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Abstract—It is evident that the current state of Large Language
Models (LLMs) necessitates the incorporation of external tools.
The lack of straightforward algebraic and logical reasoning is
well documented and prompted researchers to develop frame-
works which allow LLMs to operate via external tools. The
ontological nature of tool utilization for a specific task can be
well formulated with a Directed Acyclic Graph (DAG). The
central aim of the paper is to highlight the importance of graph
based approaches to LLM-tool interaction in near future. We
propose an exemplary framework to guide the orchestration of
exponentially increasing numbers of external tools with LLMs,
where objectives and functionalities of tools are graph encoded
hierarchically. Assuming that textual segments of a Chain-of-
Thought (CoT) can be imagined as a tool as defined here, the
graph based framework can pave new avenues in that particular
direction as well.

Index Terms—large language models, graph neural networks,
deep learning

I. INTRODUCTION

Large Language Models (LLMs) have achieved remarkable
success, progressively gaining a wider reputation of public [1]
[2]. In spite of this positive recognition of emergent abilities, it
did not take too much time for their weak points to be spotted.
Many of these fallacies and incapabilities are well documented
and studied by various researchers [3] [4]. Whilst exhibiting
elevated performance in natural language understanding and
composition, ironically, LLMs fail to possess very basic arith-
metic reasoning, have simple temporal cognition or be aware
of auto-fabricated pseudo-facts (hallucination), where much
smaller specialized networks can excel [5] [6] [7].

It can be discussed that estimating likelihood of the next
token of a given text, which is the basis of LLM modeling,
actually may be more “mimicking” the human conversational
style rather than retaining most of its complex reasoning
pathways, which also explains the perceived elevated perfor-
mance of relatively smaller LLMs [8]. In fact, we argue that
the false promise of a sufficiently large generic transformer
based architecture targeted to predict the next token to exhibit
quasi-universal intelligence and a wide array of capabili-
ties can be associated with the false promise of Universal
Function Approximation of feed forward networks : Even
though theoretically a sufficiently large deep neural network
only composed of plain feed forward layers with non-linear
activations should be able to perform any task on any type
of flattened data. However, we know that in practice this is

not possible, therefore we require specialized architectures
with specialized formulations and loss definitions, such as
convolutional networks for image or recurrent networks for
sequential data. Therefore, it is not surprising for us to
observe LLMs to struggle to execute mathematical operations
on numerical tokens. Compartmented anatomy of the human
brain gives also a glimpse on the importance of pre-designed
specialized units for particular tasks [9].

Given these observations, if current tensorial approach and
homogenous transformer based architecture of LLMs will
be preferred with increasing number of parameters, it is
evident that incorporating external tools into LLMs’ context
seem as the only viable solution to overcome aforementioned
challenges. There have already been various attempts in the
literature introducing interaction between LLMs and external
agents [10]. Actually, the idea of aligning conversational
NLP models with external knowledge, primarily the internet,
predates LLMs [10] [11]. Works such as of [12] which enforce
the LLMs to dismantle a given task into subtasks following
the CoT principle, which are formulated as to be executed
python scripts have demonstrated the importance of external
agents. [13] is one of the most recent and prominent examples
of a generic agent-LLM interaction framework. [14] presents
an ambitious project to coordinate numerous different APIs
with LLMs.

As explained above, if the current univariate neural archi-
tectural and implementational characteristics of LLMs per-
sist in near future, developing much performant and generic
frameworks to infuse external tools into language models is
paramount of interest. One particular aspect of “tools” (any
functionality which expects structured/quasi-structured inputs
and produces structured/quasi-structured outputs) is their in-
nate hierarchical and composable nature. In this paper, firstly
we would like to highlight the importance of exploiting these
characteristics of tools in the approaching era of augmented
LLM-external agents synergy. Next, for this purpose, we
provide the details of a hypothetical framework where the
tools’ semantic definitions are encoded hierarchically using
a specialized Graph Neural Network (GNN). The yielded
embeddings respecting their DAG and recursive characteristics
can be stored in vector databases and aligned with the queries
intended to utilize them. Various other applications can be
imagined based on this principle which may pave the way for
further advancements.



II. IMPORTANCE OF STRUCTURAL EMBEDDING OF
EXTERNAL TOOLS

Any external agent can be defined as a functionality which
takes/produces a set of structured/quasi-structured input/output
: F (x) −→ y, along with its semantic definition DF , which is
any textual description of the functionality, which may include
also programming language syntax, structured scripts such as
JSON dictionaries etc. For the sake of simplicity, we assume
that this textual description is a single body of pure text which
would fit into a single context of an NLP model and produces
a single numerical vector as encodings. Note that, much more
sophisticated approaches both for textual data and encoder
modeling can be imagined for various purposes. Fig. 1. shows
the illustration of a simple calculator which performs basic
arithmetic operations on a list of given numbers, using python
Read-Evaluate-Print-Loop (REPL).

The calculator implemented as a 
single python function and REPL. It 
takes a list of float64 numbers of 
arbitrary size and the name of 
operation. It performs basic 
mathematical operations on this given 
set of numericals, such as addition, 
subtraction etc. and yields a single 
float64 number as output. 

CALCULATOR

NLP 
Encoder

Numerical Embeddings of 
Definition.

Fig. 1. The simplistic generic definition of a tool with a basic arithmetic
calculator.

As mentioned previously, hierarchical and complex topo-
logical relations of functional ontology are ubiquitous. In the
incoming era of synergy between LLMs and a massive number
of external services, the capability to exploit this inherent
nature to maximum will be of the utmost significance. First
of all, to achieve this, the definition of functionalities (tools)
shall be generic and universal as much as possible. Note that,
any LLM based service can be considered as also an external
agent, for another agent in this context. In order to highlight
the importance of this phenomenon and compose the first
guiding principles of a complex LLM centered multiagent
ecosystem, in this paper, we propose a framework where
textual descriptions of each agent is encoded into a fixed
sized vector with a universal NLP model. It is important
for the community using a framework such as that proposed,
where each contribution and application is well documented,
encoded, stored and shared. With this approach, we can exploit
the complex and rich hierarchical, interconnected nature of
a massive number of tools. Among important benefits we
can list, which are not limited to these small number of
examples : (1) For a given textual description of a task (For
instance, a prompt in case of a pure LLM operation) one
can perform augmented retrieval from vector databases by
aligning the NLP embeddings of the task and the structural
embeddings of agents. (2) Generative neural models can
generate new tools from structural and query embedding pairs

in the databases for given new tasks. Various other generative
applications capitalizing on the hierarchical nature of tools can
be imagined, probably incorporating graph neural modules up
to a degree [15] [16]. The generative framework can also fill
the missing sub-components of a tool being developed. (3)
Detailed complex analysis of ontology of tools.

In the next section, we present the principles of such a
framework based on a specialized Graph Neural Network
(GNN) and we underline various crucial aspects of to succeed.

III. HIERARCHICAL GRAPH NEURAL NETWORK
EMBEDDING FRAMEWORK OF EXTERNAL TOOLS

A. Overview

The central idea of this article is to present a pioneering
framework where diverse participants of the community are
developing external tools for LLM based systems. As men-
tioned previously, a tool or an agent can be defined and
implemented in very divergent manners (different interfaces,
different programming languages etc.), where they all refer
to a basic, generic functionality, processing inputs coming
from outside and ejecting outputs. Recursively, an LLM based
operation can be defined as a tool itself. Based on the basic
generic formulation , a tool is always represented by two set
of textual definitions : First, the text describing the content and
functionality of the tool, such as in Fig. 1. Second, prompt like
queries conforming to human intentions, such as “What is 3 +
7 ?” in the case of the calculator example. The latter queries
are optional for most of the components in the hierarchy,
where they are required more to match tools with the intentions
through vector databases.
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Fig. 2. Hierarchical graph structure of a simplified LLM based portfolio
optimizer tool.

Fig. 2 illustrates a simplified hierarchical definition of a
hypothetical LLM based tool (A1) which performs portfolio
optimization on a given date with given parameters and criteria
(Q1). This complex task of course requires a high number of
interconnected hierarchical subtasks. In fact, in the real life
implementation of such a framework, we expect tools to be



designed much more in depth, which can go down to dozens of
layers, most fundamental functionalities being at the bottom.
For the sake of illustration Fig. 2 shows a simplified definition
of a hypothetical agent. The names of the tools are written in
an alphanumeric manner, where the number at the end defines
the level of hierarchy starting from the top. As it can be seen,
the portfolio optimizer is composed of 3 levels in hierarchy
and 9 subtools in total. This imaginary automated portfolio
optimizer fetches stock market data, public media news in
textual form and macroeconomic indicators at the given date
period in Q1. Its subtools are responsible of analyzing media
for general market sentiment to compose a specific set of KPIs,
check and alert if certain specific stocks are mentioned either
positively or negatively in the news and finally constitute all
intermediate indicators to an optimizer to produce the portfolio
allocation. For instance, the simplified textual descriptions of
several tools in the system can be listed as follows :

• A1. “An LLM powered optimal portfolio optimizer. For
the given date period, it fetches public media data from
the predefined sources, hourly stock market data and
daily macroeconomic indicators. An LLM with specific
predetermined prompt templates produces a set of KPIs
related to general market sentiment. Also, the public news
are scanned to detect mentions of specific stocks. Later,
these intermediate KPIs are gathered and an RL based
portfolio optimizer produces the output.”

• A2 : “An LLM powered public media analyzer. For the
given period of dates and set of parameters, it fetches
and normalizes the textual data using specific APIs. The
voluminous data is processed in a multi-context fashion
by referencing to embeddings in vector databases. First,
it generates KPIs related to general market sentiment.
Second, it generates a list of stocks mentioned in the
media along with the KPIs related to their perceptions.”

• B2 : “A python module which fetches hourly stock market
data and macroeconomic indicators using a set of APIs
for the given time period and produces a set of intrinsic
KPIs.”

• C2 : “A python module which takes the KPIs related to
macroeconomics and stock market in a given time period
and performs a portfolio optimization using reinforce-
ment learning.”

• A3 : “This component fetches and normalizes textual
public data coming from newspapers, social media and
similar sources, and implements complex NLP pro-
cesses.”

• B3 : “An LLM powered module which analyzes public
media data, incorporates a complex transformer based
NLP model which embeds voluminous data to embed-
dings in a vector database in chunks, then processes it
with an LLM in a multicontext fashion, to generate KPIs
related to overall market sentiment in given time period.”

• C3 : “An LLM powered module which analyzes public
media data, incorporates a complex transformer based
NLP model which embeds voluminous data to embed-

dings in a vector database in chunks, then processes it
with an LLM in a multicontext fashion, to generate list
of KPIs related to stocks mentioned in the news as key-
value pairs in given time period.”

• D3 : “A component which takes a list of key-value pairs
indicating public sentiment of multiple stocks and pro-
cesses their stock market data purposefully, to generate
new intermediate KPIs.”

• E3 : “A component which fetches hourly open-close-
low-high candlestick stock market data using APIs and
generates intermediate KPIs for portfolio optimization
algorithm.”

• F3 : “A module that acquires intermediate KPIs related to
general stock market data and highlighted specific stocks
to generate further intrinsic features to feed the portfolio
optimizer.”

This hypothetical example is probably a simplified version
of a more complex real world example. In more practical
applications we would expect more layers of hierarchy and
number of submodules. However, still for certain types of other
applications this level of abstraction may be preferred as well.

Using this given hypothetical example, we can detail our
proposed framework of hierarchical graph embedding of tools.
First of all, as we explained in the example itself, we expect a
textual description of each submodule. For the sake of simplic-
ity, we kept basic brief descriptions, but much more elaborated
descriptions can be imagined. The codes or pseudo-algorithms
of tools can be incorporated textually in the description, to
further augment their perceptual capacity of embeddings. In
addition to programming syntax or algorithmic pseudo-codes,
structured representations can be involved both for expected
input/output data form and the mechanism of action, such as
JSON dictionaries.

B. Hierarchical Graph Neural Network Embedding of Exter-
nal Tools as Nodes

The central idea of this article is to demonstrate a proto-
typical pioneering framework where diverse participants of a
vibrant community participates by developing external tools
for LLMs in a structured and hierarchical fashion as described
in the previous section. Firstly, as mentioned previously, the
textual descriptions are embedded into numerical represen-
tations by common identical NLP model(s) by contributors,
which are publicly shared. The hierarchical DAG structure
of subtools is precisely defined. This, in turn, makes every
published tool a separate graph with its own set of nodes. With
sufficient given number of tools in the central database, we can
vest into Graph Neural Networks (GNNs) to capitalize on the
richness of intertwined context. However, it is important that
the chosen GNN respects the hierarchical and node anonymous
nature of the problem. By node anonymity, we refer to the fact
that it is much preferable not to encode identity indicators
of nodes (such a name, ID field etc.) but totally encode the
textual description. The advantages of such an approach are (1)
similar components in the database would yield richer neural
understandings at the end of the procedure. (2) an ID free,



not overfitting representations can be produced and utilized
(3) new tools can be generated resting on generative neural
networks.

Ordinary GNNs such as vanilla Graph Convolutional Net-
works (GCNs) or Graph Attention Networks (GATs) do not
conform to hierarchical structures, learning flat representations
[17] [18]. Inducing hierarchical knowledge in graph learning is
well studied in the literature [19] [20] [21] [22]. However, most
of these propositions generate latent intermediate hierarchies
out of unstructured data, possibly due to the nature of prob-
lems studied (generally node or graph classification or edge
prediction). However, the problem we formulate in this study
presents the hierarchical order of nodes (tools) well defined a
priori. It is interesting to observe this type of a graph neural
problem where hierarchical adjacency matrices are known in
advance has not been explored sufficiently.

[23] proposes a neural network structure directly con-
structed based on the hierarchical structure or estimated latent
hierarchy which in our case would be not suitable as each
graph (tool) shall have different numbers of levels and nodes
(sub-tools). We can state that the most analogous architec-
ture to our formulation of the problem is [24]. The authors
propose to leverage on a hierarchical GNN to process multi-
hop question answering, which can be found very similar
to the CoT process in the context of LLMs. Their central
problem also requires to pre-encode questions and answers
with NLP models as node features and there exists an inherent
hierarchical structure.

Based on the constraints of the problem at hand, hierarchical
graph encoding of external tools for LLM centered applica-
tions, we define the graph embedding framework as follows :
(1) As each graph (tool) contains arbitrary number of layers
and nodes, the framework shall adhere to this principle. (2)
The loss function and optimization objective shall be properly
defined where we do not have an obvious task such as edge
prediction or graph classification a priori. For these purposes,
in this paper we firstly propose a basic graph neural network
architecture : A simple message passing algorithm where the
main objective is defined as node representation learning,
using a shared parameter encoder.

Starting from the lowest layer in the main graph (tool)
each subgraph is treated independently, where initial node
features are embeddings produced by processing the textual
description of the subtool. Using the traditional message
passing in neighborhood and aggregation mechanism of certain
GNNs, the objective is to predict the node feature of the
parent node, which is also computed initially by encoding its
textual description using the NLP model. This procedure is
performed iteratively till reaching the top layer, the definition
of main external tool. So, we can say it is formulated as
a graph regression problem, where the regressions from the
lower layers are propagated to parent nodes.

Assuming a database of many hierarchical external agent
definitions contributed by the community, the proposed net-
work can be trained efficiently to produce many resourceful
applications.

Fig. 3 depicts the message passing in the proposed frame-
work for illustrative purposes, where 4 nodes on an interme-
diate layer l are arranged as in the figure, the output flow
is connected to the parent external tool, as it is a proper
node in the graph. As mentioned previously, including parent
nodes, each node j on layer l, vl,j has an initial node feature
representation fl,j , which is the embedding of its textual
description by an advanced NLP model. In order to encode
hierarchical structure further we include the encodings of
layers as edge features, where the layer of the destination
node is used. As it can be seen in Fig. 3, the node vl,k is
connected directly to the parent node, therefore its edge feature
is encoded based on layer l + 1.

Vl, i , fl, i

el, i, j : l

Vl+1, p , fl+1, p

Vl, j , fl, j

el+1, k, p : l+1

Vl, k , fl, k

Fig. 3. Recursive hierarchical message passing in the proposed framework at
a particular layer, simplifed exemplary illustration.

As mentioned previously, the deep learning objective is
formulated as follows, starting from the lowest layer, l = 0,
using the standard GNN message passing the initial node
representations of nodes are passed till reaching the parent
node. The parent node also holds an initial representation of
its textual description’s embedding and the loss function is
defined based on regressing the parent node’s embedding. Fol-
lowing the nomenclature in [25], we can write the equation as
(v′, e′ represent the features of nodes and edges respectively)
:

h
(t)
l,i =

∑
j∈Nl,i

f(v′l,i, e
′
i,j , v

′
l,j , h

(t−1)
l,j ) (1)

Where Nl,i denotes the set of vertices in the defined
neighborhood of vl,j , v′l,i denotes the node features of vl,i,
e′i,j denotes the edge features between vl,i and vl,j , encoded
as the proper hierarchical index as explained previously, h(t)

l,i

denotes the latent embedding at iteration (level) t, f is the
shared neural network encoder with non-linearity, preferably
a recurrent one due to intricacies of the studied problem (in
case of a vanilla RNN for demonstration purposes) :

h(t) = tanh(Wh(t−1) + Ux+ b) (2)



Using this message passing structure, at each hierarchy l,
the f is trained to minimize the regression error of the parent
initial node feature vl+1,p :

argmin(∥v′l+1,p − hl+1,p∥) (3)

The shared neural encoder is trained starting from the lowest
layer upwards iteratively whilst all independent tools in the
public database are trained together in batches. At the end of
the procedure, where we have an able graph hierarchical neural
encoder that one can use to produce rich node representations
of tools and subtools. We can assume even if the objective
is to regress on initial embeddings of the parent node, the
latent output representations shall be much more plentiful
than the initial NLP encodings which capture the hierarchical
relationships.

The Chain-of-Thought (CoT) steps can be formulated and
processed in this regard of the framework represented here, as
the concept fits perfectly to it : Having an inherent hierarchical
graph structure and node representations of textual encodings.
This fact further enhances our belief in the study, that it shall
be extended further by the community in the incoming age of
abundant LLMs.

Note that, as we have stated initially in the paper, the further
details of the neural architecture is out of scope of this study.
For illustrative purposes a simple GNN architecture adhering
to hierarchical principles is presented, however one can extend
the framework with much more advanced architectures and
formulations.

IV. CONCLUSION AND PERSPECTIVES

Given the contemporary tensorial paradigm of LLMs, it is
not hard to observe that a tendency will arise to incorporate a
massive number of external agents orchestrated with multiple
LLMs. To meet the demands of such an era, the hierarchical
and ontological natures of tools should be well exploited. For
this purpose, we propose a hierarchical GNN based framework
where initial node features are encodings of textual descrip-
tions of agents. Using a shared framework to encode numerous
descriptions of tools in a public database, one can generate rich
representations of tools capturing their complex intricacies.
These rich encodings are then can be utilized for many
applications such as automated tool generation, intelligent tool
retrieval based on queries etc. This study presents a pioneering
framework for such a framework and proposes a minimalistic
architecture, where much more advanced formulations can be
imagined.
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