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Abstract: If Legendre conjecture does not hold all integers in the interior of (n2, (n + 1)2) are
composed numbers. The composite integers counting shown that the rate of the number of the
odd composites to the number of odd integers in the interior of (n2, (n+ 1)2) is smaller than one.
Consequently, the Legendre conjecture holds.
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Introduction

The problem set by Adrien-Marie Legendre (1752-1833), known as the Legendre conjecture, states
that between the squares of any two consecutive integers there is a prime number. Exactly, for
any integer n, there is a prime p such that a = n2 < p < (n + 1)2 = b. The conjecture is proven
numerically for all integers up to 9 · 109. The conjecture is one of the unsolved problems.

The integer interior of the interval (a, b) contains 2n integers, half are even composites, and
half are odd integers containing the primes if there are any therein. The idea is simple, the
interior of the interval (a, b) tests on the primes, and the testing device is the multiplication
function f : (x, y) → xy. Without the unit integer in the multiplication function domain the
prime numbers do not produce in the interval (a, b) .

Corollary 1. The Legendre conjecture holds if the sets of all odd composites and all odd integers
in the integer interior of the set (a, b) are not identical.

� The even integers are already composites, and it is sufficient to focus on the odd integers only. When

the unit integer is excluded from the odd integers domain the multiplication function will not produce

composites in the interior of (a, b). Thus, if the set of the odd multiples in the interior of (a, b) is not the

set of all odd numbers there in there is at least one prime in the interior of the (a, b). �

The multiplication function is essential in this work, and the next section will be devoted to the
multiplication matrix.

Multiplication Matrix

The multiplication matrix A = |y〉〈x| of the integer row |y〉 and the column 〈x| axes is a collection
of the entries, multiples Ayx = f(x, y) = xy, collected in the rows ax = x|y〉, or the columns
ay = 〈x|y. Table 1. represents the multiplication matrix of the row y = 1, 2, 3, · · · , 19 and the
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column x = 1, 2, 3, · · · , 10. The matrix entries Ayx and Axy are identical, the matrix A is diagonally
symmetric, and we may exclude the matrix entries below the main diagonal. Since the unit
integer is not in the domain of the multiplication function, all required multiples are in the
matrix rows {ay : y = 2, 3, 4, · · · , n} . The multiple restriction to the interior of (a, b) imposes the
following inverse function conditions on the multiplication function domain in the x⊗ y,

∀x ∴ 3 ≤ x < n, 3 ≤ y∗ ≤ y ≤ y∗ < (n+ 1)2,

y∗ = min
y
{y : n2 < xy < (n+ 1)2},

y∗ = max
y
{y : n2 < xy < (n+ 1)2}..

The boundaries of the variable y impose the limits m(x) ∈m and M(x) ∈M on the matrix entries,

m = {m(x) = xy∗} M = {M(x) = xy∗},
∀x ∈ (3, n) ∴ n2 ≤ m(x) ≤ Ayx ≤M(x) < (n+ 1)2.

An illustration is the multiplication matrix of the odd integers only presented in Table 2.

Table 1. Multiplication matrix at n = 9
x\y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 · · ·

2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 · · ·
3 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 · · ·
4 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 · · ·
5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 · · ·
6 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 · · ·
7 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 · · ·
8 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 · · ·
9 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 · · ·

10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 · · ·

Corollary 1. restricts variable x and y to the odd integers greater than 3. The main-diagonal
matrix symmetry restricts the variable x to the odd integers 〈x| = 〈3, 5, 7, 9, · · · , n′| only, where
n′ = n if n is odd or n′ = n − 1 if n is even. The variable y takes odd integer values |$〉 =

|3, 5, 7, · · · ,Ω〉, where Ω is the largest y : 3 ≤ y < (n + 1)2, for an illustration see Table 2.
Thus A = |$〉〈X|. Notice that all minimums m(x) and all maximums M(x) almost satisfy the
xm(x) ≈ n2 = const and xΩ(x) ≈ n2 = const condition at each row ax, so that the vector entries of
m increase and that of M decrease by the variable x.

Table 2. Odd Integer Multiplication Matrix atn = 9
〈X| |$〉 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

3 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105 111 117
5 5 25 35 45 55 65 75 85 95 105 115
7 7 49 63 77 91 105 119
9 9 81 99 117

11 11 121
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Redundancy Reduction

The matrix over-diagonal symmetry and domain reduction to the odd integers only reduced the
composite repetition significantly, still leaving the composite redundancy high. The following
Corollary will reduce the composite redundancy while preserving the completeness of the multi-
plication matrix.

Corollary 2. The multiplication matrix of the composites is complete if the odd integer 〈x| axes
reduces to the primes only, the multiplication matrix is A = p⊗$.

� For this purpose, we let the integers from the column vector X = 〈3, 5, 7, 9, · · · , n′| to be the opera-
tors x̂ acting on the row vector |$〉 = |3, 5, 7, · · · ,Ω〉 of the odd integers as the multiplication functions,
x̂|$〉 = x|$〉x = ax for all x ∈ X. Such n operators create n rows ax of the composed integers left-right
restricted to the [m,M ] of the matrix A. The right limits satisfy M(x′) ≤M(x) for all x′ ≥ x.
For the next follow the mapping diagram

p̂
x−−−→ p(aω) = ω(pa) = Aaωp ≡ Aωx

â
y xy
x̂

ω−−−−→ xω = Aωx .

The integer x ∈ X is either prime or a composed integer. Suppose that x is a multiple ap of an inte-

ger a < n and the prime p < x. The integer x creates the matrix row vector ax = x|$〉 in the range

[m(x),m(x) + x,m(x) + 2x, · · · ,M(x)]. The row p$〉 contains all p-creations of the odd integers and

must contain the composite p̂x = p̂(aω) ≡ Aωx ≤ M(x), which must be smaller than M(p). Hence, the

composite xω had been already created in the row ap by the prime p, and discards. Such is the destiny of

all x|$〉x. Since x is an arbitrarily composed integer in X, the same holds for all odd composed integers

in X. Hence, the primes p ⊂ X span composed odd integers in the interior of (a, b), and p ⊗ $ is the

domain of the multiplication function. �

Integer and Rational, Global and Local Counting

It is already clear that counting the composed integers in the interior of (a, b) is essential. In
this section, we will specify the meaning and use of already-known concepts, such as additive or
integer and multiplicative or rational measurements of an integer by another integer, and we will
consider the concepts of local and global integer counting and their relations.

Definition: An integer n, N̂m : (m, y) → z = mn + r is the m integer measure of the integer
z by the integer m measurement N̂m. The integer r is the division reminder in the residual set
Resm= {0, 1, 2, 3, · · · ,m− 1} ≡

∣∣0 m− 1
)
.

A number ξ, R̂m : (m, z) → z = ξm, is the m rational measure of the integer z by the integer
m rational measurement R̂m.

Remark: Further, the symbol |0 z) is the set of a variable z which takes values zero to Z but not
z. However, in an equation, it means that z takes a value from the set |0 z) . In addition, the integer and
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the rational measurements are the z preserving operators, relating the integer and rational counting. For,

N̂mz = nm+ r = z = ξm = R̂mz ⇒ ξ = n + r:m ⇔ n = ξ − r:m, r:m =
r

m
.

While the measurement between two free integers is unique, the integer counting on an integer
interval requires little consideration.
The first, for m = 1 the integer measure of the interior of (a, b) is the number of the units m from
the point a to and including the point b − 1. Therefore, the consistent measure of the interior
of (a, b) is the measure of the interval (a, b − 1], and further, the interior of (a, b) is the interval
(a, b− 1].

Second, the counting measure of the interior of isolated interval (a, b) and the same one placed
on the integer number axes may differ. Table 3., with n = 8 and m = 4, 5 and m = 7, gives an
illustration. The integer interval (a = 64, 65, 66, · · · 80 = b∗] contains 2n = 16 integer points. In the
local measurement, the first integer counted point in the interval is a+m, the rest of them follow
in the natural order, and the numbers 4, 4, 2 of m-multiples are found. However, when the interval
(a, b− 1] is in the integer set mN of the global m -multiples, one finds numbers m = 4, 4, 3 of the
m-multiples respectively in its interior. Consequently, the composite numbers count in the local
and global integer counting measurements may not be identical.

Table 3. Composed Integers in the interior of (a, b) for n = 8

MEASURE GLOBA LOCAL

m = 4 60 64 68 72 76 80 81 ⇒ n∗ = 4 b∗∗ − a = 16 0 4 8 12 16 ⇒ n = 4
m = 5 60 64 65 70 75 80 81 ⇒ n∗ = 4 b∗∗ − a = 16 0 5 10 15 16 ⇒ n = 3
m = 7 56 64 63 70 78 81 ⇒ n∗ = 3 b∗∗ − a = 16 0 7 14 16 ⇒ n = 2

Definition: The local integer counting measure N′ of the interior of (a, b) is the number of the
m - multiples in the interior of the isolated interval (a, b], and

N̂m(a, b) = N̂m(a, b− 1] = (b− 1)− a = mN′ + r, r ∈ Resm.

The global integer measure N∗ of the same interval is the number of m-multiples from mN found
in the interval (a, b− 1], and

N̂∗m(a, b∗) = N̂m(a, b∗] = N̂ ′b∗ − N̂ ′a = N′b∗ −N′a = N∗.

Definition: The local rational counting measure of the interior of (a, b) is a rational number
ξ such that R̂m(a, b) = (b− 1)− a = ξm. Its global rational counting measure is a number ξ∗ such
that R̂∗m(a, b) = R̂m(b− 1, a)− R̂ma = mξb−1 −mξa = ξ∗m.

Corollary 4. The global and local numbers of the composite integers in the interior of (a, b) are
equal, or the global integer counting is for one greater, N = N′ + |0 1〉. However, the local and
global rational counts on the interior of (a, b) are identical. Each rational counting is greater
than or equal to the corresponding integer counting. The exact N, the local N′ and the rational
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ξ counting numbers are ordered according to

N′ ≤ N ≤ ξ.

The exact N composite integer counting on the interior of (a, b) is identical to its global counting N∗.
Further, the measure of the integer interior of (a, b) is invariant under measurements, and

2n = pN′p + rp = pN∗p − p|0 1) + rp ≡ pNp + rp − p |0 1) , (1)

� Local m-integer counting of the composite starts at a + m and ends at a + mN′ with the residual
r′b, while the global m-integer counting starts at a + x, 1 < x ≤ m and ends at a + mN with residual
rb = r′b + (m − x) = m + r′b − x. If x = m the local and global m-partitions of (a, b) are identical, and
the local and global numbers of the m- composites in (a, b) are the same. Else, if x = 1 the residual
rb → r′b + (m − 1) = m + (r′b − 1) = m + r′′b ≥ m, and in this case the global integer partition gains one
more point, and N∗ = N′ + 1. We introduce the vector |0 1〉 to write N∗ = N′ + |0 1〉.
The rational local and global integer counting are in the rational numbers and must be identical.

Any two integers are commensurable in the real numbers so that

R̂∗m(a, b) = ξb−1(b− 1)− ξaa ∼ m( ξb−1 − ξa) = R̂m(a, b).

However, they may not be commensurable in the integers, so the integer counting number is smaller or
equal to the rational one, and the counting numbers ordering above holds.
The global counting is the natural composite count, and the exact number of the composites in the interior
of (a, b) is their global counting.
Equation (1) is the exact statement of the invariance of the integer size of the integer interior (a, b) mea-
surements. �

Remark: We introduce the following notation

π(n) ' n
lnn , p ≤ n

Π = 3 + 5 + · · ·+ 1
p + · · ·+ pπ(n),

Hn = 1
3 + 1

5 + · · ·+ 1
p + · · ·+ 1

P , pπ(n) = P.

Corollary 5. The average and exact number of the composites in the interior of (a, b) obey the
following equations,

NΠ = 2nπ(n) + Π
∣∣− 1 0 1

)
, (2)

N = 2nHn + π(n)
∣∣− 1 0 1

)
(3)

� Equation (2) is a solution of equation (1) for pNp, summed over all π(n) primes with the use of the
integral average theorem. Hence

pNp = 2n+ p|0 1〉 − rp = 2n+ p |−1 0 1)

⇒
P∑
3

pNp = NΠ = 2nπ(n) + Π |−1 0 1) .
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Equation (3) is the sum of the exact number of odd composites over all π(n) primes, and Hn is the prime
harmonic function. Thus

Np =
2n

p
+
∣∣− 1 0 1

)
∴ N = 2nHn + π(n) |−1 0 1) .

In the next section, we will conclude the Legendre conjecture problem by estimating the average
and exact numbers of the composites in the interior of (a, b) .

The Average Composite Number Proof

Even though the average composite number confirmation of the Legendre conjecture may not be
its proof, it may be an indication of the validity of the Legendre conjecture.
The residuals rp ∈ |0 p) satisfy the inequality 0 ≤ rp < p, and their sum over all π(n) primes
R = 2nπ(n)−

∑
p pNp + |0 1〉Π, the inequality 0 ≤ R < Π, see equation (1). Further

0 < 2nπ(n)− NΠ + |0 1〉Π < Π

0 < 2π(n)
Π − N

n + |0 1〉
n < 1

n

−|1 0〉
n

+
2π(n)

Π
< [N : n ] <

2π(n)

Π
+
|0 1〉
n

. (4)

The final decision requires well-defined bounds on the number and the sum of the primes smaller
or equal to a large integer n. According to Havil, J.Gamma [1], page 186, for function π(n),

0.922 < π(n)
n/ lnn < 1.105 ⇔ 0.922n/ lnn < π(n) < 1.105n/ lnn ⇒ π(n) ∼ n/ lnn.

π(n) is very well bounded function , so that for our purpose we may take that its exact value is
π(n) = n/ lnn. The sum Π of the first π(n) primes estimates are those of Dusart, presented in the
Christian Axler [2] paper. There, f(n) = lnn+ ln lnn− 3/2 and g(n) = (ln lnn− 5/2)/ lnn, and the
Dusart bounds on the sum of the first π(n) primes are

n2

2
f(n) ≤ Π <

n2

2
(f(n) + g(n)).

The right boundary is valid for n ≥ 115149 and the left boundary, obtained from the condition
of the positivity of the numerical function g(n), for n ≥ 305494. Both numerical bounds are in
the range n = 9 · 109 of the numerically proven validity of the Legendre conjecture. Further, the
reciprocal of the sum Π of the primes is needed, and we calculate

2
n2

1
f(n)+g(n) < 1

Π ≤
2
n2

1
f(n)

4π(n)
n2

1
f(n)+g(n) < 2π(n)

Π ≤ 4π(n)
n2

1
f(n)

4
n lnn

1
f(n)+g(n) < 2π(n)

Π ≤ 4
n lnn

1
f(n) (5)

Now we have all we need to use equation (4) to construct the composed to odd integers rate in
the interior of (a, b) . The composed to odd integers rate obeys

6



[N : n ] > 2π(n)
Π − |1 0〉

n > 4
n lnn

1
f(n)+g(n) −

|1 0〉
n

[N : n ] < 2π(n)
Π + |0 1〉

n ≤ 4
n lnn

1
f(n) + |0 1〉

n ,

inequalities, and the following bounds for the rate of composed to odd integers apply

1

n

(
− |1 0〉+

4

lnn

1

f(n) + g(n)

)
< [N : n ] ≤

( 4

lnn

1

f(n)
+ |0 1〉

)
We substitute the left limiting function by the natural bound zero, and

0 ≤ [N : n ] ≤ 1

n

( 4

lnn

1

f(n)
+ 1
)

(6)

The upper limiting function Fo(k) is decreasing to zero by n. Numerical calculation at the points
n = ek k = 1, 2, 3, · · · , given in Table 4, shows that for all n > ek ≈ 20 function Fo(k) is smaller
than one.

Table 4. Function Fo(k) = 1
n

(
4

lnn
1

f(n) + 1
)

k 1 2 3 4 5 6 7 · · ·

Fo(k) −2.575 2.667 0.546 0.084 0.0.021 0006 0.002 · · · −→ 0

Corollary 6. The average composite counting affirms the Legendre conjecture.

� An existing numerical proof holds for all n ≤ 9 · 109. The function Fo(k) is smaller than one for all

n > 20, and the limitations of the used boundaries are valid beyond n = 115149. Hence, the Legendre

conjecture holds everywhere. �

Conclusion

The affirmative statement of the Legendre conjecture in the case of average composite counting
is a good indication but not proof of the Legendre conjecture. The exact number of composite
counts case presents in this section. We start with the sum of all composites in equation (3) to
calculate the odd composite to odd integers rate in the interior of (a, b)

N = 2nHn + π(n)
∣∣− 1 0 1

)
⇒ N : n = 2Hn +

π(n)

n

∣∣− 1 0 1
)
. (7)

The rate calculation/estimation relies essentially on the prime harmonic function Hn, closely
related to the more convenient and explicitly defined logarithmic function. Exactly, A = lnx +
const =

∫
dx
x is the area function of the 1

x . The prime partition 3, 5, 7, 11, · · · ,P ≤ n of the interval
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[3, n] creates π(n)−1 segments, each of a measure µp = pnext−p, p = 1, 2, 3, · · · , π(n)−1, see Picture
1. The functions Hn and H ′n,

Hn =
13

3
+

15

5
+

17

7
+ · · ·+ 1p

P
∼ 1

3
+

1

5
+

1

7
+ · · ·+ 1

P
= H̄n

H ′n =
15

5
+

17

7
+ · · ·+ 1p

P
∼ 1

5
+

1

7
+ · · ·+ 1

P
= H̄ ′n.

defined on this partition are the upper and lower simple functions of the 1
x function. We distin-

guish these functions from their unit, or the counting measure functions H̄n at the right side of
equations.

The explicit area under the upper simple function on the prime partition in Picture 1. satisfies

A =
µ3

3
+
µ5

5
+
µ7

7
+ · · ·+ µP

P
>

∫ P

3

dx

x
>

∫ n

3

dx

x
= ln

n

3
.

By the integral average theorem, there is a measure µ : 2 ≤ µ ≤ sup{µp} ≤ P < n such that

A = µ
(1

3
+

1

5
+

1

7
+ · · ·+ 1

P

)
= µHn > ln

n

3
. (8)

Figure 1: Harmonic Function

However, the case of the H̄ ′n function requires little more work. The area below that function is
limited above by the area below the 1

x function, and

A′ =
µ3

5
+
µ5

7
+
µ7

11
+ · · ·+ µP−1

P
<

∫ P

3

dx

x
<

∫ n

3

dx

x
= ln

n

3
.

Again, by the integral average theorem, there is a measure µ : 1 ≤ µ ≤ sup{µp} ≤ P < n} such that

A′ = µ

P∑
5

1

p
= µ

( P∑
5

1

p
+

1

3

)
− µ

3
= µ

P∑
3

1

p
− µ

3
= µHn −

µ

3
< ln

n

3
(9)
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The average µ is part of n, there is an s ≥ 0 such that µ = n− s = n(1− s
n ). We use the equation

(8) and (9) to impose the following lower and upper limits on the harmonic function Hn ,

1
µ ln n

3 < Hn <
1
µ ln n

3 + 1
3 ,

G
(
s
n

)
1
n ln n

3 < Hn < G
(
s
n

)
1
n ln n

3 + 1
3

1
3G
(
s
n

)
3
n ln n

3 < Hn <
1
3G
(
s
n

)
3
n ln n

3 + 1
3 {(s, n)→ 3(t, x)}

1
3G
(
t
x

)
1
x lnx < Hn <

1
3G
(
t
x

)
1
x lnx+ 1

3 .

Here, G(x) = 1
1−x ), x = s

n = t
x < 1, is the geometric series function. The function π(n) contributes

the function π(n)
n = 1

lnn , monotonically decreasing to zero. Further, the function F = G
(
t
x

)
1

π(x) =

G
(
t
x

)
ln x
x is of the most interest and we make some suitable rearrangements of it.

F =
(

1 + t
x + t2

x2 + t3

x3 . . .
)

ln x
x

=
(

1
x + t

x2 + t2

x3 + t3

x4 . . .
)

lnx,

θ = t
x < 1.

F =
(

1
x + θ

x + θ2

x2 + θ3

x3 . . .
)

lnx

=
(

1
x + θ

x + θ2

x2 + θ3

x3 . . .
)

lnx

= ln x
x + θ

x

(
1 + θ

x + θ2

x2 + θ3

x3 . . .
)

lnx,

∴ F = ln x
x

(
1 + θ

1− θx

)
=

lnx

x

(1 + θ)x− θ
x− 1

, 1 > θ = o(x).

The variable θ, is an unknown implicit function of the harmonic function and variable x, takes
values between zero and one and oscillates between its θ -infimum F∗ and θ - supremum F ∗,

F∗ = infθ
ln x
x

(1+θ)x−θ
x−1 = ln x

x
x−1
x = (x−1) lnx

x2

 1
2

(
ln x
x + x−1

x2

)
 1

2

(
1
x + 1

2x

)
= 5

4x

x→∞−−−−→ 0,

F ∗ = supθ
ln x
x

(1+θ)x−θ
x−1 = ln x

x
2x
x−1 = 2 lnx

x−1

 2
x

x→∞−−−−→ 0.

Numerical values of the F ′s and 1
ln x functions calculated at the sequence x = ek, k = 1, 2, 3, · · · ,

F ∗(k; 1) = 2k
ek−1

and F ∗(k; 1) = k(ek−1)
e2k

. are presented in Table 5. F functions are smaller than one

at x = e and further decrease monotonically to zero; function ln x
x  1

x : 1→ 0. At k ≥ 3, or the
n ≥ 3e3, Finally, the harmonic function is bounded as follows,

1

3
F∗(x) < Hn <

2

3
F ∗(x) +

1

3
,

9



Table 5.Functions F∗(k) and F ∗(k)

k 1 2 3 4 5 6 7 · · ·

F ∗(k) 1.164 0.626 0.314 0.149 0.068 0.030 0.013 · · · −→ 0

F∗(k) 0.233 0.234 0.142 0.072 0.033 0.015 0.006 · · · −→ 0

1
ln 3n

1.00 0.50 0.333 0.250 0.200 0.167 0.143 · · · −→ 0

[N : n]∗ 2.804 1.575 0.873 0.495 0.300 0.201 0.149 · · · −→ 0

[N : n]∗ 1.608 1.457 1.195 1.007 0.898 0.837 0..803 · · · −→ 0

Notice that 1
3 originates from the messing prime p = 3 segment in the area of the lower bounding

simple function.

Corollary 7. Between the squares of any two consecutive integers there is at least one prime
number.

� After finding the limits of the harmonic function, we are constructing step by step the composite to
odd integers ratio and its lower and upper bounding functions

0 ≤ 2
3F∗(n; θ) < 2Hn < 2

3F∗(k; θ) + 1
3 ≤

2
3

π(n)
n

∣∣− 1 0 1
)
≤ 2

3F∗(n; θ) + π(n)
n

∣∣− 1 0 1
)

< 2Hn + π(n)
n

∣∣− 1 0 1
)
<

2
3F
∗(k; θ) + π(n)

n

∣∣− 1 0 1
)

+ 2
3 ≤

2
3 + π(n)

n

∣∣− 1 0 1
)

1
lnn

∣∣− 1 0 1
)
≤ 2

3F∗(n; θ) + 1
lnn

∣∣− 1 0 1
)

< N : n <
2
3F
∗(k; θ) + 1

lnn

∣∣− 1 0 1
)

+ 1
3 ≤

2
3 + 1

lnn

∣∣− 1 0 1
)

Contributions of the 1
ln x are smaller than one, and the function decreases to zero at infinity. The nu-

merical values [N : n]∗ of the lower and The numerical values [N : n]∗ of the lower and [N : n]
∗

of upper

composite to odd integers ratios on the interior of (a, b). are shown in Table 5. For all k ≥ 5, which is

n ≥ 3e5 ≈ 445, the bounding ratio functions are smaller than one and monotonically decrease to zero by the

increasing n. Numerical calculation confirms that the Legendre conjecture holds up to n = 9 · 109. Hence,

the Legendre conjecture is true for all integers. �
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