comprise the co-adjoining subspace equation. 

 

 

4.4.a.i: 

 

𝑥 = −
1

𝑠
  𝑦 = 𝑓(𝑠) = √−

1

𝑠

√−
1

𝑠

 

 

 

4.4.b: 

𝑦 = 𝑓(𝑠) is defined under the traditional Algebra domain of −∞ < 𝑠 ≤ 0.  This is shown in  

Figure 5a. 

 

 
 

 

4.4.c: 

The extended domain of 0 ≤ 𝑠 < ∞ will result in i-multiples.  These plus-and-minus numbers 

we resolve to their down values on the s-axis of the co-adjoining subspace. 

 

𝑦 = √−
1

𝑠

√−
1

𝑠

   for 0 ≤ 𝑠 < ∞  with  √−𝑠 =⊕ 𝑟 ≐ �̌� ≐ −𝑟 

 

 

𝑦 = −
1

𝑟

−
1
𝑟
= −𝑟

1
𝑟⁄  

This is shown on the graph of Figure 5b. 



 

 

 
  

 

 

4.4.d: 

The combined graphs showing the full domain of the 𝑓(𝑠) function is shown in Figure 5c. 

 

 
 

 

 

 

 

 

 

 



 

 

5.0—Review of the Resolutions of 𝒊𝒊: 
Thee resolutions of 𝑖𝑖have already been shown to take several forms depending on the approach 

we take.  We will take a short review of these resolutions before moving on to ensure proper 

understanding of the next steps in examining the Posterior Subspace and eventually the 

Transverse Plane. 

 

Resolutions of 𝑖𝑖 require this expression be understood as a real number. 

 

 5.0.a: 

One of these are the Null Algebra resolutions.  They declare that i-multiples occurring on 

the complex plane as a result of the given 𝑦 = 𝑓(𝑥) equation, will take their positive, up, 

resolved values. 

 

  𝑖𝑖    ⟶    1̂1̂    ⟶    1 

 

This is but one single value found on the example equation 𝑦 = √𝑥
√𝑥

 when 𝑥 = −1. 

Obviously the point (−1 , 1) generated when 𝑥 = −1 is on this graph. 

 

 𝑦  =   𝑓(−1)   =   √−1
√−1

  =   ⊕ 1⊕1   =   1̂1̂   =    1 

 

 

5.0.b: 

The trigonometric Resolution derives from 

 

  𝐞𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥  

 

  for 𝑥 =
𝜋

2
  𝐞𝑖

𝜋

2 = cos
𝜋

2
+ 𝑖 sin

𝜋

2
  =    0 + 𝑖  =    𝑖 

 

The base value of i in 𝑖𝑖 is replaced vis this substitution 

 

𝑖𝑖 = (𝐞𝑖
𝜋
2)

𝑖

= 𝐞−
𝜋
2 ≈ 0.20788… 

 

5.0.c: 

It does not require explanation that 1 ≠ 0.20788 

 

5.0.c.i: 

Yet there is no discrepancy here.  𝑖𝑖 is one point of an infinite set of points on the 

graph of 𝑦 = √𝑥
√𝑥

 over its defined and extended domain.  It is the Null Algebra 

resolutions which in 5.0.a define 𝑖𝑖 = 1 when 𝑖𝑖 occurs on the central plane, 

generated by 𝑦 = √𝑥
√𝑥

 when 𝑥 = −1. 

 

 



 

 

  5.0.c.ii: 

  Likewise, the point 𝑖𝑖 is but one point of an infinite number of points on the graph 

 

  𝑦 = 𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2   where 𝑟 = √|𝑥| 
 

  And generated from the substitutions on i in the equation 

 

  𝑦 = √𝑥
√𝑥

 Over the domain  −∞ < 𝑥 ≤ 0 

 

   such that:  𝑦 = 𝑟𝑖𝑟𝑖  =   (𝑟𝐞𝑖
𝜋

2)
𝑟𝑖

 =   𝑟𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2  

 

  When 𝑥 = −1  𝑦 = (𝐞)−
𝜋

2  ≈   0.2.0788… 

 

5.1: 

These two resolutions for 𝑖𝑖 are Equivalencies but they are not Identities. 

 

 

Equivalency 

 

 

𝑦1 = 𝑓1(𝑥) = √𝑥
√𝑥

  𝑦2 = 𝑓2(𝑥) = 𝑟
𝑟𝑖 ⋅ 𝐞−

𝑟𝜋

2  

 

For −∞ < 𝑥 ≤ 0 and Using Trigonometric Resolutions 

 

𝑦1 = 𝑓1(𝑥) = 𝑖𝑖  𝑦2 = 𝑓2(𝑥) = 𝐞
−
𝜋

2 = 0.20788 

 

 

𝑦1  =   𝑦2 

 

Non-Identity 

 

 

𝑦1 = 𝑓1(𝑥) = √𝑥
√𝑥

  𝑦2 = 𝑓2(𝑥) = 𝑟
𝑟𝑖 ⋅ 𝐞−

𝑟𝜋

2  

 

 

For −∞ < 𝑥 ≤ 0 and Using Null Algebra Resolutions 

And, 𝑥 ≠ −1 

 

𝑦1 = 𝑓1(𝑥) = √𝑥
√𝑥
= 𝑟𝑟  𝑦2 = 𝑓2(𝑥) = 𝑟

𝑟𝑖 ⋅ 𝐞−
𝑟𝜋

2  

 

𝑦1 ≢ 𝑦2 

 

√𝑥
√𝑥
≢ 𝑟𝑟𝑖 ⋅ 𝐞−

𝑟𝜋
2  

 

 

For 𝑥 = −1 

 

 

𝑦1 = 𝑦2 

 

 



 

 

 5.1.a: 

There are likely infinite equations one could create which will contain the output value of 

𝑖𝑖 for some input value. 

 

On all of these equations there will be Null Algebra and Trigonometric resolutions which 

produce the values already discussed.  The Null Algebra resolutions show we receive four 

valid values of +1, -1, +0.20788, and 4.81047738.  The trigonometric resolution provides 

only +0.20788. 

 

Yet the equations which produce these values are not identical and produce different 

values from each other.  However, because the Null Algebra precepts have been applied 

to resolve 𝑖𝑖, arising from an equation of the form 𝑦 = 𝑓(𝑥) on the central plane, then 

there also exists equations of the form 𝑦 = 𝑓(𝑠), 𝑢 = 𝑓(𝑥) and 𝑢 = 𝑓(𝑠) all present and 

related to the originally resolved 𝑦 = 𝑓(𝑥) equation. 

 

The various values located for the trigonometric and null algebra resolutions of 𝑖𝑖 shall 

occur within the collection of these four equations. 

 

5.2: 

Because of the equivalence between 𝑦 = 𝑖𝑖 and the substitution 𝐞−
𝜋

2 = 0.20788 we should 

expect to find the value 0.20788 on some portion of expanded subspace equations set for  𝑦 =

√𝑥
√𝑥

. 

 

 5.2.a: 

The equation 𝑦 = 𝑓(𝑥) uses an extended domain resulting from Null Algebra resolutions 

when −∞ < 𝑥 ≤ 0. 

 

5.2.b: 

The presence and resolution of i's in the equation 𝑦 = √𝑥
√𝑥

 requires us explore the 

remaining three subspace equations to comprehend the full extent of the given equation. 

 

𝑦 = 𝑓(𝑠) 𝑢 = 𝑓(𝑥) 𝑢 = 𝑓(𝑠) 
 

 5.2.c: 

 The Trigonometric Resolution of 𝑖𝑖 = 𝐞−
𝜋

2 = 0.20788 

 

• Will appear on the equations representing the subspace expansions of 𝑦 = √𝑥
√𝑥

 

 

• It is not guaranteed to occur on the Central Plane.  Can see from the graphs of 𝑦 = 𝑓(𝑥) it 
is not on the XY-plane. 

 

• Because it is a different equation which produces a merely numeric equivalent of 𝑖𝑖 = 𝑟𝑟𝑖 ⋅

𝐞−
𝑟𝜋

2 , it is also not guaranteed to occur at the same input value of 𝑥 = −1.  We will explore 



 

 

why this is so after making our first attempt to produce the remaining subspace expansion 

equations implied by 𝑦 = √𝑥
√𝑥

. 

 

 

6.0—Definition of the u-axis subspace: 

The Null Algebra resolutions dealing with the u-axis define it as: 

 

 6.0.a: 

 

𝑢 = −
1

𝑦
 

 

We will proceed with this process using this definition provided in 6.0.a. to illustrate a point 

about trigonometric substitution which will also help show why the value 0.20788 exists within 

the subspace expansion equations of 𝑦 = √𝑥
√𝑥

. 

 

6.1—Reversal of Up and Down values.: 

The central plane, holding equations of the form 𝑦 = 𝑓(𝑥) and the co-adjoining subspace 𝑦 =
𝑓(𝑠) have been fairly well explored in earlier Null Algebra texts.  Something we have not 

explored until this Extension to Null Algebra is that the up and down resolutions to i-multiple 

values are dependent on whether the input and output values match as real-space axis, subspace-

axis or a mixed set between the two.  The output axis determines which axis will take the up and 

down value resolutions to i-multiples.  The up values will apply to the input axis which matches 

the nature of the output axis.  The input axis which is in opposition will take the down value. 

 

 6.1.a: 

 The Central Plane 

 

  𝑦 = 𝑓(𝑥)   i-multiples result in positive up value resolutions 

 

 6.1.b: 

 The Co-Adjoining Subspace 

 

  𝑦 = 𝑓(𝑠)   i-multiples result in negative down value resolutions 

 

  

 6.1.c: 

 The Posterior Subspace 

 

  𝑢 = 𝑓(𝑥)   i-multiples result in negative down value resolutions 

 

 6.1.d: 

 The Transverse Plane 

 

  𝑢 = 𝑓(𝑠)   i-multiples result in positive up value resolutions 



 

 

 

This will affect the way we produce the 𝑢 = 𝑓(𝑥) and 𝑢 = 𝑓(𝑠) equations.  We will discover this 

process is still not yet complete.  Because the unique example value of 𝑖𝑖, it will ultimately 

require both u-axis equations to be multiplied by −1.  This is actually occurring in the process of 

obtaining the trigonometric substitution for 𝑖𝑖.  After exploring why obtaining the u-equations 

without additionally multiplying them by a −1 is not accurate, we will show exactly where this 

additional magnitude of −1 comes from and why it is necessary. 

 

 

7.0—The Posterior Subspace 𝒖 = 𝒇(𝒙): 
Using the definition of section 6.0 we have the following. 

 

𝑦 = √𝑥
√𝑥

  𝑢 = −
1

𝑦
  𝑢 = 𝑓(𝑥) = −

1

√𝑥
√𝑥

 

 

7.1: 

The function is traditionally defined over the domain of 0 ≤ 𝑥 < ∞ and may be graphed directly. 

 

7.2: 

The extended domain will result in i-multiples for −∞ < 𝑥 ≤ 0.  The requirement that the input 

axis which is in opposition to the output axis’ type take the negative down value resolutions will 

be applied here for the i-multiples on the x-axis components of this equation.  A standard 

graphing utility can be forced to graph it appropriately by using 

 

𝑢 = 𝑓(𝑥) = −
1

−(√−𝑥)
−(√−𝑥)

= (√−𝑥)
(√−𝑥)

 

 

 

Figure 6a, 6b and 6c respectively show the positive domain, negative extended domain and 

combined full graph of 𝑢 = 𝑓(𝑥) = −
1

√𝑥
√𝑥

.  They ignore the special requirement for this 

example that we multiply the equation by −1 due to the trigonometric substitution. 

 

 
Figure 6a shows the positive domain of the graph of 𝑢 = 𝑓(𝑥).  This graph is presented to show the standard 
approach to deriving this equation from the given equation on the Central Plane.  It is graphed over the 
traditionally defined domain for this example 0 ≤ 𝑥 < ∞.  It ignores the need to multiply the equation by -1, a step 

obtained from the nature of the trigonometric substitution of 𝑖𝑖.  This will be expounded upon later. 



 

 

 
 
Figure 6b shows the negative domain of the graph of 
𝑢 = 𝑓(𝑥).  This graph is presented to show the 
standard approach to deriving this equation from the 
given equation on the Central Plane.  It is graphed over 
the extended domain for this example −∞ < 𝑥 ≤ 0.  It 
ignores the need to multiply the equation by -1, a step 
obtained from the nature of the trigonometric 

substitution of 𝑖𝑖.  This will be expounded upon later. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6c shows the full domain and range of the graph of 𝑢 = 𝑓(𝑥).  This graph is presented to show the standard 
approach to deriving this equation from the given equation on the Central Plane.  It is graphed over the full domain, 
both the extended and traditional domain, −∞ < 𝑥 < ∞.  It ignores the need to multiply the equation by -1, a step 

obtained from the nature of the trigonometric substitution of 𝑖𝑖.  This will be expounded upon later. 
 
 
 



 

 

8.0—The Transverse Plane 𝒖 = 𝒇(𝒔): 
Using the definition of section 6.0 we have the following. 

 

𝑦 = √𝑥
√𝑥

  𝑢 = −
1

𝑦
 𝑠 = −

1

𝑥
 𝑥 = −

1

𝑠
 𝑢 = 𝑓(𝑠) = −

1

√−
1

𝑠

√−
1
𝑠

 

 

8.1: 

The function is traditionally defined over the domain of −∞ < 𝑥 < 0 and may be graphed 

directly. 

 

8.2: 

The extended domain will result in i-multiples for 0 ≤ 𝑥 < ∞.  The requirement that the input 

axis which matches the output axis’ type will take the positive up value resolutions will provide 

we use positive up resolutions for the i-multiples on the s-axis components of the equation.  A 

standard graphing utility can be forced to graph it appropriately by using 

 

𝑢 = 𝑓(𝑠) = −
1

(√
1
𝑠)

(√
1
𝑠
)

 

 

 

Figure 7a, 7b and 7c respectively show the negative domain, positive extended domain and 

combined full graph of 𝑢 = 𝑓(𝑠) = −
1

√−
1

𝑠

√−
1
𝑠

. 

 

 
Figure 7a shows the negative domain of the graph of 𝑢 = 𝑓(𝑠).  This graph is presented to show the standard 
approach to deriving this equation from the given equation on the Central Plane.  It is graphed over the 
traditionally defined domain for this example −∞ < 𝑥 ≤ 0.  It ignores the need to multiply the equation by -1, a 

step obtained from the nature of the trigonometric substitution of 𝑖𝑖.  This will be expounded upon later. 
 
 
 



 

 

 
Figure 7b shows the positive domain of the graph of 𝑢 = 𝑓(𝑠).  This graph is presented to show the standard 
approach to deriving this equation from the given equation on the Central Plane.  It is graphed over the extended 
domain for this example 0 ≤ 𝑥 < ∞.  It ignores the need to multiply the equation by -1, a step obtained from the 

nature of the trigonometric substitution of 𝑖𝑖.  This will be expounded upon later. 
 

 
Figure 7c shows the full domain and range of the graph of 𝑢 = 𝑓(𝑠).  This graph is presented to show the standard 
approach to deriving this equation from the given equation on the Central Plane.  It is graphed over the full domain, 
both the extended and traditional domain, −∞ < 𝑠 < ∞.  It ignores the need to multiply the equation by -1, a step 

obtained from the nature of the trigonometric substitution of 𝑖𝑖.  This will be expounded upon later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

9.0—Locating 𝒊𝒊 ≈ 𝟎. 𝟐𝟎𝟕𝟖𝟖: 

The 𝑢 = 𝑓(𝑠) equation is the first instance in which output values lie in the range of an 

approximately 1 5⁄  magnitude.  We can examine this graph in both the positive and negative 

domain and see where this value exists.  See figures 8 and 9 below. 

 

 

 

9.1: 

We can clearly see that an input value of approximately ±0.22519 will produce an output value 

of approximately −0.20788.  This is the correct magnitude, but the wrong sign.  The 

trigonometric substitution which provided a solution specified a positive value. 

 

𝑖𝑖 = (𝐞𝑖
𝜋
2)

𝑖

= 𝐞−
𝜋
2 ≈ 0.20788 

 

We need to go back and re-examine the process by which we arrive at this value from the 

substitution process and see how it relates to the u-axis. 

 

9.2—Squaring 𝑖: 
It is known that squaring 𝑖 will produce -1. 

 

𝑖2 = −1 

 

The trigonometric resolution of 𝑖𝑖 involves the squaring of 𝑖 
 

𝑖𝑖 = (𝐞𝑖
𝜋
2)

𝑖

= 𝐞𝒊⋅𝒊 
𝜋
2 = 𝐞−

𝜋
2 ≈ 0.20788 

 

9.2.a: 

Null Algebra Extension II provides a list of resolutions for apparent discrepancies that exist 

between Traditional Algebra and Null Algebra instances for powers of 𝑖𝑛 for 𝑛 ≥ 1.  These were 



 

 

provided because Null Algebra resolutions for each higher power of 𝑖 not only rotate the value 

around the complex plane, but change the axis to which it references, in terms of the originally 

provided variable. 

 

For example the Null Algebra resolution of 𝑖3 = +1.  This is the value obtained on the s-axis 

subspace, seen in term of the x-axis.  Yet on the x-axis its value will resolve to -1.  Using the 

subspace transformations we can easily see this. 

 

𝑠 = −
1

𝑥
 For:   𝑖3 = +1 = 𝑠  Then:   𝑖3 =

Ξ

𝜍𝑥
(+1) = −1 = 𝑥 

 

These resolutions for multiples of i provide meanings for which axis is implied at a given power 

of i.  They do not require usage of that value alone as it has a simultaneous conjugate pair.  Just 

as this resolution of 𝑖3 provides the output value in terms of s = +1, if using the x-axis one may 

simply convert this to -1. 

 

9.2.b: 

The Null Algebra resolution for squaring i is especially important in this regard. 

 

𝑖2 = 𝑖 ⋅ 𝑖 = −1 

 

 

9.2.b.i: 

This represents a 180 degree rotation on the complex plane.  Null Algebra Extension II indicates, 

given an equation of the form 𝑦 = 𝑓(𝑥), when squaring 𝑖 we are referring to one of two 

boundaries between the Central Plane and the Co-adjoining Subspace.  The value obtained, 𝑖2 =
−1, is the value on the Central Plane in terms of the xy-plane.  Though this is representative of 

the value as it appears on the xy-central plane, it simultaneously represents the value of +1 on 

the sy Co-Adjoining subspace plane. 

 

9.2.b.ii: 

All i-multiples have an up and a down conjugate value.  All values assigned to a given axis, will 

have a corresponding values on subspace axis.  Powers of i of the form 𝑖𝑛 may result in a real 

value of the form 𝑎 ± 0𝑖.  These values through completely real still lay on the complex plane 

with conjugate values that are identical.  They will also have corresponding values on subspace 

axis. 

 

 𝑦 = 0 + 𝑏𝑖  For 𝑥 = 𝑎 

 

 𝑦 = 𝑎 + 0𝑖  has conjugate  𝑦 = 𝑎 − 0𝑖 
 

 𝑦 = 𝑎   No difference 

 

This is the situation we have with the expression: 𝑦 = 𝑖𝑖 = 0.20788 ± 0𝑖 
 



 

 

We are examining a single value for the y variable.  It just happens to be a complex number of 

the form 𝑧 = 0.20788 + 0𝑖, which results from the trigonometric substitution.  For such single 

values of y we have the following relations: 

 

 But there are corresponding subspaces 

 

 XY-Plane  𝑦 = 𝑎 + 0𝑖 =   0.20788 

 

 SY-Plane  𝑦 = −
1

𝑎
+ 0𝑖  𝑦 = −

1

𝑎
− 0𝑖  𝑦 = −

1

𝑎
 

 

 XU-Plane  𝑢 = −
1

𝑎+0𝑖
  𝑢 = −

1

𝑎−0𝑖
  𝑢 = −

1

𝑎
 

 

 SU-Plane  𝑢 = −
1

−
1

𝑎
+0𝑖

  𝑢 = −
1

−
1

𝑎
−0𝑖

  𝑢 = 𝑎 

 

The number 0.20788 is on the complex plane and results from trigonometric substitutions on 𝑦 =
𝑖𝑖.  Here we have 𝑦 = 𝑖𝑖 = 𝑎. 

 

0.20788 ± 0𝑖 =   0.20788 = 𝑎 

 

From section 9.2.b.ii we may conclude that 0.20788 may equal either y or u. 

 

𝑦 || 𝑢 = 0.20788 

 

 

9.3.a: 

The trigonometric substitution (𝐞𝑖
𝜋

2)
𝑖

= 𝐞−
𝜋

2 ≈ 0.20788… is a hyperbolic trigonometric 

expression because the value of i has been removed from the expression.  It remains a resolution 

of 𝑖𝑖.  Because the substitution (𝐞𝑖
𝜋

2)
𝑖

≈ 0.20788 is applied to 𝑦 = 𝑖𝑖 we are addressing the 

output 𝑦 axis.  Because that same substitution squares 𝑖 we are not only addressing 𝑦 but by 

extension its subspace 𝑢.    The answer is a completely real value of the form 𝑦 = 𝑎 ± 0𝑖.  It is 

not found on the 𝑦-axis, so we can expect to find the value of 𝑢 = 𝑎 on the su transverse plane.    

This is seen in 9.2.b.ii.  This is due to the Null Algebra resolutions for Powers of i discussed in 

Null Algebra Extension II. 

 

 

 

 

 

 

 

 

 

 



 

 

9.3.b.i: 

The given equation we began with, 𝑦 = √𝑥
√𝑥

 

 

 For 𝑥 = −1   𝑦 = 𝑖𝑖 
 

 

The trigonometric substitution provides 

 

 𝑖 = 𝐞𝑖
𝜋

2    𝑖𝑖   →    (𝐞𝑖
𝜋

2)
𝑖

= 𝐞−
𝜋

2 ≈ 0.20788… 

 

9.3.b.ii: 

When i is squared in (𝐞𝑖
𝜋

2)
𝑖

= 𝐞−
𝜋

2 occurs, it still refers to 𝑖2 = −1.  That -1 applies, as detailed 

in Null Algebra Extension II, to the output axis value on the plane of occurrence but also still lies 

on the border between the real-space axis and its corresponding.  Thus we may in fact be dealing 

with 𝑢 = 𝑓(𝑠) equation.  Finding the magnitude of −0.20788 on the 𝑢 = 𝑓(𝑠) equation, we 

know we are referring to the 𝑢 axis when applying the trigonometric substitution. 

 

9.3.b.ii: 

Thus the equations obtained when converting to 𝑢 = 𝑓(𝑥) and 𝑢 = 𝑓(𝑠) must account for the 

squaring of i that occurred with trigonometric expression substitution.  Seeing the output of 

0.20788 does not occur on y and does occur on u confirms this.  Further failing to account for the 

squaring of i will produce the wrong value of the u-axis outputs; the value of -0.20788 is present 

but should be positive.  When we account for this and multiply the u-axis equations by -1 we get 

the correct form of the u-axis equations. 

 

10.0—Re-defining the u-axis equations: 

Now we may re-explore the u-axis equations.  The subspace 𝑢 = 𝑓(𝑠) equation will take positive 

up values for instances of s which generate i-multiples.  Likewise the subspace equation 𝑢 =
𝑓(𝑥) will take the negative down values for instances of x which generate i-multiples. 

 

10.1: 

If we do not account for the squaring of i observed in the trigonometric substitution we would 

assume to use the equations of the form: 

 

 

𝑢 = 𝑓(𝑥) = −
1

√𝑥
√𝑥

  𝑢 = 𝑓(𝑠) = −
1

√−
1

𝑠

√−
1
𝑠

 

 

With caveat that we must multiply the u equations by -1 we obtain their actual form. 

 

 

𝑢 = 𝑓(𝑥) = −
1

√𝑥
√𝑥
⋅ (−1)   =   

1

√𝑥
√𝑥

 



 

 

   

   Can force a graphing utility to graph the full domain as: 

 

   0 ≤ 𝑥 < ∞  𝑢 = 𝑓(𝑥) =
1

√𝑥
√𝑥

 

 

   −∞ < 𝑥 ≤ 0  𝑢 = 𝑓(𝑥) =
1

−√−𝑥
−√−𝑥

= −√−𝑥
√−𝑥

 

 

 

𝑢 = 𝑓(𝑠) = −
1

√−
1
𝑠

√−
1
𝑠

⋅ (−1)   =  
1

√−
1
𝑠

√−
1
𝑠

 

 

 

   Can force a graphing utility to graph the full domain as: 

 

   0 ≤ 𝑠 < ∞  𝑢 = 𝑓(𝑠) =
1

√
1

𝑠

√
1
𝑠

 

 

 

   −∞ < 𝑠 ≤ 0  𝑢 = 𝑓(𝑠) =
1

√−
1

𝑠

√−
1
𝑠

 

 

The following figures show the various graphs of 𝑢 = 𝑓(𝑥) and 𝑢 = 𝑓(𝑠). 
 

 
Figure 10.a shows the positive domain of the graph of 𝑢 = 𝑓(𝑥).  This graph includes the need to multiply the 

function by an additional -1 due to the consideration of the trigonometric substitution 𝑖 = 𝐞𝑖
𝜋

2  in the expression 𝑖𝑖.  
It is otherwise obtained using the standard approach to deriving the 𝑢 = 𝑓(𝑥) equation from the given equation on 
the Central Plane.  It is graphed over the traditionally defined domain for this example 0 ≤ 𝑥 < ∞. 

 



 

 

 
 
Figure 10.b shows the negative extended domain of the graph of 𝑢 = 𝑓(𝑥).  This graph includes the need to 

multiply the function by an additional -1 due to the consideration of the trigonometric substitution 𝑖 = 𝐞𝑖
𝜋

2  in the 

expression 𝑖𝑖.  It is otherwise obtained using the standard approach to deriving the 𝑢 = 𝑓(𝑥) equation from the 
given equation on the Central Plane.  It is graphed over the extended domain for this example −∞ < 𝑥 ≤ 0. 

 

 
Figure 10c shows the full domain and range of the graph of 𝑢 = 𝑓(𝑥).  This graph includes the need to multiply the 

function by an additional -1 due to the consideration of the trigonometric substitution 𝑖 = 𝐞𝑖
𝜋

2  in the expression 𝑖𝑖.  
It is graphed over the full, both the extended and traditional domain, −∞ < 𝑥 < ∞. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Figure 11.a shows the negative domain of the graph of 𝑢 = 𝑓(𝑠).  This graph includes the need to multiply the 

function by an additional -1 due to the consideration of the trigonometric substitution 𝑖 = 𝐞𝑖
𝜋

2  in the expression 𝑖𝑖.  
It is otherwise obtained using the standard approach to deriving the 𝑢 = 𝑓(𝑠) equation from the given equation on 
the Central Plane.  It is graphed over the traditionally defined domain for this example −∞ < 𝑠 ≤ 0. 

 

 

 

 

 
Figure 11.b shows the positive extended domain of the graph of 𝑢 = 𝑓(𝑠).  This graph includes the need to multiply 

the function by an additional -1 due to the consideration of the trigonometric substitution 𝑖 = 𝐞𝑖
𝜋

2  in the expression 

𝑖𝑖.  It is otherwise obtained using the standard approach to deriving the 𝑢 = 𝑓(𝑠) equation from the given equation 
on the Central Plane.  It is graphed over the extended domain for this example 0 ≤ 𝑠 < ∞. 

 

 



 

 

 
Figure 11.c shows the full domain and range of the graph of 𝑢 = 𝑓(𝑠).  This graph includes the need to multiply the 

function by an additional -1 due to the consideration of the trigonometric substitution 𝑖 = 𝐞𝑖
𝜋

2  in the expression 𝑖𝑖.  
It is graphed over the full domain, both the extended and traditional domain, −∞ < 𝑠 < ∞. 
 
 

10.2: 

If we closely examine the graph of Figure 11.c we can see the values for which this subspace 

extension of the original equation does equal 0.20788.  If is shown in Figure 12. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

11.0—A list of all pertinent values: 

When we began the exploration of the expression 𝑖𝑖 as one output value in a function of the form 

𝑦 = √𝑥
√𝑥

 by considering the various output values we obtain, depending on the method for 

resolving the instances of i. 

 

The Null Algebra resolutions provide four possible values for 𝑖𝑖 as denoted in section 3.1.a: 

 

Direct Resolution of 𝑖 Substitution, Then Resolution of 𝑖 
For 𝑦 = 𝑓(𝑥) equation: 

 

 

x-axis: 𝑖𝑖 ≐⊕ 1⊕1 ≐ 1̂1̂ ≐ 1̇1̇ = 1 

 

s-axis:                       ≐ 1̌1̌ ≐ −1−1 = −1 

 

 

 

𝑖𝑖 = (𝐞𝑖
𝜋
2)
𝑖

≐ (𝐞⊕1
𝜋
2)
⊕1

≐ {
(𝐞1̂

𝜋
2)
1̂

≐ 𝐞
𝜋
2

 

𝐞
(⊕1)2

𝜋
2 ≐ 𝐞−

𝜋
2

 

 

  

 

 

The trigonometric substitution only provides for 𝑖𝑖 = 𝐞
−
𝜋

2 = 0.20788. 

 

11.1.a: 

Thus the possible values we should see represented in the full extended subspace graphs of the 

given equation 𝑦 = √𝑥
√𝑥

 must include: 

 

+1   , −1   ,   𝐞
𝜋
2  = 4.81047738   ,   𝐞−

𝜋
2 =  0.20788 

 

On some section of the full extended series of graphs originating from 𝑦 = √𝑥
√𝑥

 include all four 

of these values on some section of those collective graphs. 

 

Thus:  𝑖𝑖 =

{
  
 

  
 

+1
 
−1
 

4.81047738
 

 0.20788

 


