Quasi-perfect numbers have at least 8 prime divisors

Bernd Zemann
2023-08-04

Abstract

Quasi-perfect numbers satisfy the equation $\sigma(N)=2 \cdot N+1$, where σ is the divisor summatory function. By computation, it is shown that no quasi-perfect number has less than 8 prime divisors. For testing purposes, quasi-multiperfect numbers are examined also. The author is not affiliated to any academic institution and does not claim that their work is original. ${ }^{1}$

[^0]
1 Introduction

As of today, it is unknown, whether quasi-perfect numbers exist. In 1982, Hagis and Cohen [9] described an algorithm which was used to prove that no quasiperfect number has less than 7 prime divisors.
By implementing their algorithm on a modern desktop PC, we are able to extend this result: We show that no number N divisible by 3 and $\omega(N)=7$ is quasiperfect. By Theorem 2 of 9 and earlier work of Kishore [11], we conclude:

Theorem 1.1. Let $N \in \mathbb{N}$ with $\omega(N) \leqslant 7$. Then N is not quasi-perfect.
In order to test the software, a more general equation was investigated:

$$
\begin{equation*}
\sigma(N)=k \cdot N+1 \tag{1}
\end{equation*}
$$

where k is an integer usually greater than 2 . The numbers N that satisfy this equation are called quasi-multiperfect, but we also use the term quasi- k-perfect. Only for $3 \leqslant k \leqslant 5$, the computations are accessible by modest means, since for $k>5$, a simple consideration shows that $\omega(N) \geqslant 9$ and the algorithm would take too much time in any case.
In this way, no solutions to 1 were found, but bounds for $\omega(N)$ can be given. There is a special problem with $k=3$, as will be described later.
On the whole, we have following result ${ }^{2}$:
Theorem 1.2. For $2 \leqslant k \leqslant 5$, then $\omega(N)$ is greater or equal to numbers given in the following table 1

k	even	odd
2	n / a	8
3	2	10
4	10	21^{*}
5	9	54^{*}
6	10	141^{*}
7	14^{*}	372^{*}

Table 1: Table of lower bounds for $\omega(N)$ depending on k. The values marked with * come from a simple estimation.

1.1 Notation and Preliminaries

In the following, N always means a natural number, having the factorization

$$
\begin{equation*}
N=\prod_{j=1}^{r} p_{j}^{a_{j}} \tag{2}
\end{equation*}
$$

[^1]where $r \in \mathbb{N}$ and $p_{1}<\ldots<p_{r}$ are primes. Additionally p is always a prime We may also use the following notation : Let $S:=\{\cdot, \beta\}$ be a symbol set. Closely linked to the prime factors p_{j} and exponents a_{j} of N, a vector $\boldsymbol{\lambda}=$ $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\} \in S^{r}$ is defined.

Some common number-theoretic functions are used throughout the text with their usual notation:

- $\sigma(N):=\sigma_{1}(N):=\sum_{d \mid N} d$ is the sum of divisors.
- $\omega(N)$ is the number of primes dividing N.
- $\left(\frac{x}{p}\right)$ with $x \in \mathbb{Z}$ is the Legendre symbol.

In particular, we have,

$$
\begin{equation*}
\sigma\left(p^{j}\right)=\sum_{j=0}^{a} p^{j}=\frac{p^{a+1}-1}{p-1} \tag{3}
\end{equation*}
$$

In addition, we define:

$$
h(N):=\frac{\sigma(N)}{N}
$$

and some variations of this function:
For a prime p, we set

$$
h_{\infty}(p):=\frac{p}{p-1}
$$

If a symbol vector $\boldsymbol{\lambda}$ is assigned to N, we define:

$$
h_{\max }\left(p_{j}^{a_{j}}\right):= \begin{cases}h_{\infty}\left(p_{j}\right) & \text { if } \lambda_{j}=\beta \\ h\left(p_{j}^{a_{j}}\right) & \text { otherwise }\end{cases}
$$

Sometimes, we also use $h_{\text {min }}$ instead of h.

1.2 Technical Details of the Program

The program was written in $\mathrm{C}++(\mathrm{C}++2017$ standard $)$ and makes extensive use of the multi-precision libraries GMP 8 for integer arithmetic and MPFR [13] for multi-precision floating point arithmetic.
To a minor degree NTL [15] by Victor Shoup and a deterministic primality testing algorithm [5] is employed.
As a wrapper for MPFR and GMP as well as for various other purposes, the Boost library [2] is linked.

In the next section, some useful properties of quasi-multiperfect numbers are presented, subsequently, the algorithm and results are described insofar as necessary.
The source code of the associated computer program can be found on GitHub [1].

2 Quasi- k-perfect numbers

In this section, we want to examine some properties of quasi-k-perfect numbers and how the algorithm in [9] can be applied in this case.

In this section, we assume that N is quasi- k-perfect, i.e. satisfies 1 .
As an aside, note that quasi-1-perfect numbers are exactly the primes.

2.1 Feasible Exponents

We begin with a generalization to some properties from (9, [10] and 4]:
Lemma 2.1. If one of the following conditions is satisfied

1. k is even.
2. k is odd and N is even.
, then

$$
N=2^{a} M^{2}
$$

, where M is odd and a can be zero for the first condition. In particular, for $k=2$, we have the familiar result that N is an odd square.

Proof. 1. Let $p^{b} \| N$ with p and b odd. Then

$$
\sigma\left(p^{b}\right)=\sum_{j=0}^{b} p^{j} \equiv(b+1) \equiv 0 \quad \bmod 2
$$

But $\sigma(N)$ is odd.
2. similar

We now seek to generalize the notion of feasible exponents:
Lemma 2.2. Let $N:=2^{a_{1}} N^{\prime}$ be a quasi-k-perfect number, N^{\prime} odd and $p^{a} \| N^{\prime}$. Write $k:=2^{b} \cdot k^{\prime}$, where $b \geqslant 0$ is any integer and k^{\prime} is odd. Let q be a prime divisor of k^{\prime}. Then:

1. We have,

$$
\left(k, \sigma\left(p^{a}\right)\right)=1
$$

2. If $a_{1}+b>0$, and r is a prime dividing $\sigma(N)$ coprime to k^{\prime} then

$$
\begin{equation*}
\left(\frac{-2^{a_{1}} k}{r}\right)=\left(\frac{-2^{a_{1}+b} k^{\prime}}{r}\right)=1 \tag{4}
\end{equation*}
$$

3. If $p \equiv 1 \bmod q$, then $a \not \equiv-1 \bmod q$.
4. If $p \equiv-1 \bmod q$. then a is even.

Proof. 1. Obvious.
2. By 2.1.

$$
k \cdot N=2^{a_{1}+b} k^{\prime} M^{2} \equiv-1 \quad \bmod r
$$

for some integer M. Multiplying by $2^{a_{1}+b} k^{\prime}$ proves the hypothesis.
3. If $a \equiv-1 \bmod q$,

$$
\sigma\left(p^{a}\right) \equiv a+1 \equiv 0 \quad \bmod q
$$

, which is impossible.
4. Assume a is odd:

$$
\sigma\left(p^{a}\right) \equiv \sum_{j=0}^{a}(-1)^{j} \equiv 0 \quad \bmod q
$$

As before this gives a contradiction.

2.2 Constraints

For the algorithm, a lower bound N_{0} for quasi- k-perfect numbers is needed. For $k=2$, we use $N_{0}=10^{20}$.

By a simple SAGE program, we confirmed that for $k \geqslant 2$ there are no numbers

$$
N \leqslant 10^{8}
$$

, s.t.

$$
\sigma(N)= \pm 1
$$

, hence no quasi- k-perfect numbers and in this case $N_{0}=10^{8}$.
Furthermore, by taking into account that

$$
\begin{equation*}
h(N)=\prod_{j=1}^{r} h\left(p_{j}^{a_{j}}\right) \leqslant \prod_{j=1}^{r} h\left(Q_{j}^{\infty}\right)=\prod_{j=1}^{r} \frac{Q_{j}}{Q_{j}-1}=: A_{r} \tag{5}
\end{equation*}
$$

, where Q_{j} is the sequence of primes $2,3, \ldots$, we see that we can ignore the N with

$$
\omega(N)=r
$$

if $A_{r}<k$.
The following table shows the smallest of value of ω, a hypothetical quasi-k-perfect can have according to 5 .

k	even	odd
2	1	3
3	2	8
4	4	21
5	6	54
6	9	141
7	14	372

Table 2: Table of lower bounds for $\omega(N)$ depending on k implied by 5

2.3 The prime bounds

Remember that we only search for quasi- k-perfect numbers N with $\omega(N)=r$ for some fixed r. The basic idea for our algorithm is that you have some number M with $\omega(M)<r$ and want to find a bound for a prime p s.t. $M p^{a}$ can be a divisor of N.
In order to achieve this, we can just reuse - mutatis mutandis - the lemmas below from [9] and earlier work ([10], [14]):

Lemma 2.3. (Jerrard and Temperley, [10]) Let $q:=p_{r-1}$ and $p:=p_{r}$, hence $q<p$. and $N=M p^{a_{r-1}} q^{a_{r}}$. Moreover, write $F(N):=k \cdot N-\sigma(N)$. Then

$$
\frac{k N}{F(N)}-\frac{1}{q}<p<\frac{k N}{F(N)}
$$

From this Lemma 2 in [9] is derived, of which we use a modified version to compute bounds for the biggest prime factor p_{r} :

Lemma 2.4. (Hagis and Cohen, [9]) Let F, E and U are defined as in [9],

$$
\begin{gathered}
R:=\frac{k}{k-F} \\
L:=R-\frac{k F U(k-F+F U)}{k-F}
\end{gathered}
$$

, then

$$
\begin{equation*}
L-\left(L-(q+k)^{-1}\right)^{-1} \leqslant p<R \tag{6}
\end{equation*}
$$

The bounds for smaller prime factors p_{j} with $2 \leqslant j<r$ come from Lemma 1 in 9]:

Lemma 2.5. (Hagis and Cohen, [9], somewhat modified) Let s be an index with $1 \leqslant s \leqslant r-2, M:=\prod_{j=1}^{s} p_{j}^{a_{j}}$ and $\boldsymbol{\lambda} \in S^{s}$ a symbol vector. Let $B:=\frac{k}{h_{\min (M)}}$ and $D:=\frac{h_{\max }(M)}{k}$. Then

$$
\begin{equation*}
p_{s+1}>\frac{\sqrt{4 B-3}+1}{2(B-1)} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{s+1}>\frac{1}{1-D^{\frac{1}{t}}} \tag{8}
\end{equation*}
$$

, where $t:=r-s$.

2.4 Special k

For $k=4$, we have
Theorem 2.6. If N is quasi-4-perfect, then

$$
N=2^{a} M^{2}
$$

, where $a \in\{0,1\}$ and M is odd
Proof. By 2.1. it suffices to disprove $a>1$. We show that in this case,

$$
\left(\frac{-2^{a} k}{r}\right)=\left(\frac{-2^{a}}{r}\right)=-1
$$

for some divisor r of $\sigma(N)$.
If a is odd, since $\sigma\left(2^{a}\right) \equiv-1 \bmod 8$, there must be some $r \mid \sigma(N)$ with $r \equiv 5,7$ $\bmod 8$, hence

$$
\left(\frac{-2^{a}}{r}\right)=\left(\frac{-1}{r}\right)=-1
$$

If a is even, since there must be r with $r \equiv 3 \bmod 4$, we have

$$
\left(\frac{-2^{a}}{r}\right)=\left(\frac{-1}{r}\right)=-1
$$

3 Description of the Algorithm

Based on the assertions of the previous section, a computer program was implemented and executed. As mentioned earlier, the algorithm is described in [9]:

3.1 Table of Feasible Exponents

By the explanation in 9 for $k=2$ and 2.1 for $k>2$, only certain exponents (which are called feasible) of some prime can be quasi- k-perfect.

In order to create a table of feasible exponents for the parameter k in question, the prime factorization of $\sigma\left(p^{a}\right)$ is needed. Taking 3 into account, the following factorization tables for $p^{a}-1$ were used:

- The Cunningham project [6], if $p \leqslant 11$, see also [3]
- An updated version of the factor table of Richard P. Brent, maintained by a different author [7], for $11<p<10000 .{ }^{3}$

Since [7] contains only prime factors up-to 10^{9}, smaller factors had to be found by trial division. Afterwards for every prime $p<10000$ a list of feasible exponents a was created with the condition $p^{a}<10^{20}$.

3.2 Iteration

Now, we give a description of the main part of the program: for this purpose, it suffices to confine ourselves to the situation of Thm. $1.1(k=2$ and $r=7)$:

- Fix $p_{1}=3$.
- Iteration according to the following scheme:
- If $j<r-1$ and the iteration is at the prime factors p_{1}, \ldots, p_{j} with exponents a_{1}, \ldots, a_{j} and some vector λ, then p_{j+1} is the smallest prime satisfying 7 and a_{j+1} is the smallest feasible exponent.
- Set $j \rightarrow j+1$
- The prime p_{j} is generated by iterating over an interval with bounds dependent on the prime components $p_{k}^{a_{k}}$ with $1 \leqslant k<j$ by using 7 and 8 for $j<r$ and 6 for $j=r$. The exponent a_{j} is iterated over all feasible exponents and then β_{j}. Concerning the aforementioned vector λ, we define $\lambda_{j}=\beta$ iff $a_{j}=\beta_{j}$.

[^2]- If we find p_{r} in the previous step, we have a set of candidates for a quasiperfect number:

$$
N=\prod_{l=1}^{r} p_{l}^{c_{l}}
$$

where $c_{l}=a_{l}$ if $\lambda_{l}=\cdot$ and c_{l} ranges over all integers $\geqslant \beta_{l}$ if $\lambda_{l}=\beta$. In addition, c_{r} ranges over all integers.
These candidates are then checked, if any of them is quasi-perfect.

- In two cases for $k=2$, the previous step was inconclusive and it was confirmed with SAGE that none of the concerning candidates were quasiperfect (see A).

4 Results

A quick search with SAGE showed that there is no solution of

$$
\sigma(N)=k \cdot N \pm 1
$$

for $N \leqslant 10^{8}$ and any $k \geqslant 2$.

$4.1 \quad k=2$

For $k=2$, quasi-perfect numbers N with $\omega(N)=7$ were searched for, and it was established that none exist.
Moreover, we have the following running times (for $4 \leqslant \omega(N) \leqslant 6$ measured on 2022-02-20):

	length $/ \omega(N)$	time
	4	0.00950 secs
	5	0.168 secs
	6	20.5 secs
	7	$1.15 \cdot 10^{6}$ secs

The time for $\omega(N)=6$ translates to around 13 days. A (very rough) extrapolation for $\omega(N)=8$ gives a running time of at least 2000 years.

$4.2 \quad k>24$

It turned that - taking into account the limited computing power available to the author - we are restricted to $\omega(N) \leqslant 7$. Hence by 2.2 , the following calculations were done.

4.2.1 $k=3$

This case has a peculiarity, since

$$
h_{\infty}(2) \cdot h_{\infty}(3)=3
$$

and our bounding method doesn't work properly if $6 \mid N$, because we cannot exclude any prime p_{3} - however big - dividing N, even if we choose -say $\omega(N)=3$.
For odd N, we could check that $\omega(N) \geqslant 10$ and improve the bound from table 2.2

4.2.2 $k=4$

Search for even quasi-4-perfect numbers N : None were found with

$$
\omega(N) \leqslant 9
$$

[^3]
A Special cases

This section contains the SAGE notebook that is used to deal with the cases that could not be handled by the software.

quasiperfect_special

December 9, 2022

1 Exponents for special vectors

Here we disprove the existence of quasi-perfect numbers in the two remaining cases: the prime factorizations are given as lists.

File: 132 [08:51:24] - QuasiPerfect::calculate(): bounds are satisfied: 4300 at iteration 29477
\# [08:51:24] - prvec: [(3,44b),(5,22),(17,18b),(257,10b),(66161,4b),(10356029,2b),(21015221,2b)]
File: 146 [09:00:39] - QuasiPerfect::calculate(): bounds are satisfied: 4575 at iteration 31131
[09:00:39] - prvec: [(3,44b),(5,30b),(17,18b),(263,10b),(9601,6b),(7505611,4b),(13084021,4b)]
[]: We need the following functions:
[1]: def h(n):
return sigma(n)/n
def $\operatorname{hinf}(p):$
return $p /(p-1)$
def h_lst(flst):
result = 1
for p, \exp in flst: if $\exp ==$ 'inf':
result *= $\operatorname{hinf}(\mathrm{p})$
else:
result *= h (p^exp)
return result
def getlstValue(flst):
result = 1
for p, \exp in flst:
result *= p^exp
return result

1st case: prime vector: $[(3,44 b),(5,22),(17,18 b),(257,10 b),(66161,4 b),(10356029,2 b),(21015221,2 b)]$ We check that for $\mathrm{p} 1=3$ the exponent a $=44$ cannot occur, since $\mathrm{h}(\mathrm{N})$ is always smaller than 2 .
[2]:

```
flst1 = [(3,44),(5,22),(17,18),(257,10),(66161,4),(10356029,2),(21015221,2)]
flst2 =
    ム[(3,44),(5,22),(17,'inf'),(257,'inf') (r3(66161,'inf'),(10356029,'inf'),(21015221,'inf')]
print(flst1)
```

```
print(flst2)
print ("h(flst1) < 2 ?", h_lst(flst1) < 2)
print ("h(flst2) < 2 ?", h_lst(flst2) < 2)
```

$[(3,44),(5,22),(17,18),(257,10),(66161,4),(10356029,2),(21015221$, 2)]
[(3, 44), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029, 'inf'),
(21015221, 'inf')]
h(flst1) < 2 ? True
h(flst2) < 2 ? True
hence we take a1 $>=52$ (52 being the next feasible exponent for 3)
Similarly for a6 $=2$:
[3]:

```
flst3 = [(3,52), (5,22),(17,18),(257,10),(66161,4),(10356029,2),(21015221,2)]
flst4 =
    \hookrightarrow[(3,'inf'), (5, 22), (17,'inf'),(257,'inf'),(66161,'inf'),(10356029,2), (21015221,'inf')]
print(flst3)
print(flst4)
print ("h(flst3) < 2 ?", h_lst(flst3) < 2)
print ("h(flst4) < 2 ?", h_lst(flst4) < 2)
```

$[(3,52),(5,22),(17,18),(257,10),(66161,4),(10356029,2),(21015221$,
2)]
[(3, 'inf'), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029, 2),
(21015221, 'inf')]
h(flst3) < 2 ? True
h(flst4) < 2 ? True
hence we take $\mathrm{a} 6>=4$. Finally, we test $\mathrm{a} 7=2$:
[51]:

```
flst5 = [(3,52),(5,22),(17,18),(257,10),(66161,4),(10356029,4),(21015221,2)]
flst6 =
    \hookrightarrow[(3,'inf'),(5,22),(17,'inf'),(257,'inf'),(66161,'inf'),(10356029,'inf'),(21015221,2)]
print(flst5)
print(flst6)
print ("h(flst5) < 2 ?", h_lst(flst5) < 2)
print ("h(flst6) < 2 ?", h_lst(flst6) < 2)
```

$[(3,52),(5,22),(17,18),(257,10),(66161,4),(10356029,4),(21015221$, 2)]
[(3, 'inf'), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029,
'inf'), (21015221, 2)]
h(flst5) < 2 ? True
$h(f 1$ st6) <2 ? True
hence we take a7 $>=4$
[60]:

```
flst7 = [(3,52),(5,22),(17,18),(257,10),(66161,4),(10356029,4),(21015221,4)]
```

```
flst8 =
    \hookrightarrow[(3,'inf'), (5,22), (17,'inf'), (257,'inf'), (66161,'inf'), (10356029,'inf'),(21015221,4)]
print(flst7)
print(flst8)
print ("h(flst7) > 2 ?", h_lst(flst7) > 2)
print ("h(flst8) > 2 ?", h_lst(flst8) > 2)
N= getlstValue(flst7)
print (sigma(N) - 2*N)
```

$[(3,52),(5,22),(17,18),(257,10),(66161,4),(10356029,4),(21015221$,
4)]
[(3, 'inf'), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029,
'inf'), (21015221, 4)]
$h(f l s t 7)>2$? True
h(flst8) > 2 ? True
86038325313669030149677388089554843672344002058989882359597212506993610995378417
8225818681010227945718001544174356098003431857262215271594725

In the last step, we have shown that $\mathrm{h}(\mathrm{N})>2$ if $\mathrm{a} 7>=4$ and that the smallest of these values isn't qp. Therefore there are no qp numbers with the given prime factors!

2nd case: prime vector: $[(3,44 b),(5,30 b),(17,18 b),(263,10 b),(9601,6 b),(7505611,4 b),(13084021,4 b)]$ As in the 1st case, a1 $=44$ is not possible:
[65]:

```
flst1 = [(3,44),(5,30),(17,18),(263,10),(9601,6),(7505611,4),(13084021,4)]
flst2 = ப
    \hookrightarrow[(3,44), (5,'inf'), (17,'inf'),(263,'inf'),(9601,'inf'),(7505611,'inf'),(13084021,'inf')]
print(flst1)
print(flst2)
print ("h(flst1) < 2 ?", h_lst(flst1) < 2)
print ("h(flst2) < 2 ?", h_lst(flst2) < 2)
```

$[(3,44),(5,30),(17,18),(263,10),(9601,6),(7505611,4),(13084021,4)]$
[(3, 44), (5, 'inf'), (17, 'inf'), (263, 'inf'), (9601, 'inf'), (7505611,
'inf'), (13084021, 'inf')]
$h(f l s t 1)<2$? True
$h(f l s t 2)<2$? True
hence a $1>=52$. But now we can show that the smallest possible value for $h(N)$ is greater than 2 .
[6]:

```
flst3 = [(3,52), (5,30), (17, 18), (263,10),(9601,6),(7505611,4),(13084021,4)]
print(flst3)
print ("h(flst3) > 2 ?", h_lst(flst3) > 2)
```

$[(3,52),(5,30),(17,18),(263,10),(9601,6),(7505611,4),(13084021,4)]$ $h(f l s t 3)>2$? True

Also the corresponding number fist3 is not qp:
[68]:

```
N= getlstValue(flst3)
print (sigma(N) - 2*N)
```

35594511883585858678825834554203011975967913283688988938878828986083391125190951 5942894120569993932548085856712302837030851976962781892542221129038425
and so we have shown that there are no qp numbers in this case!

References

[1] Author - Github Page. https://github.com/sikefield3/quasiperfect. Accessed: 2023-04-10.
[2] Boost. https://www.boost.org. Accessed: 2021-12-28.
[3] John Brillhart et al. Factorizations of $B N \pm$ 1: $B=$ 2, 3, 5, 6, 7, 10, 11, 12 up to high powers. American Mathematical Society, 1988.
[4] Paolo Cattaneo. Sui numeri quasiperfetti. Boll. Unione Mat. Ital., III. Ser., 6:59-62, 1951.
[5] David Cleaver. MPZ APRCL. https://sourceforge.net/projects/ mpzaprcl/. Accessed: 2021-12-28.
[6] Cunningham Project. The third edition of the Cunningham book. https: //homes.cerias.purdue.edu/~ssw/cun/third/index.html. Accessed: 2022-09-09.
[7] Factor collection. https://web.archive.org/web/20210212010716/ myfactorcollection.mooo.com:8090/original.html. Accessed: 2021-09-09.
[8] GMP. Gnu multiple precision arithmetic library (gmp). https://gmplib. org/. Accessed: 2021-12-28.
[9] Peter Hagis and Graeme L. Cohen. Some results concerning quasiperfect numbers. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 33(2):275-286, 1982.
[10] R. P. Jerrard and Nicholas Temperley. Almost perfect numbers. Mathematics Magazine, 46(2):84-87, 1973.
[11] Masao Kishore. Odd integers n with five distinct prime factors for which $2-10^{-12}<\sigma(n) / n<2+10^{-12}$. Mathematics of Computation, 32(141):303s12, 1978.
[12] Meng Li and Min Tang. On the congruence $\sigma(\mathrm{n}) \equiv 1 \bmod \mathrm{n}$, II. Journal of Mathematical Research with Applications, 34(2):155-160, 2014.
[13] MPFR. Gnu multiple precision floating-point reliable library (GNU MPFR). https://www.mpfr.org/. Accessed: 2021-12-28.
[14] Carl Pomerance. Odd perfect numbers are divisible by at least seven distinct primes. Acta Arithmetica, 25(3):265-300, 1974.
[15] Victor Shoup. NTL: A library for doing number theory. https://libntl. org/. Accessed: 2021-12-28.
[16] Min Tang and Meng Li. On the congruence $\sigma(\mathrm{n}) \equiv 1 \bmod \mathrm{n}$. Journal of Mathematical Research with Applications, 32(6):673-676, 2012.

[^0]: ${ }^{1}$ The author can be contacted by email (zb4ng@arcor.de) or their GitHub page [1]

[^1]: ${ }^{2}$ For additional results for quasi-multiperfect numbers refer to 16 and 12

[^2]: ${ }^{3}$ The original website was unavailable at the time, when this text was written.

[^3]: ${ }^{4}$ Some of these results were already described by the authors Meng Li and Min Tang in [16] and 12 .

