
My new constructive Kannan’s theorem
construction using more standard conventions

Sunny Daniels
e-mail: sdaniels@lycos.com

Abstract :

I appreciate the feedback from Fortnow (the author of [1]) on my recent viXra article [2], and in
particular him supplying me with a definition of the standard polynomial-time universal Turing
machine. In this article I re-work my previous definitions and proofs to put in the circuit size
exponent “k” explicitly (rather than the pseudo-variable “99” in [2]) and use more standard
conventions for the derivation of my construction from the standard polynomial-time universal
Turing machine construction.

Introduction :

I appreciate the feedback from Fortnow (the author of [1]) on my recent viXra article [2], and in
particular him supplying me with a definition of the standard polynomial-time universal Turing
machine. In this article I rework my definitions and proofs from [2] to make them (hopefully)
easier to understand and more in line with the standard construction of the universal polynomial-
time Turing machine supplied by Fortnow in his recent e-mail correspondence with me.

The Standard Polynomial-Time Universal Turing Machine

Fortnow supplied me with the URL [3], in my recent e-mail correspondence with him, for a
“standard” universal-time NP Turing machine. He describes his construction this way:

L = {(<M>,x,1k) | M is a nondeterministic machine and M(x) accepts in k steps}

Here 1k is just a string consisting of exactly k 1s.

In order to avoid potential confusion with our later use of “k” as the exponent for a circuit size
bound, we change “k” to “q” here:

L = {(<M>,x,1q) | M is a nondeterministic machine and M(x) accepts in q steps}

Here 1q is just a string consisting of exactly q 1s.

Here we are simulating a \Sigma_2 machine rather than an NP machine, so we change the
construction to (sorry, I am being sloppy here and using pseudo-LaTeX names like “\Sigma_2”
rather than putting in superscripts and subscripts properly; I am writing this with LibreOffice under
Linux. I am happy to fix this if readers want):

L_2 = {(<M>,x,1q) | M is a \Sigma_2 machine and M(x) accepts in q steps}

Here 1q is just a string consisting of exactly q 1s.

(Again about my sloppy use of L_2 for L subscript 2 rather than doing it properly with the equation
editor).

Here we assume that <M>, the encoding of the control unit of the machine M, is just a string of 1s
and 0s.

Here we are looking at simulating machines like the machine that accepts L_2 with circuits, so we
need to fix an encoding of inputs to L_2 as strings of 1s and 0s. We have five symbols in L_2’s tape
alphabet (if that is the right word for it), so we need at least three bits per symbol in L_2’s tape
alphabet (2^2 is 4, 2^3 is 8). We call this encoding function standard_encoding_of. An example of
a defintion that, if I am not mistaken, would work is:

0 by 000
1 by 001
(by 010
, by 011
) by 100
101 unused
110 unused
111 unused

We will call this point in the definition (***STANDARD ENCODING
DEFINITION***). We will refer back to it later. If any of our
machines using standard_encoding_of find 101, 110 or 111 (the
unused encodings) in their input, they halt and reject immedately.

The Construction Itself:

I agreed with Fortnow, in my recent e-mail discussion, that the
extension of this to my construction (putting the running time
bound input through a polynomial before using it as the running
time bound) would be:

L_3 = {(<M>,x,1^q) | M is a \Sigma^2 machine and M(x) accepts in P(q) steps}

Where P is the polynomial discussed in this context in my earlier
viXra article, which we will define again below.

To make this even clearer, the construction in my earlier ViXra
article re-worked for L_3 would be:

1) The Σ2
P machine in question is a universal alternating Turing

machine that is both time-bounded and alternation-bounded, in a
particular way.

2) An example of an input that it could maybe possibly accept is

the encoding of, using standard_encoding_of defined above:

(001011010001101101,001011101010101,111111)

where:

001011010001101101 is the machine control unit (would probably
have to be a lot longer than this in practice to be able to
compute anything useful)

001011101010101 is the input to the machine.

111111 is the time bound function (P) input in unary notation
(i.e. 6). Again it would probably have to be a lot bigger than 6
in practice to be able to compute anything useful.

3) In general, the machine uses the set of tape symbols {blank, 0,
1} and will certainly reject unless the input is of the form:
standard_encoding_of((<M>,x,1^q))

Where (sorry, this time out of order):

2a) 1^q is a string of 1s for the input to the time bound
polynomial which we will discuss later.

2b) <M> is representation of control unit of tm being simulated,
as 1s and 0s.

x is input to machine being stimulated.

3) The alternation count of the machine being simulated is capped
at 1: existential first then universal. This alternation count is
kept in a variable somewhere on the tape of the simulating
machine. If the simulated machine tries to enter a second
existential state then the simulating machine will halt and
reject. This behaviour of the simulating machine, together with
the polynomial time bound condition below, if I am not mistaken,
ensures that the simulating machine is in Σ2

P .

3) A polynomial time bound P of the simulation (as function of q)
is hard coded into simulating machine, which accepts the language
L_3.

Proof that the Construction Works:

So let any positive integer k be given.

Suppose that our machine L_3 can be simulated by a CCT family C of
size O(n^k).

Then we connect inputs of the appropriate circuit in C as follows,

for any given Σ2 machine N (that is any alternating Turing
machine N that starts off in the existential state and then does
at most one alternation, that alternation if it happens taking N
into the universal state):

a) The first three inputs of the circuit in C are hardwired to
standard_encoding_of(() (standard_encoding_of the (symbol, that
is), i.e. 010 (look back at ***STANDARD_ENCODING_DEFINITION***).

b) Let r be the length (in 0s and 1s BEFORE putting through the
function standard_encoding_of) of <N>, i.e. a representation,
according to the convention that we used in the definition of L_3
above, of the control unit of N. Then we hardwire the following
3r inputs to the circuit in C to standard_encoding_of(<N>).

c) Then we hardwire the following three inputs to the circuit in C
to standard_encoding_of(,), i.e. 011.

d) Then we hardwire the following 3s inputs to the circuit in C to
gadgets of the form:

0 hardwired to input of circuit in C
0 hardwired following input of circuit in C
input to circuit we are constructing hardwired to following

input of circuit in C.

(this agrees with the representation of 0 and 1 in our definition
of standard_encoding_of), where s is the number of inputs to the
circuit that we are constructing. I now realise that I didn’t get
the corresponding construction in [2] right (on page 3): Sorry!
It should have been:

y inputs are hardwired to gadgets of the form:
input to circuit we are constructing hardwired to input

of circuit in C
input to circuit we are constructing also hardwired to

following input of circuit in C
(this agrees with the defintion of encoding_of() in [2]).

e) Then we hardwire the following three inputs to the circuit in C
to standard_encoding_of(,), i.e. 011.

f) Then we hardwire the following 3s inputs to the circuit in C to
standard_encoding_of(1), i.e. 001, repeated s times.

g) Then we hardwire the last three inputs of the circuit in C to
standard_encoding_of()) (standard_encoding_of the) symbol, that
is), i.e. 100.

So, adding together the lengths of the sequences of inputs to the
circuit in C and then taking to the power of k, the resulting
circuit family should be of size big oh of:

(3 + 3r + 3 + 3s + 3 + 3s + 3)^k
(explanation: ((a) + (b) + (c) + (d) + (e) + (f) + (g))^k)

Adding together the four lots of 3 gives:

(12 + 3r + 3s + 3s)^k

Then adding together the two 3s terms gives:

(12 + 3r + 6s)^k

Now, if s (number of inputs to circuit that we are constructing)
is sufficiently large then 6s will be greater that 3r (length of
representation of control unit of Turing machine being simulated)
so we will have (12 + 3r + 6s)^k <= (12 + 2*6s)^k = (12 + 12s)^k.
And if s is sufficently large (>= 1 is sufficient here) then 12s
will be greater than 12, so we will have (12 + 12s)^k <= (24s)^k =
24^k*s^k. And since 24^k is independent of s, the circuit family
that we are constructing is of size big oh of s^k.

We assume P is monotonic (all positive coefficients should be
sufficient to ensure this I think) so polynomial time bound of
simulation should be at least P(s). So simulation should run to
completion (not be terminated early by time bound) provided that P
is big enough to accommodate running time of machine being
stimulated for all possible values of s for the given value of k.
This, in general, will require the coefficients and degree of P to
depend upon k. I appreciate Fortnow implicitly encouraging me to
clarify this with the questions that he asked me in his e-mails
about [2].

So setting P big enough, for the given value of k, to accommodate
the running time of my machine in [1] or Cai and Watanabe's sort-
of equivalent machine for ALL input sizes (not just all
sufficiently large input sizes) should give a circuit family for
my [1] machine or Cai and Watanabe's sort-of equivalent machine.
This contradicts the fact that these machines are constructed in
such a way as to provably not have such a cct family:
contradiction!

Conclusion:

So my construction still works if I change my conventions for the
inputs to my enhancement to the universal Turing machine
construction to the more standard ones, as suggested by Fortnow if
I understand him correctly.

Conjectured Possible Next Step: Replace [2] Constructions Completely

This is on the back burner at the moment (metaphorically speaking,
of course: not literally).

Acknowledgements:

1) I thank Professor Lance Fortnow, currently at Illinois
Institute of Technology I believe, for his ongoing feedback (I
have been corresponding with him about [2] by e-mail since I
published it) on this.

2) I thank Dr Sione Ma’u, of the University of Auckland
Mathematics Department, for his ongoing interest in my complexity
theory research and ongoing logistical support with my
communication about it with Professor Lance Fortnow.

3) I thank Professor Tava Olsen of the Melbourne Business School
(in Australia: www.mbs.edu) for her ongoing interest in my
Complexity Theory research, and her offer to try to read and
understand my Complexity Theory research herself (although I think
that she is not normally a Complexity Theory researcher herself).

References :

[1] https://blog.computationalcomplexity.org/2014/08/sixteen-years-in-making.html

[2] A Constructive Proof of Kannan’s Theorem Based Upon a Much Simpler Construction:
https://vixra.org/abs/2307.0031

[3] https://blog.computationalcomplexity.org/2002/12/foundations-of-complexity-lesson-11-np.html

https://blog.computationalcomplexity.org/2014/08/sixteen-years-in-making.html

