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ABSTRACT
The core reasoning task for datalog engines is materialization, the
evaluation of a datalog program over a database alongside its phys-
ical incorporation into the database itself. The de-facto method
of computing it, is through the recursive application of inference
rules. Due to it being a costly operation, it is a must for datalog
engines to provide incremental materialization, that is, to adjust
the computation to new data, instead of restarting from scratch.
One of the major caveats, is that deleting data is notoriously more
involved than adding, since one has to take into account all possible
data that has been entailed from what is being deleted. Differential
Dataflow is a computational model that provides efficient incremen-
tal maintenance, notoriously with equal performance between ad-
ditions and deletions, and work distribution, of iterative dataflows.
In this paper we investigate the performance of materialization
with three reference datalog implementations, out of which one is
built on top of a lightweight relational engine, and the two others
are differential-dataflow and non-differential versions of the same
rewrite algorithm, with the same optimizations.
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1 INTRODUCTION
Datalog[9], the canonical language for reasoning over relational
databases, ground fact stores, is a declarative language used to eval-
uate sets of possibly-recursive restricted horn clauses, programs,
while remaining not Turing complete. Evaluating a program entails
computing implicit consequences over a fact store, yielding new
facts.

Materialization, or the physical storage of a program’s conse-
quences, eliminates the need for reasoning during query answering.
Maintaining this computation is essential for modern Datalog use-
cases, as it relates to the broader problem of incremental view
maintenance.

While the semi-naive evaluation method[9] efficiently handles
additions, deletions are often less efficient, as retracting a fact
may naively imply deleting all data derived from it. The delete-
rederive[18] method addresses this issue by computing the ma-
terialization adjustment through the generation of new Datalog
programs, first calculating all possible deletions, and then deter-
mining alternative derivations. The difference between these sets
represents the actual facts to be deleted.

Using two distinct algorithms for additions and deletions results
in different performance characteristics, potentially causing severe
biases. For example, when a large portion of ground facts are deleted,
such as more than ten percent, a not very realistic value, delete-
rederive could be significantly more expensive than recomputing
from scratch, since computing all overdeletions, and alternative

derivations, might take longer than re-materialization in itself, for
as there can be cases where a small portion of ground facts have a
high impact on the number of inferred facts.

A promising way to tackle incremental maintenance in a more
uniform manner is to use differential dataflow, a programming
model that efficiently processes and maintains large-scale possi-
bly recursive dataflow computations. Central to it is the notion of
fine-grained tracking, with partially-ordered timestamps, and pro-
cessing differences between collections of data, rather than entire
collections themselves. This approach facilitates efficient updates
in response to changes in the underlying data[1].

In the context of datalog, differential dataflow (DD) presents an
opportunity to address the performance challenges arising from
handling additions and deletions. Contrary to traditional methods,
such as semi-naive evaluation for additions and delete-rederive
for deletions, differential dataflow provides a unified and efficient
approach to incremental view maintenance.

The utilization of partially ordered timestamps and arrangements
allows DD to precisely identify affected parts of the computation
and to recompute only the necessary components. This leads to a
more efficient handling of incremental updates in Datalog evalua-
tion, as the system can focus on affected sub-computations rather
than re-evaluating the entire program. Furthermore, there also is
first-class support for both automatic parallelism and distributed
computing, contributing to enhanced performance and scalability.

DDLog[26] has been the only attempt at building a datalog
engine that utilized DD. Similarly to the high-profile reasoner
Souffle[27], it is a compiler, in which a datalog program becomes
an executable low-level language program, C++ in Souffle’s case,
and Rust for DDLog. The rationale for the language choice, is that
DD’s canonical implementation lives as a heavily optimized map-
reduce-like framework written in Rust.

Notably, given that DDLog is a compiler, it is not suited for
situations where either the program is expected to be dynamic,
with rules being added or removed, or where new programs ought
to be evaluated during run time, therefore restricting its use case
to the specific scenarios where such drawbacks are acceptable.

There has been no study evaluating the isolated benefit of DD to
datalog evaluation. Therefore the suitability of DD in this context
remains unclear, emphasizing the importance of further research
on its potential benefits and limitations in incremental view main-
tenance.

Contributions. In this work, we directly address the posited
research question by developing a datalog interpreter utilizing DD.
We then compare our implementation with other prototypical dat-
alog interpreters, created from scratch, that share as many com-
ponents as it is reasonable, in order to isolate the effect of DD in
both runtime performance and memory efficiency. This allows us
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to more accurately empirically assess how does DD in itself fare
against more traditional approaches.

Unlike DDLog, which compiles a datalog program into its evalu-
ation as a fixed DD program, our approach involves writing a single
DD program capable of evaluating any datalog program. This elim-
inates the need for compilation and provides the additional benefit
of incremental maintenance for both rule removals and additions.

Structure of the paper.

• Background. A brief recapitulation of the general back-
ground, with datalog, its evaluationmethods, and the delete-
rederive method being formally introduced.

• Differential Evaluation. DD, and the translation of data-
log evaluation to a dataflow is showcased and explained.

• System. The developed interpreters are described, along-
side with all optimizations and benchmark-relevant infor-
mation.

• Evaluation. An empirical evaluation of all reasoners, over
multiple different programs and datasets is undertaken.

2 RELATEDWORKS
DD Applications and Related Projects. There are two relevant
DD projects that are worth mentioning. One of them is Graspan,
a parallel graph processing system that uses DD for efficient in-
cremental computation of static program analyses over large code-
bases.

Graspan models the program analysis problem as a reachability
problem on a graph, where nodes represent program elements and
edges represent the relationships between these elements. It lever-
ages DD to incrementally update the analysis results in response to
changes in the input graph, which can be due to code modifications
or updates to the analysis rules. Graspan has demonstrated its abil-
ity to scale to large codebases and provide low-latency updates for
various static analyses, including points-to analysis, control-flow
analysis, and data-flow analysis.

Another project of interest is DBSP[8], a recent development,
that started from the need for a more concise theoretical definition
of DD. All of DBSP operators are based on DD’s, however, its com-
putational model is less powerful as it does not allow updates to past
values in a stream, and it is also assumed that inputs arrive in time
order. DBSP can express both incremental and non-incremental
computations, with the former not being possible in DD.

Datalog engines. There are two kinds of datalog engines. The
first encompasses those that compile a datalog program to usu-
ally a systems-level programming language, and the second are
interpreters, able to evaluate any datalog program.

Soufflé is a prominent example of a datalog compiler that trans-
lates datalog programs into high-performance C++ code. It incor-
porates several optimization techniques, such as parallel execution
with highly specialized data structures[21], and nearly optimal join
ordering[3]. Notably, its development has been an unparalleled
source of articles on the engineering of reasoners.

DDLog As previously mentioned, compiles datalog to DD, achiev-
ing efficient differential data updates for datalog programs. It demon-
strates the applicability of DD in the context of declarative logic
programming and incremental view maintenance.

The majority of reasoners recently developed have been mostly
interpreters, further split into distributed or shared memory sys-
tems. Out of the sharedmemory ones, themost notable are RDFox[23],
a highly specialized and performant reasoner that is tailored to the
semantic web needs, RecStep[31], that builds on top of a highly
efficient relational engine, and DCDatalog[30], that builds upon the
query optimizer DeALS[29] and extends a work that establishes
how some linear datalog programs could be evaluated in a lock-free
manner, to general positive programs.

One of the most high-profile datalog papers of interest has been
BigDatalog[28], that originally used the query optimizer DeALs,
andwas built on top of the very popular Spark[4] distribution frame-
work. Soon after, a prototypical implementation[20] over Flink[24],
a distribution framework that supports streaming, Cog, followed.
Flink, unlike Spark, supports iteration, so implementing reasoning
did not need to extend the core of the underlying framework. The
most successful attempt at creating a distributed implemention has
been Nexus[19], that is also built on Flink, and makes use of its
most advanced feature, incremental stream processing.

3 BACKGROUND
Datalog[9] is a declarative programming language. A program 𝑃 is
a set of rules 𝑟 , with each 𝑟 being a restriction of tuple-generating
dependencies:

𝐻 (𝑥1, ..., 𝑥 𝑗 ) ←
𝑘∧
𝑖=1

𝐵𝑖 (𝑥1, ..., 𝑥 𝑗 )

with 𝑘 , 𝑗 as finite integers, 𝑥 as terms, and each 𝐵𝑖 and 𝐻 as predi-
cates. A term can belong either to the set of variables, or constants.
The set of all 𝐵𝑖 is called the body, and 𝐻 the head.

A rule 𝑟 is said to be datalog, if no predicate is negated, and
all variables in the head appear somewhere in the body, thereby
not there being the possibility for existential variables to exist,
conversely, a datalog program is one in which all rules are datalog.

Example 3.1. Datalog Program

𝑃 = {𝑇𝐶 (?𝑥, ?𝑦) ←𝐸𝑑𝑔𝑒 (?𝑥, ?𝑦)
𝑇𝐶 (?𝑥, ?𝑧) ←𝑇𝐶 (?𝑥, ?𝑦),𝑇𝐶 (?𝑦, ?𝑧)}

Example 3.1 shows a simple valid recursive program. The first
rule denotes that for all x and y, if x is in a Edge relation with y, then
it follows that x is in a TC relation with y, and the second for all x, y,
z, if x is in a TC relation with y, and y is in a TC relation with z, then
it follows that x is in a TC relation with z.

Programs denote implications over a store of ground facts. This
store is called the extensional database, 𝐸𝐷𝐵, and the result of
evaluating a program over some 𝐸𝐷𝐵 is the 𝐼𝐷𝐵, the intensional
database.

Let 𝐷𝐵 = 𝐸𝐷𝐵∪ 𝐼𝐷𝐵, and for there to be a program 𝑃 . We define
the immediate consequence of 𝑃 over 𝐷𝐵 as all facts that are either
in 𝐷𝐵, or stem from the result of applying the rules in 𝑃 to 𝐷𝐵. The
immediate consequence operator I𝐶 (𝐷𝐵) is the union of 𝐷𝐵 and its
immediate consequence. The 𝐼𝐷𝐵, at the moment of the application
of I𝐶 (𝐷𝐵), is the difference of the union of all previous 𝐷𝐵 with
the 𝐸𝐷𝐵, therefore consisting only of the inferred facts.
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It is trivial to see that 𝐼𝐶 (𝐷𝐵) is monotone, and given that both
the 𝐸𝐷𝐵 and 𝑃 are finite sets, and that 𝐼𝐷𝐵 = ∅ at the start, at some
point 𝐼𝐶 (𝐷𝐵) = 𝐷𝐵, since there won’t be new facts to be inferred.
This point is the least fixed point of 𝐼𝑐 (𝐷𝐵)[9]. Computing the
least fixed point as described, recursively applying the immediate
consequence operator, is called naive evaluation, which is not often
used in practice, since in every iteration not only does it infer new
facts, but also recomputes all previously inferred ones.

3.1 Semi-Naive Evaluation
The semi-naive evaluation algorithm [9] is a widely-used technique
for improving naive evaluation, that directly addresses, but does not
solve entirely, its major inefficiency, redundant recomputations of
previously inferred facts. Given a Datalog program 𝑃 and an 𝐸𝐷𝐵,
the algorithm iteratively computes the 𝐼𝐷𝐵 in the same manner
as naive evaluation, with the addition of maintaining a set of new
delta facts Δ that are generated in each iteration.

Given a program 𝑃 with rules 𝑟0, ..., 𝑟𝑛 , with bodies𝑏 (𝑟 ) = {𝑏0, ..., 𝑏𝑘 }
and heads 𝐻 (𝑟 ), the delta program will generate one new Δrule for
each 𝐼𝐷𝐵 relation 𝑏 𝑗 in each rule body 𝑏 (𝑟𝑖 ), in order to represent
that only facts that have been recently inferred are to be taken into
account for subsequent iterations.

Example 3.2. Semi-naive Evaluation Delta Program

𝑟0 = 𝑇𝐶 (?𝑥, ?𝑦) ←𝐸𝑑𝑔𝑒 (?𝑥, ?𝑦)
Δ𝑟1 = 𝑇𝐶 (?𝑥, ?𝑧) ←Δ𝑇𝐶 (?𝑥, ?𝑦),𝑇𝐶 (?𝑦, ?𝑧)
Δ𝑟2 = 𝑇𝐶 (?𝑥, ?𝑧) ←𝑇𝐶 (?𝑥, ?𝑦),Δ𝑇𝐶 (?𝑦, ?𝑧)

With example 3.1 as the baseline, 3.2 is its resulting delta program.
While semi-naive evaluation indeed reduces the number of inferred
redundant facts, it is particularly efficient for a certain class of
simple Datalog programs that are common in practice, namely
linear programs, which are those in which each rule has at most
one IDB relation in its body, therefore generating only one delta
rule per rule, instead of multiple, as in the example.

In spite of being asymptotically better than naive evaluation,
there are substantial implementation challenges that need to be
addressed in order to ensure that the overhead is not larger than
possible performance gains, since it requires multiple indexes, each
delta relation, and efficient set operations to keep track of the
most recently inferred facts. This is of utmost importance when
using semi-naive evaluation as a method to incrementally handle
additions to the 𝐸𝐷𝐵.

It often occurs that a materialization needs to be adjusted, either
to additions or retractions of ground facts. Both semi-naive and
naive evaluation are iterative, thus additions can be dealt with by
simply having their computations restarted, with the former having
the entire 𝐼𝐷𝐵 as the initial set of delta facts, instead of the empty
set. The major goal of continuing the computation is such that it
will be more efficient than restarting the materialization altogether.

3.2 Delete-Rederive
While both aforementioned evaluation methods provide mecha-
nisms to incrementally adjust materialization to new ground facts,

neither support retraction of ground facts, a problem that is sig-
nificantly more involved, since a single fact might have multiple
possible derivations.

The most used method is a bottom-up algorithm[18] that relies
on evaluating two new programs, one that computes all possi-
ble deletions that could stem from the deletion of the facts being
retracted, and then another that attempts to find alternative deriva-
tions to the overdeleted ones.

Given a program 𝑃 with rules 𝑟0, ..., 𝑟𝑛 , with bodies𝑏 (𝑟 ) = {𝑏0, ..., 𝑏𝑘 }
and heads ℎ(𝑟 ), the overdeletion program will generate one new
−rule for each 𝑏 𝑗 in each rule body 𝑏 (𝑟𝑖 ), in order to represent that
if such fact were to be deleted, then ℎ(𝑟𝑖 ) would not hold true.

Example 3.3. DRED Overdeletion Program

−𝑟0 = −𝑇𝐶 (?𝑥, ?𝑦) ← − 𝐸𝑑𝑔𝑒 (?𝑥, ?𝑦)
−𝑟1 = −𝑇𝐶 (?𝑥, ?𝑧) ← − 𝐸𝑑𝑔𝑒 (?𝑥, ?𝑦),𝑇𝐶 (?𝑦, ?𝑧)
−𝑟2 = −𝑇𝐶 (?𝑥, ?𝑧) ←𝐸𝑑𝑔𝑒 (?𝑥, ?𝑦),−𝑇𝐶 (?𝑦, ?𝑧)

On example 3.3 negative predicates represent overdeletion tar-
gets for example 3.1. For instance, if Edge(2, 3) is being deleted,
then TC(2, 3) will be deleted, and any other inferred fact that
depends on it. Given that it is a regular datalog program, it can
be efficiently evaluated with semi-naive evaluation, or any other
evaluation algorithm.

The next step is to compute the alternative derivations of the
deleted facts, since some overdeleted facts might still hold true. The
alternative derivation program will generate one new +rule for
each 𝑟𝑖 in 𝑃 , with one extra − head predicate per body, representing
an overdeleted fact. The + program requires the overdeleted facts
to already not be present.

Example 3.4. DRED Alternative Derivation Program

𝑟0 = +𝑇𝐶 (?𝑥, ?𝑦) ← −𝑇𝐶 (?𝑥, ?𝑦), 𝐸𝑑𝑔𝑒 (?𝑥, ?𝑦)
𝑟1 = +𝑇𝐶 (?𝑥, ?𝑧) ← −𝑇𝐶 (?𝑥, ?𝑧), 𝐸𝑑𝑔𝑒 (?𝑥, ?𝑦),𝑇𝐶 (?𝑦, ?𝑧)

The output relations from example 3.4 represent the data that
has to be put back into the materialization for example 3.1. The
rationale for alternative derivations is that, for 𝑟1, for instance, if the
edge TC(3, 4)was overdeleted, because of there being Edge(1, 2)
and TC(2, 3), if Edge(3, 4)was not deleted, by rule 𝑟0, then there
is an alternative derivation for TC(3, 4).

As it can be seen, computing the maintenance of the materializa-
tion implies evaluating a program bigger than the materialization
itself, however, due to the fact that it is evaluated with semi-naive
evaluation, the asymptotic complexity remains the same. Nonethe-
less, in practice, deletion is often much slower than addition, as
it can be trivially seen by the worst-possible scenario, in which
all facts are deleted, whereby while materialization would be free,
DRED would inquire an expensive fact-by-fact deletion operation.

3.3 Substitution-based evaluation
The most impactful aspect of all of the introduced evaluation mech-
anisms is the implementation of 𝐼𝑐 itself. The two most high-profile
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methods to do so are either purely evaluating the rules, or rewrit-
ing them in some other imperative formalism, such as relational
algebra, and executing it.

The substitution-based[9] method is the simplest example of the
former. A substitution 𝜎 is a homomorphism [𝑥1 → 𝑦1, ..., 𝑥𝑖 → 𝑦𝑖 ],
such that 𝑥𝑖 is a variable, and 𝑦𝑖 is a constant. Given a not-ground
fact, such as𝑇𝐶 (?𝑥, 4), applying the substitution [?𝑥 → 1] to it will
yield the ground fact 𝑇𝐶 (1, 4).

Let 𝑟 be a Datalog rule of the form ℎ ← 𝑏1, 𝑏2, . . . , 𝑏𝑚 , where ℎ
is the head atom and 𝑏𝑖 are the body atoms. Let 𝐸𝐷𝐵 be the set of
ground facts for the input relations.

The substitution-based method computes the immediate conse-
quence of the rule 𝑟 as follows:

Define the initial set of substitutions as Σ0 = {𝜎0}, where 𝜎0
is an empty substitution. For each body atom 𝑏𝑚 , find the set of
ground facts 𝐹 𝑗 ⊆ 𝐹 that match 𝑏𝑚 . Algorithm 1 is the formal spec-

Algorithm 1: Substitution-based Immediate Consequence
Input :Σ0, set of ground facts 𝐹 , head atom ℎ, body atom

list 𝐵
Output : Immediate Consequence 𝐼

1 for each 𝑖 = 1, 2, . . . ,𝑚 do
2 for each fact 𝑓 ∈ 𝐹 and each partial substitution

𝜎𝑖−1 ∈ Σ𝑖−1 do
3 Generate an extension 𝜎′

𝑖−1 of 𝜎𝑖−1 with the
constant-to-variable homomorphisms from 𝑓 that
are consistent with the current body atom 𝑏𝑚 ;

4 if 𝜎′
𝑖−1 is a valid substitution then

5 Σ𝑖 = Σ𝑖−1 ∪ 𝜎′𝑖−1;
6 end
7 end
8 for each final substitution 𝜎𝑚 ∈ Σ𝑚 do
9 𝐼 = 𝐼 ∪ 𝜎𝑚𝐻

10 end
11 end

ification of the substitution-based method. There is a noteworthy
performance issue that arises due to the interaction between it and
DRED. During the alternate derivation phase, the new program
has one more body atom. This can be prohibitively more expensive
to evaluate than the original program, since one extra body atom
implies one extra iteration, which could generate a polynomial
number of substitutions, due to the cartesian product nature of
each step.

3.4 Relational algebra rewriting method
The de-facto datalog evaluation method, that virtually all recent
reasoners[19, 20, 27, 28, 30, 31] abide by, is to rewrite datalog rules
into relational algebra, a well-known technique, to efficiently com-
pute their evaluation, due to the extensive industrial and academic
research poured into developing data processing frameworks that
handle very large amounts of data, and the techniques that have
arisen from those.

Relational Algebra[11] explicitly denotes operations over sets
of tuples with fixed arity, relations. It is the most popular database

formalism that there is, with virtually every single major database
system adhering to the relational model[10, 12? ] and using SQL as
a declarative syntax.

DD either implements, or makes it trivial to do so, all relevant-to-
datalog relational algebra operators, therefore providing convenient
tools to manually specify the evaluation of a datalog program as a
dataflow. It nonetheless does not directly make writing the inter-
preter more convenient, only a compiler.

4 DIFFERENTIAL EVALUATION
Differential Dataflow is a computational framework that gener-
alizes incremental processing to times that are possibly partially
ordered, and specifically operates over generalized multisets.

Let 𝐶 be a multiset, referred to as a collection, with 𝐶𝑡 being
its value at a partially ordered time 𝑡 , and 𝐶𝑡 (𝑏) being the monoid
representing the multiplicity of some record 𝑏 ∈ 𝐶𝑡 . We establish
that the difference of some collection 𝐶 at time 𝑡 , named 𝛿𝐶𝑡 , is
defined as:

𝛿𝐶𝑡 = 𝐶𝑡 −𝐶𝑡−1
It also therefore holds that the value of 𝐶𝑡 can be reconstructed by
the following equivalence:

𝐶𝑡 =
∑︁
𝑖≤𝑡

𝛿𝐶𝑖

We utilize plain multiset semantics with signed integers as multi-
plicity.

Let 𝐴 and 𝐵 be collections, and OP be some operator that maps
a collection to some other collection, or itself. Assuming 𝐵 to be
the output of OP applied over 𝐴, computations in DD follow the
following:

𝐵𝑡 = OP(𝐴𝑡 ) = OP(
∑︁
𝑖≤𝑡

𝛿𝐴𝑖 ) =
∑︁
𝑖≤𝑡
OP(𝛿𝐴𝑖 )

with OP being proportional to 𝛿𝐴𝑡 , and not 𝐴𝑡 . Stateful Operators,
such as the relational join, require more involved differentiation
steps.

A core premise of the canonical DD implementation, is in clev-
erly, and efficiently, maintaining 𝛿𝐵 and 𝛿𝐴, specifically in the
context of iterative dataflows, due to 𝑡 being partially ordered.

Let’s assume that a datalog program is being evaluated, and five
fact updates, labeled as 𝛼𝑡 arrive. In regular semi-naive evaluation,
even though rule application might happen in parallel, 𝛼𝑡+1 will
only be evaluated after 𝛼𝑡 ’s evaluation has finished, and the data
used to compute each will always consist of all extensional and
intensional(previously inferred) facts.

In contrast, program evaluation could bewritten as aDDdataflow
with a (partially ordered) product order timestamp ⟨𝑡, 𝑎⟩ with 𝑡 be-
ing the time of arrival of the update, and 𝑎 keeping track of iteration.
Product order is defined as:

⟨𝑡𝑖 , 𝑎 𝑗 ⟩ ≤ ⟨𝑐𝑘 , 𝑑𝑙 ⟩ ⇐⇒ 𝑡𝑖 ≤ 𝑐𝑘 ∧ 𝑎 𝑗 ≤ 𝑑𝑙

If we treat 𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4 as differences with the following
respective timestamps:

⟨0, 0⟩, ⟨0, 1⟩, ⟨0, 2⟩, ⟨1, 1⟩, ⟨2, 1⟩
it is noticeable, from table 1, that neither 𝛼2 is visible from 𝛼3, nor
that 𝛼3 is visible from 𝛼2. This, in turn, has an important conse-
quence in differential dataflow, that the computation of both 𝛼3
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Table 1: Product Order Truth Table

≤ ⟨0, 0⟩ ⟨0, 1⟩ ⟨0, 2⟩ ⟨1, 1⟩ ⟨2, 1⟩
⟨0, 0⟩ 1 1 1 1 1
⟨0, 1⟩ 0 1 1 1 1
⟨0, 2⟩ 0 0 1 0 0
⟨1, 1⟩ 0 0 0 1 1
⟨2, 1⟩ 0 0 0 0 1

and 𝛼2 happened independent of each other, meaning both may be
computed in parallel:

𝛼2 = 𝛿𝐴0,2 = 𝐴0,2 − (𝛿𝐴0,0 + 𝛿𝐴0,1)
𝛼3 = 𝛿𝐴1,1 = 𝐴1,1 − (𝛿𝐴0,0 + 𝛿𝐴0,1 + 𝛿𝐴1,0)

Within the context of datalog, the aforementioned evaluation se-
mantics provide a full alternative to the way incremental datalog
evaluation is currently done, most specifically, the practical advan-
tage of differential dataflow, is that instead of using semi-naive
evaluation and DRED, one can just describe the evaluation process
as a dataflow, and have both additions and retractions handled in
the same way, with efficient parallelism and symmetric handling of
updates.

4.1 Differential Substitution-based Method
We now present a translation of algorithm 1 to DD, by emulating
sequentially iterating over each rule’s body with relational joins,
notably, all relational algebra operators are available through a map-
reduce-like API. Figure 1 depicts the substitution-based method

Input

Iteration

Output

Σ0 Facts Rules

flat_map1 map2

Subs. Var Facts. Var

join_map3

join_map4

join_map5

Facts

Figure 1: Substitution method dataflow

as a dataflow. Superscripts denote points of the dataflow that re-
quire further explanation. Furthermore, for clarity, we establish the
shape of the data, and the meaning of the Var suffix, that both facts
and substitutions eventually take up. a Variable is used to express
recursive or iterative computations. It allows one to define iterative
operations and data dependencies in the dataflow graph, enabling

the system to track and propagate changes across iterations effi-
ciently, with product timestamps. Each node either represents an
operation, such as join_map, that joins indexed collections and
then applies a mapping function to the join output, or flat_map,
that given a function that outputs an iterable, applies it over a col-
lection, and flattens each element’s output to be part of a single
collection.

We also note that this is a summarized description, where certain
trivial, or too-implementation-specific parts have been omitted. Σ0
is the stream of empty substitutions indexed per rule identifier,
which is pre-populated with one empty substitution per rule. We
assume that rules have an unique identifier. Facts is the relation-
indexed stream of facts, and rules is the stream of rules, with two
indexes, created with the operations with superscripts 1 and 2.

(1) The first rule index indexes rules first by their identifier,
and then by each of its body atoms, enumerating them
sequentially, imposing an order of evaluation as the original
algorithm.

(2) The second rule index indexes by identifier and body size,
being necessary to ensure that only the substitutions which
have been exhaustively expanded ought to be considered
for application to the rule head.

(3) In the first join, the function that is applied, is one that
applies substitutions to the input atoms, therefore either
creating new atoms, with less variables as terms, or the
very same ones. This is equivalent to the necessary setup
for step 1 of Algorithm 1 to occur, making use of index 1.

(4) The next join creates new substitutions, based on the newly
minted atoms. All current substitutions are attempted to be
expanded further, with the successful ones being emitted
from the join.

(5) This is the last step of the algorithm, where all final sub-
stitutions are applied to the head of each rule, index 2, to
then create new ground facts.

With the dataflow being specified, over the next section we elab-
orate on the commonalities and differences with the other imple-
mentations.

5 SYSTEM
In this section we provide a technical overview of the implemented
reasoners, and what is shared between them, alongside a novel
indexing technique for the substitution-based method, that at the
cost of increased memory usage, can significantly decrease the
number of times the operation that occurs the most frequently,
substitution extension, occurs.

The reasoner that uses the substitution-based method without
DD is named Chibi, differential is the one that does. Both of these
reasoners share the implementation of the three core elements:
unification, substitution application, and in asserting that a fact is
ground. All of the aforementioned operations are trivial, and each
do not require more than ten or so lines of code. Unification is a
computationally cheap operation, given an atom, and a ground fact,
the output is a new substitution that maps the variables of the right
to the constants of the left one. All others are self descriptive, with
substitution application merely substituting an atom’s variables for
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the mapped variables in a substitution. Checking if a fact is ground
is done by ensuring that no terms are variables.

Chibi, Differential and Relational all share the same memory
layout for the core elements of datalog and storage. In Rust terms,
it is to be assumed that all referred data structures are standard
library implementations unless stated otherwise. Furthermore, a
step of rule application is always done in parallel.

• Constant: an enumeration of boolean, 64-bit integer or
string, respectively named typed values

• Variable: an 8 bit integer, hence imposing a bound on the
number of variables that a rule can have

• Term: an enumeration of constant and variable
• Atom: A struct with a vector of terms, and a symbol, that

can be either a 64-bit integer or a string
• Rule: A struct with an atom representing the head, and a

vector of atoms as the body
• Storage: A Hash map of hash sets, with keys represent-

ing relation names, or id, and their respective hash sets
containing vectors of typed terms, ground facts

Relational reasoner has one extra data structure, a btree index, that
is used for sort-merge joins. Relational relies on naively translating
datalog rules into relational algebra, without any further optimiza-
tions whatsoever, aside from inserting all data that is to be joined in
its index, right before actually doing it. All relational operations and
their evaluator were implemented from scratch. The point of this
reasoner is to evaluate how performant the popular relational alge-
bra evaluation can be in isolation, compared to the often forgotten
substitution-based method.

Rule application until the least fixpoint is reached is done with
semi-naive evaluation[2], with a program transformation. DRED
is implemented as described in [18], in two steps, with both the
overdeletion and alternative derivation program being executed
with semi-naive evaluation too. Both Chibi and Relational use the
same function for this, with differential evidently not using semi-
naive evaluation nor DRED, given that it has its own iteration
mechanism, heavily inspired by semi-naive evaluation, which al-
ready handles retractions.

5.1 Demand-driven Multiple-column-based
Indexing

There is a possibly very large performance cost of the substitution-
method, that can be exemplified in the specific scenario of DRED,
that could render it unable to be used in practice. As it was intro-
duced, substitutions are both incrementally expanded, and built
anew, by iterating over every single body atom.

In the second step of DRED, an alternate derivation program
is created. This program has one extra body atom, representing
overdeletions of the head’s relation. This implies that this step could
be prohibitively more expensive to evaluate than even evaluating
the program, due to the cartesian nature of the unification step,
that implies iterating over the knowledge base once, for every atom.
This inefficiency can be demonstrated with the following example,
in which the rule could be seen as the alternate derivation step of
some rule: 𝑅(?𝑥, ?𝑧) < −𝑇 (?𝑥, ?𝑦),𝑇 (?𝑦, ?𝑧), with −𝑅 representing
the overdeletion estimation from the previous step.

Let 𝑃 = {+𝑅(?𝑥, ?𝑧) ← −𝑅(?𝑥, ?𝑧),𝑇 (?𝑥, ?𝑦),𝑇 (?𝑦, ?𝑧)}, and
𝐸𝐷𝐵 = {𝑇 (𝑎, 𝑏),𝑇 (𝑏, 𝑐),𝑇 (𝑐, 𝑑),−𝑅(𝑎, 𝑐),−𝑅(𝑏, 𝑑)}Algorithm 1will
have three iterations:

(1) (a) Current body atom: −𝑅(?𝑥, ?𝑧), Σ0: [{}]
(b) Fresh atoms - Applying all 𝜎 : Σ0 to −𝑅(?𝑥, ?𝑧) yields
−𝑅(?𝑥, ?𝑧)

(c) Substitution extension:
(i) unification: -R(?x, ?z) ∪ -R(a, c) = {?𝑥 → 𝑎, ?𝑧 →

𝑐}
(ii) unification: -R(?x, ?z)∪ -R(b, d) = {?𝑥 → 𝑏, ?𝑧 →

𝑑}
(2) (a) Current body atom: 𝑇 (?𝑥, ?𝑦), Σ1: [{?𝑥 → 𝑎, ?𝑧 →

𝑐}, {?𝑥 → 𝑏, ?𝑧 → 𝑑}]
(b) Fresh atoms - Applying all 𝜎 : Σ1 to 𝑇 (?𝑥, ?𝑦) yields

𝑇 (𝑎, ?𝑧), 𝑇 (𝑏, ?𝑧)
(c) Substitution extension:

(i) unification: T(a, ?y) ∪ T(a, b) = {?𝑥 → 𝑎, ?𝑦 →
𝑏, ?𝑧 → 𝑐}

(ii) unification: T(a, ?y) ∪ T(b, c) = none
(iii) unification: T(a, ?y) ∪ T(c, d) = none
(iv) unification: T(b, ?y) ∪ T(a, b) = none
(v) unification: T(b, ?y) ∪ T(b, c) = {?𝑥 → 𝑏, ?𝑦 →

𝑐, ?𝑧 → 𝑑}
(vi) unification: T(b, ?y) ∪ T(c, d) = none

(3) (a) Current body atom: 𝑇 (?𝑦, ?𝑧), Σ2: [{?𝑥 → 𝑎, ?𝑦 →
𝑏, ?𝑧 → 𝑐}, {?𝑥 → 𝑏, ?𝑦 → 𝑐, ?𝑧 → 𝑑}]

(b) Fresh atoms - Applying all 𝜎 : Σ2 to 𝑇 (?𝑦, ?𝑧) yields
𝑇 (𝑏, 𝑐), 𝑇 (𝑐, 𝑑)

(c) Substitution extension:
(i) unification: T(b, c) ∪ T(a, b) = none
(ii) unification: T(b, c) ∪ T(b, c) = {?𝑥 → 𝑎, ?𝑦 →

𝑏, ?𝑧 → 𝑐}
(iii) unification: T(c, d) ∪ T(c, d) = none
(iv) unification: T(c, d) ∪ T(a, b) = none
(v) unification: T(c, d) ∪ T(b, c) = none
(vi) unification: T(c, d) ∪ T(c, d) = {?𝑥 → 𝑏, ?𝑦 →

𝑐, ?𝑧 → 𝑑}

With the final substitutions being: [{?𝑥 → 𝑎, ?𝑦 → 𝑏, ?𝑧 →
𝑐}, {?𝑥 → 𝑏, ?𝑦 → 𝑐, ?𝑧 → 𝑑}], therefore inferring two atoms:
+𝑅(𝑎, 𝑐) and +𝑅(𝑏, 𝑑). The major source of inefficiency are calls to
unification attempt, that yield no new substitution. The number of
unification attempts could grow quadratically with each next body
atom. The solution to this issue is straightforward; to avoid the
cartesian product. We devise a novel indexing technique specifically
tailored to be portable to DD.

Returning to the example, it is trivial to see that wasteful unifica-
tion attempts can be prevented by joining on bindings; If 𝑇 (𝑎, ?𝑦)
is the left-hand side of unification, and 𝑇 (𝑎, 𝑏), 𝑇 (𝑏, 𝑐) are the can-
didates, no candidate that does not already match all constants in
𝑇 (𝑎, ?𝑦) would produce a substitution extension.

We name our approach Demand-driven Multiple-column-based
Indexing, because indexes are built on-demand to address the need
of indices for joining substitutions, that can be over multiple con-
stants, therefore spanning over multiple columns, in each iteration.
For each rule we determine the column combinations that will be
used in such a join, and maintain one globally shared index for
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each unique column combination. First, we demonstrate the tech-
nique over the same example, and then provide a new version of
Algorithm 1.

(1) (a) Current body atom: −𝑅(?𝑥, ?𝑧), Σ0: [{}]
(b) Fresh atoms - Applying all 𝜎 : Σ0 to −𝑅(?𝑥, ?𝑧) yields
−𝑅(?𝑥, ?𝑧)

(c) Index 1 - Index all fresh atoms with the positions of
their constant terms as keys: {[] : [[?𝑥, ?𝑧]]}

(d) Index 2 - Index −𝑅 based on all distinct values of the
column keys of index 1 : {[] : [[𝑎, 𝑐] : [[]], [𝑏, 𝑑] :
[[]]]}

(e) Index 4 - Join Index 1 with Index 2:
(i) ( [?𝑥, ?𝑧], [[𝑎, 𝑐] : [[]]])
(ii) ( [?𝑥, ?𝑧], [[𝑏, 𝑑] : [[]]])

(f) Attempt to unify:
(i) unification: -R(?x, ?z) U -R(a, c) = {?𝑥 → 𝑎, ?𝑧 →

𝑐}
(ii) unification: -R(?x, ?z) U -R(b, d) = {?𝑥 → 𝑏, ?𝑧 →

𝑑}
(2) (a) Current body atom: 𝑇 (?𝑥, ?𝑦), Σ1: [{?𝑥 → 𝑎, ?𝑧 →

𝑐}, {?𝑥 → 𝑏, ?𝑧 → 𝑑}]
(b) Fresh atoms - Applying all 𝜎 : Σ1 to 𝑇 (?𝑥, ?𝑦) yields

𝑇 (𝑎, ?𝑦), 𝑇 (𝑏, ?𝑦)
(c) Index 1 - Index all fresh atoms with the positions of

their constant terms as keys: {[0] : [[𝑎, ?𝑦], [𝑏, ?𝑦]]}
(d) Index 2 - Index𝑇 based on all distinct values of the col-

umn keys of index 1 {[0] : {[𝑎] : [[𝑏]], [𝑏] : [[𝑐]], [𝑐] :
[[𝑑]]}}

(e) Index 4 - Join Index 1 with Index 2:
(i) ( [𝑎, ?𝑦], [[𝑎] : [[𝑏]]]])
(ii) ( [𝑏, ?𝑦], [[𝑏] : [[𝑐]]]])

(f) Attempt to unify:
(i) unification: T(a, ?y) U T(a, b) = {?𝑥 → 𝑎, ?𝑦 →

𝑏, ?𝑧 → 𝑐}
(ii) unification: T(b, ?y) U T(b, c) = {?𝑥 → 𝑏, ?𝑦 →

𝑐, ?𝑧 → 𝑑}
(3) (a) Current body atom: 𝑇 (?𝑦, ?𝑧), Σ2: [{?𝑥 → 𝑎, ?𝑦 →

𝑏, ?𝑧 → 𝑐}, {?𝑥 → 𝑏, ?𝑦 → 𝑐, ?𝑧 → 𝑑}]
(b) Fresh atoms - Applying all 𝜎 : Σ2 to 𝑇 (?𝑦, ?𝑧) yields

𝑇 (𝑏, 𝑐), 𝑇 (𝑐, 𝑑)
(c) Index 1 - Index all fresh atoms with the positions of

their constant terms as keys: {[0, 1] : [[𝑏, 𝑐], [𝑐, 𝑑]]}
(d) Index 2 - Index 𝑇 based on all distinct values of the

column keys of index 1 : {[0, 1] : {[𝑎, 𝑏] : [[]], [𝑏, 𝑐] :
[[]], [𝑐, 𝑑] : [[]]}}

(e) Index 4 - Join Index 1 with Index 2:
(i) ( [𝑏, 𝑐], [[𝑏, 𝑐] : [[]]])
(ii) ( [𝑐, 𝑑], [[𝑐, 𝑑] : [[]]])

(f) Attempt to unify:
(i) unification: T(b, c) U T(b, c) = {?𝑥 → 𝑎, ?𝑦 →

𝑏, ?𝑧 → 𝑐}
(ii) unification: T(c, d) U T(c, d) = {?𝑥 → 𝑏, ?𝑦 →

𝑐, ?𝑧 → 𝑑}

From this new example, it can be seen that the indexing scheme
is relatively simple, relying on creating new indices that would

allow unification to never wastefully occur. We now structure it as
Algorithm ??.

Let 𝑃 : 𝑎 → [N] be a function mapping an atom to an array of
integers representing the positions of constants within the atom’s
terms, and 𝑅 : ( [N], 𝑎) → 𝐶 another function, that maps an array
of integers and an atom, to a subset of the atom’s terms 𝑐 denoted
by 𝐶 .

The algorithm relies on two main indexes:
(1) 𝐼1 : 𝑃 (𝑎) → 1𝐹 , where 1𝐹 is the subset of 𝐹 such that all 𝑎

have the same 𝑃 (𝑎) value.
(2) 𝐼2 : 𝑃 (𝑎) → 𝐼3, where 𝐼3 : 𝑅(𝐹 ) → 1𝐹 is a nested index,

and 1𝐹 is the subset of 𝐹 such that all 𝑎 have the same
𝑅(𝑃 (𝑎), 𝑎).

Algorithm 2: Substitution-based Immediate Consequence
with Demand-driven Multiple-column-based Indexing
Input :Σ0, set of ground facts 𝐹 , head atom 𝐻 , body atom

list 𝐵
Output : Immediate Consequence 𝐼

1 for each 𝑖 = 1, 2, . . . ,𝑚 do
2 Apply Σ𝑖−1 to the current body atom to obtain fresh

atoms 𝔄;
3 Create the first index 𝐼1 : 𝑃 (𝑎) → 1𝔄 ;
4 Create the second index 𝐼2 : 𝑃 (𝑎) → 𝐼3;
5 Create the last index by joining Index 1 and Index 2:

𝐼4 (𝑎) = (𝐼1 (𝑎), 𝐼2 (𝑎)) for each 𝑎 ∈ 𝔄;
6 for (𝑆1, 𝑆2) ∈ 𝐼4 do
7 Unify each element in 𝑆1 with each element in 𝑆2;
8 Generate an extension 𝜎′

𝑖−1 of 𝜎𝑖−1 with the
constant-to-variable homomorphisms from 𝑓 that
are consistent with the current body atom 𝑏𝑚 ;

9 if 𝜎′
𝑖−1 is a valid substitution then

10 Σ𝑖 = Σ𝑖−1 ∪ 𝜎′𝑖−1;
11 end
12 end
13 for each final substitution 𝜎𝑚 ∈ Σ𝑚 do
14 𝐼 = 𝐼 ∪ 𝜎𝑚𝐻

15 end
16 end
17 ??

All indexing steps are 𝑂 ( |𝐹 |) in time and data complexity, save for
index two, that has worst-case data complexity of𝑂 ( |𝐹 | · 2 |𝑎 | ), with
2 |𝑎 | representing the powerset of the number of terms in some
atom 𝑎, and 𝐹 such that it has only atoms 𝑎. The product with the
powerset arises due to how indexing occurs by mapping all unique
combinations of constant terms of fresh atoms, which in the worst-
case could be exponential to the arity. Figure 2 displays the DD
version of Algorithm ??, that mostly remains exactly the same, save
for new operations happening during the phase before iteration.
We now clarify the points of interest in the new dataflow. There
were no differences in the steps inside iteration, aside from joins
happening through the vector of constant positions and relation
symbols, instead of only relation symbols.
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Figure 2: Substitution method with indexing dataflow

(1) The first map operator remains the same, indexing rules by
their identifier and body size, used to ensure that only fully
expanded substitutions will be applied to rule heads. The
same as superscript 2 in 1.

(2) The unique column combinations of the input ruleset are
computed by this operator.

(3) This step joins the rule identifiers with the unique column
combinations. This is only used at the very last join during
iteration, to ensure that the output fact is indexed by the
correct column combination.

(4) Equivalent to superscript 1 in 1.
(5) With superscript 2, the input fact stream can be immediately

indexed by the necessary constant position combinations.
This is done by a join on relation symbol, that will index
each fact by all column combinations.

(6) Facts. var, unlike in Algorithm 1’s dataflow, which was only
indexed by relation, is now indexed by each unique column
combination.

This dataflow is possibly much more efficient. An arrangement in
DD is a pre-computed, indexed representation of a collection that
allows for efficient querying and manipulation of the data. These
arrangements play a crucial role in the performance of joins. By
carefully choosing which arrangements to create and maintain, it
is possible to keep joins efficient, without unnecessarily wasting
memory.

Most specifically, arrangements dictate the level of join efficiency.
The fact that the join operator indexes the data by a more fine-
grained key than relation symbol, such as relation symbol and
positions occupied by constant values, allows is to be much more
restrictive than cartesian product.

Table 2: Dataset Overview

Dataset Area of Interest Programs
LUBM semantic web RhoDFS, RhoDFS-s, OWL2RL

RMAT1K synthetic tc
RAND1K synthetic tc

6 EVALUATION
Three thorough experiments were conducted in order to showcase
relative performance, scalability, and memory usage, of all reason-
ers, with the intent being twofold: to evaluate the performance
characteristics of DD, in isolation of virtually all other elements,
and to establish as to whether general algorithmic improvements,
such as the demand-driven indexing scheme, are portable to DD.

Setup. The experiments were run on a google-cloud-provisioned
x86 machine of type e2-standard-16, with 16 intel skylake cores and
64 gigabytes of RAM. Each benchmark measurement was taken
70 times, with the 20 measurements of most variance removed,
and averaged out. All datasets, datalog programs and reasoner
implementations are available online[25].

Datasets.On table 2 all datasets and programnames, or acronyms,
are shown. There are two areas of interest. The semantic web has
very specific use-cases for datalog, and are the leading source of
research in extending the datalog mathematical formalism, and in
providing improvements to decades-old algorithms, such as DRED,
with the backward-forward algorithm[22]. Seeking ways to intro-
duce tuple-generating dependencies to programs, with evaluation
remaining tractable, has been one of the most active research direc-
tions, with highly-influential papers establishing new families of
datalog languages[14] and thoroughly exploring their complexity
classes alongside even further extensions[6, 13, 15]. These advance-
ments have been somewhat tested in practice, albeit with no full
reference implementation having been specified. The most compre-
hensive, and recent, is closed-source[7]. The leading datalog engine
in general, is also closed-source[23], and is tailored specifically to
the semantic web.

The second area of interest is of purely mathematical synthetic
graph benchmarks, that allow for generating infinitely-scalable
specific graph structures. all datasets however, including LUBM[17],
are synthetic, with the difference being that there are multiple
specific programs for RhoDFS.

• LUBM is a classic inference benchmark dataset for both
RhoDFS and OWL2RL rulesets. The data is divided in two
parts, the TBox, terminological box, that holds an ontol-
ogy able to describe universities, and the ABox, assertional
box, that asserts facts about universities using the termi-
nology in the TBox. The RhoDFS ruleset, depicted on A.1,
is relatively simple, but complex, there being only a sin-
gle relation that is mutually recursive in every single rule.
RhoDFS-s A.2 is an improved version of RhoDFS, that cre-
ates new relations for every single constant combination
in the original program, avoiding every body atom imply-
ing a full dataset, mimicking the relational selection. The
last ruleset, OWL2RL, has over 100 rules and is by far the
most complex, representing the lower bound of OWL2RL
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implications, specific of the LUBM Tbox. More information
on converting description logic entailments to datalog can
be found on[16].

• RMAT1k. is a graph generated by the rmat profile of the
GT[5] graph generator, used to benchmark various other
reasoners[31][28]. The dataset is a graph with ten times
the number of edges as vertices, that follows an inverse
power-law distribution.

• RAND1k is also a graph generated with the rand profile
of GT. The dataset is comprised of a graph that has one
thousand edges, with each having 0.01 probability of being
connected to every other. In spite of having a small num-
ber of nodes, it is incredibly dense, with the output of the
transitive closure program having almost a hundred times
more edges than the initial graph.

6.1 Runtime comparison
Table 3 pictures the main benchmark, in which three measurements,
Mat, +, and -, for every batch size, are recorded. All measurements
are in seconds. If the batch size is 75%, then Mat is the amount of
time taken to materialize 75% of the data, using regular semi-naive
evaluation, + is howmuch incremental materialization, of 25% of the
data, the remaining amount, also using semi-naive evaluation, took,
and lastly, - is how much time DRED has taken to delete the 25%
that has been added. This provides a comprehensive and thorough
overview of the performance of DRED and semi-naive evaluation,
compared to differential dataflow, which offers an alternative to
both.

Notably, the selection of facts in + and - can dramatically influ-
ence the performance of both DRED and DD. However, conducting
extensive performance estimations by running the algorithms on
numerous random subsets of the data is impractical due to the
extensive duration required to run the entire benchmark, coupled
with the factorial number of possible permutations. Thus, we chose
to just select random subsets of the data that contained 50%, 25%,
10%, 1%, and 0.1% of its original size, as update sizes.

We discuss the table over each dataset and its respective pro-
grams. First, for LUBM under the rdfs program, all differential
reasoners exhibit a clear trend of decreasing update computation
times, as the batch size increases, with diff𝐼 performing much bet-
ter in general, up until updates get very small, possibly indicating
that at this level, indexing starts to have too big of an overhead. In
the case of all other reasoners, the trend is very different, with all
update times, curiously save for chibi, which is orders of magnitude
slower than all other reasoners, not decreasing. This is unsurpris-
ing, due to the very strong degree of recursiveness of the program,
therefore showcasing that neither DRED nor semi-naive evaluation
provide significant speedups over rematerialization, with the best
result being for chibi𝐼 , in which updates and deletions, in spite of
being constant, are up to 40% faster.

All reasoners perform significantly better on rdfs-s, indicating
the importance of the program. Chibi’s pathological performance
issue is entirely gone with the new program, and its performance
discrepancy with chibi𝐼 is almost eliminated, save for deletions,
which remain several times slower than rematerialization.

In the most complex program, owl2rl, both chibi and diff are not
able to finish materialization, with the former having had taken
more than 1000 seconds, and the latter exceeding 64 gigabytes of
RAM. Differential performs in the same manner as the previous
programs, with decreasing update times, and symmetry between
additions and deletions. Both chibi𝐼 and rel exhibit decreasing dele-
tion reasoning times in aggressive cliffs, with little decrease for
additions.

The transitive closure program is simple, and linear, therefore
being embarassingly simple to incrementalize. For the RAND-1k
dataset, differential reasoners once again perform in the same man-
ner, with incremental behavior scaling linearly with the size of the
data. The same behavior is shown for all other reasoners, with a
caveat, that DRED only starts to be competitive once the update
size is less than 10% of the original data. For RMAT-1k, reasoning
times are much longer, showcasing a significantly more complex
dataset, with all non-differential reasoners struggling to provide
proportional update times save for update sizes of less than 1%.

In sum, diff and diff𝐼 performed predictably irrespective of the
dataset and program being run, always being faster, and having
proportionally decreasing reasoning times for updates, while at the
same time being symmetric. All other reasoners did not show the
expected incremental behavior, neither for semi-naive evaluation
nor DRED unless the update size was small, which is not necessarily
a hindrance in practice, since rarely if ever a system will receive an
update that is bigger than 10% of the original size of the data.

6.2 Peak memory usage comparison.
The results of the previous subsection cannot be seen in an en-
tirely positive light without there being consideration for memory
usage. DD relies on multiple in-memory indexes to keep track of
all changes, and as it was seen, it entirely failed a benchmark due
to running out of memory, thus, in this section we analyze the
results of measuring peak memory usage over the previous exper-
iments. Table 4 presents the peak memory usage for each of the
methods and programs across different datasets. Memory usage
is presented in megabytes. LUBM1 occupies 20 megabytes of disk
space, RAND-1k and RMAT-1k, respectively, 100 kilobytes.

For LUBM1, with the ’rdfs’ and ’rdfs-s’ programs, all reasoners
performed comparably with each other, with respect to memory
usage, however, as seen on the previous table, there are major differ-
ences in runtime performance between them, with themost extreme
example being for chibi and diff𝐼 , in which the former is over 1000x
times slower, while using almost 50% more memory. Interestingly,
diff performed significantly better for the owl2rl program, consum-
ing 100 times less memory than chibi and rel. It is likely that this is
due to the aforementioned aggressive compaction mechanism by
the in-memory LSM trees. Notably, the indexed version of diff, diff𝐼 ,
ran out of memory (OOM) for this program, indicating possible
limitations of the indexing method for handling complex queries
in large datasets, which conversely is not true in the case of chibi𝐼 ,
therefore being an issue with the DD implementation in itself.

In both the RAND-1k and RMAT-1k datasets, all differential
reasoners consume at least twice as much memory as all other
reasoners, while performing similarly for initial materialization
runtime. This posits an interesting counterpoint to the dominance
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Table 3: Runtime Experimental Results

Dataset Program Batch diff diff𝐼 chibi chibi𝐼 rel
Mat + - Mat + - Mat + - Mat + - Mat + -

LUBM1

rdfs

50% 1.47 1.43 1.40 0.47 0.48 0.49 124 530 584 0.84 1.13 1.62 0.71 1.02 1.58
75% 2.15 0.74 0.73 0.67 0.29 0.25 276 559 369 1.10 1.01 1.38 1.01 0.97 1.42
90% 2.58 0.33 0.34 0.84 0.14 0.13 397 573 168 1.40 1.02 1.22 1.26 1.03 1.42
99% 2.91 0.05 0.05 0.95 0.05 0.03 486 584 23 1.54 1.00 0.97 1.41 0.97 1.23
99.9% 2.94 0.03 0.01 0.97 0.03 0.02 487 586 5.5 1.60 1.00 1.23 1.38 0.94 1.45
100% 2.89 0 0 0.99 0 0 487 0 0 1.34 0 0 1.20 0 0

rdfs-s

50% 0.84 1.11 0.92 0.27 0.29 0.35 0.72 1.2 126 0.65 1.11 1.67 0.63 1.25 1.72
75% 1.31 0.46 0.49 0.35 0.17 0.16 1.11 1.04 103 1.11 1.21 1.3 0.94 1.03 1.41
90% 1.67 0.24 0.23 0.40 0.09 0.09 1.3 1.10 54 1.12 1.08 1.2 1.26 1.16 1.32
99% 1.72 0.05 0.05 0.44 0.05 0.02 1.5 1.1 9.5 1.48 1.09 1.1 1.28 1.20 1.58
99.9% 1.65 0.03 0.02 0.45 0.03 0.02 1.5 1.0 2.9 1.39 1.10 1.0 1.46 1.32 1.52
100% 1.77 0 0 0.45 0 0 1.2 0 0 1.38 0 0 1.12 0 0

owl2rl

50% 3.16 8.48 9.19 OOM OOM OOM OOT OOT OOT 31.1 85.7 55.9 32.0 88.1 16.3
75% 6.59 4.91 5.00 OOM OOM OOM OOT OOT OOT 66.8 71.7 36.4 85.1 81.3 16.1
90% 9.50 2.42 2.29 OOM OOM OOM OOT OOT OOT 114 63.5 15.1 130 70 16.3
99% 11.2 0.04 0.03 OOM OOM OOM OOT OOT OOT 114 60.2 2.52 156 34 0.60
99.9% 11.3 0.03 0.02 OOM OOM OOM OOT OOT OOT 117 73.3 1.3 161 34 0.61
100% 11.2 0 0 OOM 0 0 OOT 0 0 138 0 0 162 0 0

RAND-1k

tc

50% 0.06 1.07 1.02 0.03 0.08 0.10 0.03 0.48 1.08 0.01 0.13 0.17 0.01 0.13 0.13
75% 0.23 0.94 0.91 0.05 0.07 0.07 0.14 0.42 2.25 0.02 0.12 0.23 0.02 0.13 0.16
90% 0.64 0.56 0.56 0.07 0.06 0.05 0.45 0.48 5.96 0.08 0.15 0.70 0.07 0.15 0.26
99% 1.05 0.17 0.17 0.08 0.03 0.03 0.77 0.52 0.72 0.12 0.16 0.15 0.11 0.16 0.16
99.9% 1.13 0.03 0.03 0.09 0.01 0.01 0.85 0.43 0.11 0.16 0.07 0.06 0.14 0.05 0.05
100% 1.15 0 0 0.10 0 0 0.86 0 0 0.16 0 0 0.14 0 0

RMAT-1k

tc

50% 1.30 13.0 11.2 0.63 2.51 3.83 0.99 5.01 7.70 0.12 1.40 2.03 0.20 1.36 1.72
75% 5.29 9.22 8.59 1.51 2.13 2.57 3.71 4.52 8.84 0.57 1.67 2.06 0.61 1.54 1.84
90% 8.88 4.09 3.91 2.11 1.08 0.95 6.17 5.25 9.48 0.89 1.72 2.11 0.89 1.67 2.01
99% 12.0 0.76 0.59 2.40 0.06 0.06 8.32 5.51 10.2 1.12 1.68 2.68 1.20 1.55 2.28
99.9% 12.7 0.04 0.04 2.36 0.01 0.01 8.79 4.63 0.55 1.25 0.90 0.69 1.31 0.58 0.78
100% 12.8 0 0 2.31 0 0 8.78 0 0 1.26 0 0 1.30 0 0

Table 4: Memory usage experimental results

Dataset Program diff diff𝐼 chibi chibi𝐼 rel

LUBM1
rdfs 488 466 631 941 722
rdfs-s 495 383 573 665 579
owl2rl 446 OOM 42190 29269 25450

RAND-1k tc 90 85 41 47 31
RMAT-1k tc 434 521 265 285 258

in both memory usage and runtime shown with more complex pro-
grams. The reason for this discrepancy, is that the TC program has
a very large number of iterations, therefore causing a significantly
greater flux in the dataflow, and since each iteration implies a new
difference being stored, memory usage can grow at a fast pace.

While there are major differences in runtime among all reasoners,
with some being orders of magnitude faster, the same cannot be said
about memory usage, which save for a very large program, there
are no clear winners, implying that the memory requirements for

DD in itself are not greater than regular reasoners, save for highly-
iterative dataflows, and remains proportional to the computation.
The starkest example of this is for the owl2rl program, which in
spite of containing over a hundred rules, does not output much
more data than rdfs/rdfs-s.

7 CONCLUSION
In this article we introduced a novel datalog reasoner, with two
different algorithms, whose core value proposition is in it using
the promising, but relatively obscure, DD model of computation,
and evaluated it against two other reference implementations that
shared as many components as reasonable. We also described an
indexing method that significantly sped up a often overlooked
method of implementing reasoning, the substitution method, that
was shown to have solved many pathological performance issues in
benchmarks, at very little cost of extra memory. In all experiments,
all DD based reasoners implemented bested their non differential
counterparts, showing unparalleled scalability over increasing up-
date sizes, alongside virtually no performance differences between
additions and retraction, while remaining competitive in memory
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usage. There are multiple ways in which the work could be ex-
panded in the future, such as in porting it over to support negation
and more expressive variants of datalog, and most importantly,
making it distributed, which DD provides out of the box.
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A PROGRAMS
Program A.1. RhoDFS inference rules

𝑇 (?𝑥, ?𝑦, ?𝑧) ←𝑟𝑑 𝑓 (?𝑥, ?𝑦, ?𝑧)
𝑇 (?𝑦, 𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒, ?𝑥) ←𝑇 (?𝑎, 𝑟𝑑 𝑓 𝑠 : 𝑑𝑜𝑚𝑎𝑖𝑛, ?𝑥),

𝑇 (?𝑦, ?𝑎, ?𝑧)
𝑇 (?𝑧, 𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒, ?𝑥) ←𝑇 (?𝑎, 𝑟𝑑 𝑓 𝑠 : 𝑟𝑎𝑛𝑔𝑒, ?𝑥),

𝑇 (?𝑦, ?𝑎, ?𝑧)
𝑇 (?𝑥, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 , ?𝑧) ←𝑇 (?𝑥, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 , ?𝑦),

𝑇 (?𝑦, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 , ?𝑧)
𝑇 (?𝑥, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 , ?𝑧) ←𝑇 (?𝑥, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 , ?𝑦),

𝑇 (?𝑦, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 , ?𝑧)
𝑇 (?𝑧, 𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒, ?𝑦) ←𝑇 (?𝑥, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 , ?𝑦),

𝑇 (?𝑧, 𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒, ?𝑥)
𝑇 (?𝑥, ?𝑏, ?𝑦) ←𝑇 (?𝑎, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 , ?𝑏),

𝑇 (?𝑥, ?𝑎, ?𝑦)

Program A.2. RhoDFS-s inference rules

𝑟𝑑 𝑓 𝑠 : 𝑑𝑜𝑚𝑎𝑖𝑛(?𝑎, ?𝑥) ←𝑟𝑑 𝑓 (?𝑎, 𝑟𝑑 𝑓 𝑠 : 𝑑𝑜𝑚𝑎𝑖𝑛, ?𝑥)
𝑟𝑑 𝑓 𝑠 : 𝑟𝑎𝑛𝑔𝑒 (?𝑎, ?𝑥) ←𝑟𝑑 𝑓 (?𝑎, 𝑟𝑑 𝑓 𝑠 : 𝑟𝑎𝑛𝑔𝑒, ?𝑥)
𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒 (?𝑦, ?𝑥) ←𝑟𝑑 𝑓 (?𝑦, 𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒, ?𝑥)

𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 (?𝑥, ?𝑧) ←𝑟𝑑 𝑓 (?𝑥, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 , ?𝑧)
𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 (?𝑥, ?𝑧) ←𝑟𝑑 𝑓 (?𝑥, 𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 , ?𝑧)

𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒 (?𝑦, ?𝑥) ←𝑟𝑑 𝑓 𝑠 : 𝑑𝑜𝑚𝑎𝑖𝑛(?𝑎, ?𝑥),
𝑟𝑑 𝑓 (?𝑦, ?𝑎, ?𝑧)

𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒 (?𝑧, ?𝑥) ←𝑟𝑑 𝑓 𝑠 : 𝑟𝑎𝑛𝑔𝑒 (?𝑎, ?𝑥),
𝑟𝑑 𝑓 (?𝑦, ?𝑎, ?𝑧)

𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 (?𝑥, ?𝑧) ←𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 (?𝑥, ?𝑦),
𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 (?𝑦, ?𝑧)

𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 (?𝑥, ?𝑧) ←𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 (?𝑥, ?𝑦),
𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 (?𝑦, ?𝑧)

𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒 (?𝑧, ?𝑦) ←𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂 𝑓 (?𝑥, ?𝑦),
𝑟𝑑 𝑓 : 𝑡𝑦𝑝𝑒 (?𝑧, ?𝑥)

𝑟𝑑 𝑓 (?𝑥, ?𝑏, ?𝑦) ←𝑟𝑑 𝑓 𝑠 : 𝑠𝑢𝑏𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂 𝑓 (?𝑎, ?𝑏),
𝑇 (?𝑥, ?𝑎, ?𝑦)
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