
Quasi-perfect numbers have at least 8 prime

divisors

Bernd Zemann

2023–08–04

1

Abstract

Quasi-perfect numbers satisfy the equation σpNq � 2 �N � 1, where σ
is the divisor summatory function. By computation, it is shown that no
quasi-perfect number has less than 8 prime divisors. For testing purposes,
quasi-multiperfect numbers are examined also.
The author is not affiliated to any academic institution and does not claim
that their work is original. 1.

1The author can be contacted by email (zb4ng@arcor.de) or their GitHub page [1]

2

mailto: zb4ng@arcor.de

1 Introduction

As of today, it is unknown, whether quasi-perfect numbers exist. In 1982, Hagis
and Cohen [9] described an algorithm which was used to prove that no quasi-
perfect number has less than 7 prime divisors.
By implementing their algorithm on a modern desktop PC, we are able to extend
this result: We show that no number N divisible by 3 and ωpNq � 7 is quasi-
perfect. By Theorem 2 of [9] and earlier work of Kishore [11], we conclude:

Theorem 1.1. Let N P N with ωpNq ¤ 7. Then N is not quasi-perfect.

In order to test the software, a more general equation was investigated:

σpNq � k �N � 1 (1)

where k is an integer usually greater than 2. The numbers N that satisfy this
equation are called quasi-multiperfect, but we also use the term quasi-k-perfect.
Only for 3 ¤ k ¤ 5, the computations are accessible by modest means, since for
k ¡ 5, a simple consideration shows that ωpNq ¥ 9 and the algorithm would
take too much time in any case.
In this way, no solutions to 1 were found, but bounds for ωpNq can be given.
There is a special problem with k � 3, as will be described later.
On the whole, we have following result 2 :

Theorem 1.2. For 2 ¤ k ¤ 5, then ωpNq is greater or equal to numbers given
in the following table 1

k even odd
2 n{a 8
3 2 10
4 10 21�

5 9 54�

6 10 141�

7 14� 372�

Table 1: Table of lower bounds for ωpNq depending on k. The values marked
with � come from a simple estimation.

1.1 Notation and Preliminaries

In the following, N always means a natural number, having the factorization

N �
r¹

j�1

p
aj

j (2)

2For additional results for quasi-multiperfect numbers refer to [16] and [12]

3

where r P N and p1 . . . pr are primes. Additionally p is always a prime
We may also use the following notation : Let S :� t�, βu be a symbol set.
Closely linked to the prime factors pj and exponents aj of N , a vector λ �
tλ1, . . . , λru P Sr is defined.

Some common number-theoretic functions are used throughout the text with
their usual notation:

• σpNq :� σ1pNq :� °d�N d is the sum of divisors.

• ωpNq is the number of primes dividing N .

•
�

x
p

	
with x P Z is the Legendre symbol.

In particular, we have,

σppjq �
a̧

j�0

pj � pa�1 � 1

p� 1
(3)

In addition, we define:

hpNq :� σpNq
N

and some variations of this function:
For a prime p, we set

h8ppq :� p

p� 1

If a symbol vector λ is assigned to N , we define:

hmax

�
p
aj

j

�
:�
#
h8 ppjq if λj � β

h
�
p
aj

j

�
otherwise

Sometimes, we also use hmin instead of h.

1.2 Technical Details of the Program

The program was written in C++ (C++2017 standard) and makes extensive
use of the multi-precision libraries GMP [8] for integer arithmetic and MPFR
[13] for multi-precision floating point arithmetic.
To a minor degree NTL [15] by Victor Shoup and a deterministic primality test-
ing algorithm [5] is employed.
As a wrapper for MPFR and GMP as well as for various other purposes, the
Boost library [2] is linked.

In the next section, some useful properties of quasi-multiperfect numbers
are presented, subsequently, the algorithm and results are described insofar as
necessary.
The source code of the associated computer program can be found on GitHub
[1].

4

2 Quasi-k-perfect numbers

In this section, we want to examine some properties of quasi-k-perfect numbers
and how the algorithm in [9] can be applied in this case.

In this section, we assume that N is quasi-k-perfect, i.e. satisfies 1.

As an aside, note that quasi-1-perfect numbers are exactly the primes.

2.1 Feasible Exponents

We begin with a generalization to some properties from [9], [10] and [4]:

Lemma 2.1. If one of the following conditions is satisfied

1. k is even.

2. k is odd and N is even.

, then
N � 2aM2

, where M is odd and a can be zero for the first condition. In particular, for
k � 2, we have the familiar result that N is an odd square.

Proof. 1. Let pb ‖ N with p and b odd. Then

σppbq �
b̧

j�0

pj � pb� 1q � 0 mod 2

But σpNq is odd.

2. similar

We now seek to generalize the notion of feasible exponents:

Lemma 2.2. Let N :� 2a1N 1 be a quasi-k-perfect number, N 1 odd and pa ‖ N 1.
Write k :� 2b � k1, where b ¥ 0 is any integer and k1 is odd. Let q be a prime
divisor of k1. Then:

1. We have,
pk, σppaqq � 1

2. If a1 � b ¡ 0, and r is a prime dividing σpNq coprime to k1 then��2a1k

r

�
��2a1�bk1

r

� 1 (4)

5

3. If p � 1 mod q, then a � �1 mod q.

4. If p � �1 mod q. then a is even.

Proof. 1. Obvious.

2. By 2.1,
k �N � 2a1�bk1M2 � �1 mod r

for some integer M . Multiplying by 2a1�bk1 proves the hypothesis.

3. If a � �1 mod q,
σppaq � a� 1 � 0 mod q

, which is impossible.

4. Assume a is odd:

σppaq �
a̧

j�0

p�1qj � 0 mod q

As before this gives a contradiction.

2.2 Constraints

For the algorithm, a lower bound N0 for quasi-k-perfect numbers is needed. For
k � 2, we use N0 � 1020.

By a simple SAGE program, we confirmed that for k ¥ 2 there are no
numbers

N ¤ 108

, s.t.
σpNq � �1

, hence no quasi-k-perfect numbers and in this case N0 � 108.
Furthermore, by taking into account that

hpNq �
r¹

j�1

h
�
p
aj

j

� ¤ r¹
j�1

h
�
Q8

j

� � r¹
j�1

Qj

Qj � 1
�: Ar (5)

, where Qj is the sequence of primes 2, 3, , . . ., we see that we can ignore the N
with

ωpNq � r

if Ar k.

The following table shows the smallest of value of ω , a hypothetical quasi-
k-perfect can have according to 5:

6

k even odd
2 1 3
3 2 8
4 4 21
5 6 54
6 9 141
7 14 372

Table 2: Table of lower bounds for ωpNq depending on k implied by 5

2.3 The prime bounds

Remember that we only search for quasi-k-perfect numbers N with ωpNq � r
for some fixed r. The basic idea for our algorithm is that you have some number
M with ωpMq r and want to find a bound for a prime p s.t. Mpa can be a
divisor of N .
In order to achieve this, we can just reuse - mutatis mutandis - the lemmas
below from [9] and earlier work ([10] , [14]):

Lemma 2.3. (Jerrard and Temperley, [10]) Let q :� pr�1 and p :� pr ,hence
q p. and N �Mpar�1qar . Moreover, write F pNq :� k �N � σpNq. Then

kN

F pNq �
1

q
 p kN

F pNq
From this Lemma 2 in [9] is derived, of which we use a modified version to

compute bounds for the biggest prime factor pr:

Lemma 2.4. (Hagis and Cohen , [9]) Let F , E and U are defined as in [9],

R :� k

k � F

L :� R� kFU pk � F � FUq
k � F

, then
L� pL� pq � kq�1q�1 ¤ p R (6)

The bounds for smaller prime factors pj with 2 ¤ j r come from Lemma
1 in [9]:

Lemma 2.5. (Hagis and Cohen , [9], somewhat modified) Let s be an index with
1 ¤ s ¤ r � 2, M :� ±s

j�1 p
aj

j and λ P Ss a symbol vector. Let B :� k
hminpMq

and D :� hmaxpMq
k . Then

ps�1 ¡
?

4B � 3� 1

2 pB � 1q (7)

7

and

ps�1 ¡ 1

1�D
1
t

(8)

, where t :� r � s.

2.4 Special k

For k � 4, we have

Theorem 2.6. If N is quasi-4-perfect, then

N � 2aM2

, where a P t0, 1u and M is odd

Proof. By 2.1, it suffices to disprove a ¡ 1. We show that in this case,��2ak

r

�
��2a

r

� �1

for some divisor r of σpNq.
If a is odd, since σp2aq � �1 mod 8, there must be some r � σpNq with r � 5, 7
mod 8, hence ��2a

r

�
��1

r

� �1

If a is even, since there must be r with r � 3 mod 4, we have��2a

r

�
��1

r

� �1

8

3 Description of the Algorithm

Based on the assertions of the previous section, a computer program was im-
plemented and executed. As mentioned earlier, the algorithm is described in [9]:

3.1 Table of Feasible Exponents

By the explanation in [9] for k � 2 and 2.1 for k ¡ 2, only certain exponents
(which are called feasible) of some prime can be quasi-k-perfect.

In order to create a table of feasible exponents for the parameter k in ques-
tion, the prime factorization of σppaq is needed. Taking 3 into account, the
following factorization tables for pa � 1 were used:

• The Cunningham project [6], if p ¤ 11, see also [3]

• An updated version of the factor table of Richard P. Brent, maintained
by a different author [7] , for 11 p 10000. 3

Since [7] contains only prime factors up-to 109, smaller factors had to be found
by trial division. Afterwards for every prime p 10000 a list of feasible expo-
nents a was created with the condition pa 1020.

3.2 Iteration

Now, we give a description of the main part of the program: for this purpose,
it suffices to confine ourselves to the situation of Thm. 1.1 (k � 2 and r � 7):

• Fix p1 � 3.

• Iteration according to the following scheme:

– If j r � 1 and the iteration is at the prime factors p1, . . . , pj with
exponents a1, . . . , aj and some vector λ, then pj�1 is the smallest
prime satisfying 7 and aj�1 is the smallest feasible exponent.

– Set j Ñ j � 1

–

• The prime pj is generated by iterating over an interval with bounds de-
pendent on the prime components pak

k with 1 ¤ k j by using 7 and 8
for j r and 6 for j � r. The exponent aj is iterated over all feasible ex-
ponents and then βj . Concerning the aforementioned vector λ, we define
λj � β iff aj � βj .

3The original website was unavailable at the time, when this text was written.

9

• If we find pr in the previous step, we have a set of candidates for a quasi-
perfect number:

N �
r¹

l�1

pcll

where cl � al if λl � � and cl ranges over all integers ¥ βl if λl � β. In
addition, cr ranges over all integers.
These candidates are then checked, if any of them is quasi-perfect.

• In two cases for k � 2, the previous step was inconclusive and it was
confirmed with SAGE that none of the concerning candidates were quasi-
perfect (see A).

10

4 Results

A quick search with SAGE showed that there is no solution of

σpNq � k �N � 1

for N ¤ 108 and any k ¥ 2.

4.1 k � 2

For k � 2, quasi-perfect numbers N with ωpNq � 7 were searched for, and it
was established that none exist.
Moreover, we have the following running times (for 4 ¤ ωpNq ¤ 6 measured on
2022-02-20):

length/ωpNq time
4 0.00950 secs
5 0.168 secs
6 20.5 secs
7 1.15 � 106 secs

The time for ωpNq � 6 translates to around 13 days. A (very rough) extrapo-
lation for ωpNq � 8 gives a running time of at least 2000 years.

4.2 k ¡ 2 4

It turned that - taking into account the limited computing power available to the
author - we are restricted to ωpNq ¤ 7. Hence by 2.2, the following calculations
were done.

4.2.1 k � 3

This case has a peculiarity, since

h8p2q � h8p3q � 3

and our bounding method doesn’t work properly if 6 � N , because we cannot
exclude any prime p3 - however big - dividing N , even if we choose -say -
ωpNq � 3.
For odd N , we could check that ωpNq ¥ 10 and improve the bound from table
2.2.

4.2.2 k � 4

Search for even quasi-4-perfect numbers N : None were found with

ωpNq ¤ 9

4Some of these results were already described by the authors Meng Li and Min Tang in
[16] and [12].

11

A Special cases

This section contains the SAGE notebook that is used to deal with the cases
that could not be handled by the software.

12

quasiperfect_special

December 9, 2022

1 Exponents for special vectors
Here we disprove the existence of quasi-perfect numbers in the two remaining cases: the prime
factorizations are given as lists.

File: 132 [08:51:24] - QuasiPerfect::calculate(): bounds are satisfied: 4300 at iteration 29477

#[08:51:24] - prvec: [(3,44b),(5,22),(17,18b),(257,10b),(66161,4b),(10356029,2b),(21015221,2b)]

File: 146 [09:00:39] - QuasiPerfect::calculate(): bounds are satisfied: 4575 at iteration 31131

[09:00:39] - prvec: [(3,44b),(5,30b),(17,18b),(263,10b),(9601,6b),(7505611,4b),(13084021,4b)]

[]: We need the following functions:

[1]: def h(n):
return sigma(n)/n

def hinf(p):
return p/(p-1)

def h_lst(flst):
result = 1
for p,exp in flst:

if exp == 'inf':
result *= hinf(p)

else:
result *= h(p^exp)

return result
def getlstValue(flst):

result = 1
for p,exp in flst:

result *= p^exp
return result

1st case: prime vector: [(3,44b),(5,22),(17,18b),(257,10b),(66161,4b),(10356029,2b),(21015221,2b)]
We check that for p1 = 3 the exponent a1 = 44 cannot occur, since h(N) is always smaller than 2.

[2]: flst1 = [(3,44),(5,22),(17,18),(257,10),(66161,4),(10356029,2),(21015221,2)]
flst2 =␣

↪[(3,44),(5,22),(17,'inf'),(257,'inf'),(66161,'inf'),(10356029,'inf'),(21015221,'inf')]
print(flst1)

1

13

print(flst2)
print ("h(flst1) < 2 ?", h_lst(flst1) < 2)
print ("h(flst2) < 2 ?", h_lst(flst2) < 2)

[(3, 44), (5, 22), (17, 18), (257, 10), (66161, 4), (10356029, 2), (21015221,
2)]
[(3, 44), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029, 'inf'),
(21015221, 'inf')]
h(flst1) < 2 ? True
h(flst2) < 2 ? True

hence we take a1 >= 52 (52 being the next feasible exponent for 3)
Similarly for a6 = 2:

[3]: flst3 = [(3,52),(5,22),(17,18),(257,10),(66161,4),(10356029,2),(21015221,2)]
flst4 =␣

↪[(3,'inf'),(5,22),(17,'inf'),(257,'inf'),(66161,'inf'),(10356029,2),(21015221,'inf')]
print(flst3)
print(flst4)
print ("h(flst3) < 2 ?", h_lst(flst3) < 2)
print ("h(flst4) < 2 ?", h_lst(flst4) < 2)

[(3, 52), (5, 22), (17, 18), (257, 10), (66161, 4), (10356029, 2), (21015221,
2)]
[(3, 'inf'), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029, 2),
(21015221, 'inf')]
h(flst3) < 2 ? True
h(flst4) < 2 ? True

hence we take a6 >= 4. Finally, we test a7 = 2:

[51]: flst5 = [(3,52),(5,22),(17,18),(257,10),(66161,4),(10356029,4),(21015221,2)]
flst6 =␣

↪[(3,'inf'),(5,22),(17,'inf'),(257,'inf'),(66161,'inf'),(10356029,'inf'),(21015221,2)]
print(flst5)
print(flst6)
print ("h(flst5) < 2 ?", h_lst(flst5) < 2)
print ("h(flst6) < 2 ?", h_lst(flst6) < 2)

[(3, 52), (5, 22), (17, 18), (257, 10), (66161, 4), (10356029, 4), (21015221,
2)]
[(3, 'inf'), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029,
'inf'), (21015221, 2)]
h(flst5) < 2 ? True
h(flst6) < 2 ? True

hence we take a7 >= 4

[60]: flst7 = [(3,52),(5,22),(17,18),(257,10),(66161,4),(10356029,4),(21015221,4)]

2

14

flst8 =␣
↪[(3,'inf'),(5,22),(17,'inf'),(257,'inf'),(66161,'inf'),(10356029,'inf'),(21015221,4)]

print(flst7)
print(flst8)
print ("h(flst7) > 2 ?", h_lst(flst7) > 2)
print ("h(flst8) > 2 ?", h_lst(flst8) > 2)
N= getlstValue(flst7)
print (sigma(N) - 2*N)

[(3, 52), (5, 22), (17, 18), (257, 10), (66161, 4), (10356029, 4), (21015221,
4)]
[(3, 'inf'), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029,
'inf'), (21015221, 4)]
h(flst7) > 2 ? True
h(flst8) > 2 ? True
86038325313669030149677388089554843672344002058989882359597212506993610995378417
8225818681010227945718001544174356098003431857262215271594725

In the last step, we have shown that h(N)>2 if a7 >= 4 and that the smallest of these values isn’t
qp. Therefore there are no qp numbers with the given prime factors!

2nd case: prime vector: [(3,44b),(5,30b),(17,18b),(263,10b),(9601,6b),(7505611,4b),(13084021,4b)]
As in the 1st case, a1 = 44 is not possible:

[65]: flst1 = [(3,44),(5,30),(17,18),(263,10),(9601,6),(7505611,4),(13084021,4)]
flst2 =␣

↪[(3,44),(5,'inf'),(17,'inf'),(263,'inf'),(9601,'inf'),(7505611,'inf'),(13084021,'inf')]
print(flst1)
print(flst2)
print ("h(flst1) < 2 ?", h_lst(flst1) < 2)
print ("h(flst2) < 2 ?", h_lst(flst2) < 2)

[(3, 44), (5, 30), (17, 18), (263, 10), (9601, 6), (7505611, 4), (13084021, 4)]
[(3, 44), (5, 'inf'), (17, 'inf'), (263, 'inf'), (9601, 'inf'), (7505611,
'inf'), (13084021, 'inf')]
h(flst1) < 2 ? True
h(flst2) < 2 ? True

hence a1 >= 52. But now we can show that the smallest possible value for h(N) is greater than 2.

[6]: flst3 = [(3,52),(5,30),(17,18),(263,10),(9601,6),(7505611,4),(13084021,4)]
print(flst3)
print ("h(flst3) > 2 ?", h_lst(flst3) > 2)

[(3, 52), (5, 30), (17, 18), (263, 10), (9601, 6), (7505611, 4), (13084021, 4)]
h(flst3) > 2 ? True

Also the corresponding number flst3 is not qp:

3

15

[68]: N= getlstValue(flst3)
print (sigma(N) - 2*N)

35594511883585858678825834554203011975967913283688988938878828986083391125190951
5942894120569993932548085856712302837030851976962781892542221129038425

and so we have shown that there are no qp numbers in this case!

4

16

References

[1] Author - Github Page. https://github.com/sikefield3/quasiperfect.
Accessed: 2023-04-10.

[2] Boost. https://www.boost.org. Accessed: 2021-12-28.

[3] John Brillhart et al. Factorizations of BN ± 1: B = 2, 3, 5, 6, 7, 10, 11,
12 up to high powers. American Mathematical Society, 1988.

[4] Paolo Cattaneo. Sui numeri quasiperfetti. Boll. Unione Mat. Ital., III.
Ser., 6:59–62, 1951.

[5] David Cleaver. MPZ APRCL. https://sourceforge.net/projects/

mpzaprcl/. Accessed: 2021-12-28.

[6] Cunningham Project. The third edition of the Cunningham book. https:
//homes.cerias.purdue.edu/~ssw/cun/third/index.html. Accessed:
2022-09-09.

[7] Factor collection. https://web.archive.org/web/20210212010716/

myfactorcollection.mooo.com:8090/original.html. Accessed: 2021-
09-09.

[8] GMP. Gnu multiple precision arithmetic library (gmp). https://gmplib.
org/. Accessed: 2021-12-28.

[9] Peter Hagis and Graeme L. Cohen. Some results concerning quasiperfect
numbers. Journal of the Australian Mathematical Society. Series A. Pure
Mathematics and Statistics, 33(2):275–286, 1982.

[10] R. P. Jerrard and Nicholas Temperley. Almost perfect numbers. Mathe-
matics Magazine, 46(2):84–87, 1973.

[11] Masao Kishore. Odd integers n with five distinct prime factors for which
2�10�12 σpnq{n 2�10�12. Mathematics of Computation, 32(141):303–
s12, 1978.

[12] Meng Li and Min Tang. On the congruence σ (n) � 1 mod n, II. Journal
of Mathematical Research with Applications, 34(2):155–160, 2014.

[13] MPFR. Gnu multiple precision floating-point reliable library (GNU
MPFR). https://www.mpfr.org/. Accessed: 2021-12-28.

[14] Carl Pomerance. Odd perfect numbers are divisible by at least seven dis-
tinct primes. Acta Arithmetica, 25(3):265–300, 1974.

[15] Victor Shoup. NTL: A library for doing number theory. https://libntl.
org/. Accessed: 2021-12-28.

[16] Min Tang and Meng Li. On the congruence σ (n) � 1 mod n. Journal
of Mathematical Research with Applications, 32(6):673–676, 2012.

17

https://github.com/sikefield3/quasiperfect
https://www.boost.org
https://sourceforge.net/projects/mpzaprcl/
https://sourceforge.net/projects/mpzaprcl/
https://homes.cerias.purdue.edu/~ssw/cun/third/index.html
https://homes.cerias.purdue.edu/~ssw/cun/third/index.html
https://web.archive.org/web/20210212010716/myfactorcollection.mooo.com:8090/original.html
https://web.archive.org/web/20210212010716/myfactorcollection.mooo.com:8090/original.html
https://gmplib.org/
https://gmplib.org/
https://www.mpfr.org/
https://libntl.org/
https://libntl.org/

	Introduction
	Notation and Preliminaries
	Technical Details of the Program

	Quasi-k-perfect numbers
	Feasible Exponents
	Constraints
	The prime bounds
	Special k

	Description of the Algorithm
	Table of Feasible Exponents
	Iteration

	Results
	k=2
	k > 2 Some of these results were already described by the authors Meng Li and Min Tang in MinTANG2012 and MinTANGII2014.
	k = 3
	k = 4

	Special cases

