
Training self-supervised class-conditional GAN

with virtual labels

Jeongik Cho
jeongik.jo.01@gmail.com

Abstract

Class-conditional GAN is a conditional GAN that can generate class-conditional distribution.
Among class-conditional GANs, InfoGAN with categorical latent distribution can generate class-
conditional data through a self-supervised (unsupervised) method without a labeled dataset. In-
stead, InfoGAN requires optimal categorical latent distribution to train the model.

In this paper, we propose a novel GAN that allows the model to perform self-supervised class-
conditional data generation and clustering without knowing the optimal categorical latent distri-
bution. The proposed method uses three losses. The first loss is the cross-entropy classification
loss to predict the label of the fake data. The classifier is trained with the classification loss. The
second loss is the CAGAN loss for class-conditional data generation. The virtual label of the real
data predicted by the classifier is used for CAGAN loss. The generator and discriminator are
trained with CAGAN loss. The third loss is the classifier gradient penalty loss. The classifier
gradient penalty loss regularizes the slope of the classifier’s decision boundary so that the decision
boundary converges to a local optimum over a wide region.

Additionally, the proposed method updates the categorical latent distribution with the output
distribution of the classifier on the real data. As training progresses, the entropy of the categorical
latent distribution gradually decreases by the classifier gradient penalty loss and converges to the
appropriate value. The converged categorical latent distribution becomes appropriate to represent
the discrete part of the data distribution.

The proposed method does not require labeled data, optimal categorical latent distribution,
and a good metric to calculate the distance between data.

1 Introduction

Class-conditional GAN is a conditional GAN [2] that can generate class-conditional distribution with
a labeled dataset. In general, the generator of class-conditional GAN takes a continuous latent dis-
tribution and a discrete categorical distribution as inputs and generates class-conditional distribution.
ACGAN [3] and CAGAN [4] are examples of class-conditional GANs. However, these class-conditional
GANs can only be trained given labels, which is the conditional categorical distribution of the dataset.
Therefore, these methods cannot be utilized with unlabeled datasets.

Unlike ACGAN or CAGAN, InfoGAN [5] with categorical latent distribution can generate class-
conditional data distribution even if the data is not labeled. However, InfoGAN requires optimal cate-
gorical latent distribution. It includes the number of categories and the probability for each category.
For example, to perform class-conditional data generation with InfoGAN on the MNIST handwritten
digits dataset [9] without labels, InfoGAN needs to know the number of categories (10 categories) and
the probability of each category (0.1 for each category) for categorical latent distribution.

In this paper, we introduce a Virtual Conditional Activation GAN (VCAGAN) that is capable of
generating class-conditional data without being given labels and optimal categorical latent distribution.

A VCAGAN consists of a discriminator, classifier, and class-conditional generator. The discrimina-
tor has dc-dimensional output like CAGAN (dc represents the dimensionality of the categorical latent
distribution). The class-conditional generator takes dz-dimensional continuous latent distribution and
dc-dimensional categorical latent distribution as inputs to generate class-conditional data.

VCAGAN uses three different losses. The first loss is the cross-entropy classification loss to predict
the label of the fake data. The classifier is trained to minimize the classification loss. The second
loss is the CAGAN loss for class-conditional data generation. The label of the real data for CAGAN

1



loss is predicted from the classifier. The generator and discriminator are trained with CAGAN loss.
The third loss is the classifier gradient penalty loss. The classifier gradient penalty loss regularizes the
slope of the classifier’s decision boundary so that the decision boundary converges to a better local
optimum.

In addition, VCAGAN updates the categorical latent distribution with the classifier output distri-
bution of real data. This makes the categorical latent distribution of the fake data similar to that of
the real data.

There are several differences between InfoGAN and VCAGAN. The first difference is that the
VCAGAN uses CAGAN loss as the adversarial loss and does not use classification loss for the generator.
The generator of InfoGAN is trained to minimize both adversarial loss and classification loss like
ACGAN. This lowers the generator performance of InfoGAN because adversarial loss and classification
loss in the generator conflict with each other. On the other hand, since VCAGAN’s generator is only
trained with CAGAN loss (only adversarial losses), there is no conflict between adversarial loss and
classification loss in the generator.

Second, VCAGAN gradually changes the categorical latent distribution during training. VCAGAN
updates the categorical latent distribution to follow the classifier output distribution for real data. This
allows VCAGAN to approximate the optimal categorical latent distribution without knowing it, unlike
InfoGAN.

Third, VCAGAN can adjust the sensitivity of the categories through classifier gradient penalty
loss. Without the classifier gradient penalty loss, the gradient of the VCAGAN classifier’s decision
boundary can become very large, and the decision boundary will fall into a local optimum in a narrow
region. The larger the classifier gradient penalty loss weight of VCAGAN, the decision boundary of
the classifier falls into the local optimum of a wider region, and the entropy of the categorical latent
distribution decreases. In other words, VCAGAN can adjust the sensitivity of the categories through
the weight (multiplier) of the classifier gradient penalty loss.

2 Class-conditional data generation

Typically, when training a GAN, everything is assumed to be continuous. This means that the data
distribution and latent distribution are assumed to be continuous, and the generator and discriminator
of GAN are assumed to be continuous functions (deep learning models must be differentiable continuous
functions to be trained).

However, the data distribution is not necessarily continuous. When data distribution includes a
discrete part and latent distribution is continuous, a sufficiently complex deep generative model can
approximate the discrete part of the data distribution. However, approximating the discrete part of
the data distribution is still not easy for most deep generative models, which is a continuous function.

The left part of Fig. 1 shows a data distribution example consisting of four Gaussian clusters.
There is no perfect discrete part in this data distribution (i.e., the probability density function is
still continuous), but one can see that it is easier to represent this data distribution with a discrete
(categorical) latent distribution.

The right part of Fig. 1 shows generated data with GAN trained only with a continuous latent
distribution. One can see that the model generates lines connecting each cluster. This is because
the latent distribution is continuous, and the generator is a continuous function, making it difficult to
represent the discrete part of the data distribution. As training progresses, the probability density of
the line connecting the clusters decreases, but it requires a long training period, and it is hard to say
that the continuous latent distribution correctly represents the real data distribution.

For datasets with discrete parts, using a discrete latent distribution is more appropriate for model
training and data representation. Class-conditional generative models, such as ACGAN [3] or CAGAN
[4], take both continuous latent distribution and discrete categorical latent distribution as inputs and
generate class-conditional data distribution. It makes them appropriate for representing datasets with
discrete parts. However, ACGAN or CAGAN cannot be trained if there is no label for data.

InfoGAN [5] can perform class-conditional data generation and inversion (clustering) by maximizing
mutual information of generator input categorical latent distribution and classifier output distribution,
even if the data is not labeled. Following equations show losses for InfoGAN with the categorical latent
distribution.

Lcls = Ez,c [cross entropy(c,Q(G(z, c)))] (1)

2



Figure 1: Left part: Two-dimensional dataset consisting of four Gaussian clusters. The centers
and probabilities of each cluster are (−2.0, 2.0), (0.0,−2.0), (1.0,−1.0), (2.0, 1.0) and [0.1, 0.2, 0.3, 0.4],
respectively. The standard deviation for all clusters is 0.3. Right part: Samples generated by GAN
trained only with a continuous latent distribution.

Ld
adv = Ex,z,c [fd(D(x), D(G(z, c)))] (2)

Lg
adv = Ez,c [fg(D(G(z, c)))] (3)

Ld = Ld
adv (4)

Lq = λclsLcls (5)

Lg = Lg
adv + λclsLcls (6)

In Eqs. 4, 5, and 6, Ld, Lq, and Lg represent discriminator loss, classifier loss, and generator
loss of InfoGAN, respectively. Lcls and λcls represent classification loss and classification loss weight,
respectively. In Eqs. 2 and 3, Ld

adv and Lg
adv represent adversarial losses [6] for GAN training.

In Eq. 1, Lcls is cross entropy between categorical latent code c and label prediction of generated
data Q(G(z, c)). D, Q, and G represent the discriminator, classifier, and generator, respectively. z
represents continuous latent code sampled from the continuous latent distribution Z. In InfoGAN, a
classifier Q can share hidden layers with a discriminator D for efficiency.

From the above equations, one can see that a classifier and a generator are trained to minimize
classification loss. InfoGAN has shown that, given an appropriate categorical latent distribution C,
it can perform class-conditional data generation and clustering (inversion) even when the data is
unlabeled.

However, InfoGAN still needs insight into the categorical latent distribution C. Without knowing
the appropriate categorical latent distribution C, InfoGAN cannot perform class-conditional data
generation and clustering.

Additionally, InfoGAN’s generator is trained with both adversarial loss and classification loss. It
means that adversarial loss and classification loss conflict with each other in the generator. This
conflict reduces the generative performance of InfoGAN.

In this paper, we introduce VCAGAN, which performs class-conditional data generation and clus-
tering under more general conditions than InfoGAN. We assume the following general conditions:

1. All data is unknown to which cluster it belongs (i.e., there are no labels for all data).

2. Optimal categorical latent distribution is unknown.

3. Metric to measure the distance between the data is unknown.

Under these conditions, ACGAN and CAGAN cannot be used due to condition 1. InfoGAN cannot
be used due to condition 2, and recent methods utilizing the K-means algorithm cannot be used due
to condition 3. On the other hand, VCAGAN can still perform class-conditional data generation and
clustering (inversion) even under these conditions.

3



3 Virtual Conditional Activation GAN

VCAGAN uses three different losses. Following equations show losses for training VCAGAN.

Ld
adv = Ex,z,c [fd(D(x) · argmax onehot(Q(x)), D(G(z, c)) · c)] (7)

Lg
adv = Ez,c [fg(D(G(z, c)) · c)] (8)

Lcreg = Ex

[
∥∇ log(Q(x) · argmax onehot(Q(x)))∥22

]
(9)

Ld = Ld
adv (10)

Lq = λclsLcls + λcregLcreg (11)

Lg = Lg
adv (12)

Eqs. 7 and 8 show CAGAN adversarial losses for VCAGAN. fd and fg represent adversarial loss
functions for discriminator and generator, respectively. Operation ”·” represents the inner product.
Since the true label c of the fake data G(z, c) is known, the adversarial loss for fake data in VCAGAN
is the same as CAGAN loss. However, the label of the real data x is unknown. Thus, in VCAGAN,
argmaxonehot(Q(x)) is used as the label of the real data x. The argmaxonehot function replaces the
maximum value of the vector with 1 and all other values with 0 (e.g., argmax onehot([0.2, 0.5, 0.3]) =
[0.0, 1.0, 0.0]).

Eq. 9 shows classifier gradient penalty loss for VCAGAN. As with adversarial loss, argmaxonehot(Q(x))
is used as the label of real data x. With CAGAN adversarial loss and classification loss, the classifier
is trained so that the decision boundary falls on the local optimum that minimizes P (X). However,
the classifier may only increase the slope of the decision boundary to minimize classification loss. In
such a case, the decision boundary of the classifier will converge to a local optimum in a very narrow
region. To avoid this and ensure that the classifier’s decision boundary falls on the local optimum of
a larger region that minimizes P (X), VCAGAN uses a classifier gradient penalty loss Lcreg.

In Eq. 11, λcls and λcreg represent weighting values for each loss. Classification loss Lcls is the
same as InfoGAN’s classification loss (Eq. 1). In Eq. 12, one can see that there is no classification loss
Lcls in generator loss Lg. Since VCAGAN’s generator is trained with adversarial losses only, there is
no conflict between Lcls and Lg

adv as in InfoGAN.
Additionally, VCAGAN updates the probability of the categorical latent distribution P (C) during

the training with Ex [Q(x)] (i.e., P (C) ≈ Ex [Q(x)]). Through this, VCAGAN can approximate P (C)
without knowing it.

Algo. 1 shows the training steps of VCAGAN.
The training step of VCAGAN requires X (data random variable), Z (continuous latent random

variable), C (categorical latent random variable), D (discriminator), Q (classifier), and G (generator).
In lines 1-3, the sample function represents the sampling function from a random variable. x (real

data point), z (continuous latent code), and cf (fake categorical latent code) are sampled from X, Z,
and C, respectively.

In line 4, G generates fake data x′ with z and cf . In lines 5 and 6, D and Q takes a fake data point
x′ as input and outputs af (fake adversarial vector) and c′f (fake categorical latent code prediction),
respectively.

Similarly, in lines 7 and 8, D and Q take a real data point x as input and outputs ar (real
adversarial vector) and c′r (real categorical latent code prediction). In line 9, real categorical latent
code cr is calculated from c′r.

In line 10, Lcls represents classification loss. crossentropy is a function that calculates cross-entropy
loss. In line 11, gradient(y, x) function calculates slope dy/dx.

In lines 12, 13, and 14, Ld, Lq, and Lg represent discriminator loss, classifier loss, and generator
loss, respectively. fd and fg represent adversarial functions for GAN.

In line 15, P (C) is updated with predicted real categorical latent code c′r. The update function can
be a simple moving average, an exponential moving average, or others. Updating C early in training
makes it easier for C to converge to a trivial solution since the generator is not yet generating class-
conditional data properly. Therefore, we recommend initializing P (C) with [1/dc, 1/dc, ..., 1/dc] and
updating P (C) after the model has been trained for some time.

After line 16, D, Q and G are updated with losses Ld, Lq, and Lg, respectively.

4



Algorithm 1 Training step of VCAGAN

Require: X,Z,C,D,Q,G
1: x← sample(X)
2: z ← sample(Z)
3: cf ← sample(C)

4: x′ ← G(z, cf )
5: af ← D(x′)
6: c′f ← Q(x′)
7: ar ← D(x)
8: c′r ← Q(x)
9: cr ← argmax onehot(c′r)

10: Lcls ← cross entropy(cf , c
′
f )

11: Lcreg ← ∥gradient(log(cr · c′r), x)∥22

12: Ld ← fd(ar · cr, af · cf )
13: Lq ← λclsLcls + λcregLcreg

14: Lg ← fg(af · cf )

15: P (C)← update(P (C), c′r)

16: return Ld, Lq, Lg, C

4 Experiments

We trained the models to generate two-dimensional Gaussian clusters distribution and the MNIST
dataset [9]. In Gaussian clusters experiments, we compare the performance of Vanilla GAN [1],
InfoGAN [5], and our proposed VCAGAN. In MNIST experiments, we compared the clustering of
VCAGANs according to classifier gradient penalty loss weight λcreg.

The following hyperparameters were used for experiments.

Z ∼ N(0, Idz
)

optimizer = Adam

learning rate = 0.001

β1 = 0.0

β2 = 0.99


batch size = 32

train step per epoch = 1000

Classification loss weight λcls = 1.0 was used for InfoGAN and VCAGAN. We used exponential moving
average with decayrate = 0.999 as update function for VCAGAN. In InfoGAN and VCAGAN, classifier
Q and discriminator D do not share hidden layers. Equalized learning rate [8] was used for all weights.

4.1 Gaussian clusters experiments

In this experiment, we used the dataset consisting of four 2-dimensioanl Gaussian clusters as a training
dataset. Left part of Fig. 1 shows data distribution for the experiments. One can see that there are
four Gaussian clusters with different probabilities in data distribution. The generator, discriminator,
and classifier consisting of four fully connected hidden layers with 512 units were used for training.
We used dz = 32, λr1 = 1 and epoch = 100 for model training. λr1 represents R1 regularization [7]
loss weight. In VCAGAN, dc = 8 was used, and P (C) was updated after epoch 20.

Fig. 2 shows samples generated with vanilla GAN (trained only with adversarial loss). The left
part of Fig. 2 shows data generated by a vanilla GAN trained with a one-dimensional categorical latent
distribution. Since there is no discrete part in the latent distribution, one can see that the vanilla GAN
generates lines between clusters.

5



Figure 2: Vanilla GAN (trained only with adversarial loss) is trained with both continuous la-
tent distribution and categorical latent distribution. Left: 1-dimensional categorical latent dis-
tribution (P (C) = [1.0]). Right: 4-dimensional optimal categorical latent distribution (P (C) =
[0.1, 0.2, 0.3, 0.4]).

Figure 3: Three InfoGAN trained with 4-dimensional optimal categorical latent distribution (P (C) =
[0.1, 0.2, 0.3, 0.4]).

The right part of Fig. 2 shows data generated by a vanilla GAN trained with optimal categorical
latent distribution (P (C) = [0.1, 0.2, 0.3, 0.4]). One can see that the generator of vanilla GAN did
not use categorical latent distribution, and training was exclusively performed only with a continuous
latent distribution. Therefore, the generator output was also continuous, which caused a line generation
between each cluster.

Fig. 3 shows data generated by three InfoGAN trained with the optimal categorical latent distri-
bution. Unlike the Vanilla GAN, one can see that the model generates class-conditional distribution
with the categorical latent distribution. However, one can still see some of the problems with InfoGAN
in this figure.

The first problem was that even though the categorical latent distribution was optimal, each cluster
was not assigned to the category correctly. In the left and middle parts, the top right cluster was
assigned to category 3 correctly, but the rest of the clusters were not assigned to the correct cluster.
In the right part, the bottom middle cluster was assigned to category 1 correctly, but the rest of the
clusters were not. This shows that even when InfoGAN is trained with the optimal categorical latent
distribution, it may not be able to assign each cluster to the correct category.

The second problem is that the generator does not generate data near the decision boundary of
the classifier. This is because classification loss and adversarial loss are in conflict in the generator of
InfoGAN. In particular, one can see a very sharp split between category 0 and 1 in the right part of
Fig. 3.

Fig. 4 shows samples generated by VCAGAN trained with different λcreg. In the left part of Fig.
4, one can see that each cluster is divided into more categories than necessary. This is because there
is no Lcreg, and the generated data distribution was not perfectly smooth, so the classifier converged
to a local optimum in a very narrow region.

However, in the middle part, one can see that each category is assigned to each cluster correctly.
The probability of each category is also very accurate. Also, unlike InfoGAN, one can see that there
is a natural division between categories 1 and 3. This is because VCAGAN’s generator is only trained
with adversarial loss, not classification loss.

6



Figure 4: VCAGAN trained with different λcreg. Categories with a probability of less than 1%
were ignored. Left: λcreg = 0, P (C) = [0.1016, 0.0114, 0.1764, 0.3402, 0.1907, 0.1224, 0.0573]. Middle:
λcreg = 0.01, P (C) = [0.3036, 0.2021, 0.1002, 0.3940]. Right: λcreg = 1, P (C) = [0.9002, 0.0998].

In the right part, multiple clusters were assigned to the same category. This is because λcreg was
too high, causing the classifier to converge to a local optimum (minimize P (X)) in a region that is too
wide.

From this, one can see that VCAGAN can adjust the sensitivity of each category via λcreg.

4.2 MNIST experiments

In this section, we trained VCAGAN to generate the MNIST handwritten digits dataset [9]. The
generator, discriminator, and classifier are simply composed of CNNs. dz = 128, dc = 32, λr1 = 0.1,
epoch = 500 were used for the experiments. In VCAGAN, P (C) was updated after epoch 100. We
used FID [10], precision & recall [11] for generative performance evaluation. 32k training samples were
used for evaluation.

Figs. 5, 6, and 7 show the difference in clustering of VCAGAN according to λcreg.
First, in Fig. 5, because λcreg = 10 was too low, the classifier decision boundary converged on a

local optimum in a narrow region. Thus, similar clusters were split into two or more categories. For
example, number 2 was divided into categories 13 and 14. Notice the difference in the lower left part
of the number 2 in categories 13 and 14. One can see that probability of category 13 is 2.84%, and
category 14 is 6.93%, which together adds up to about 10%. Number 7 was divided into categories 4
and 12. Notice the difference in the representation of the number 7. One can see that probability of
category 4 is 1.36%, and category 12 is 8.77%, which together adds up to about 10%. The numbers 4
(categories 6 and 8), 6 (categories 0 and 5), and 9 (categories 2 and 7) were divided into two clusters,
each based on their slope.

However, as λcreg increases, the classifier decision boundary converges to the local optimum over
a wider region. In Fig. 6, λcreg = 20 was used for training. One can see that numbers 1 (categories
1 and 10), 2 (categories 0 and 8) and 5 (categories 3 and 11) were divided into two clusters. Also,
the numbers 4 and 9 fell into the same category 2. One can see that the other numbers are clustered
correctly.

In Fig. 7, λcreg = 30 was used for training. One can see that the other numbers are clustered
correctly, except that the number 1 is split into categories 6 and 8 based on the slope.

Separately, one can see that all three VCAGANs have good unconditional generative performance
from FID and precision & recall.

5 Conclusion

In this paper, we introduced VCAGAN, a self-supervised class-conditional GAN. VCAGAN uses CA-
GAN loss, classification loss, and classifier gradient penalty loss. Also, the categorical latent distribu-
tion is updated to approximate the classifier output distribution of the real data.

The classifier gradient penalty loss weight of VCAGAN controls the sensitivity of each category.
The entropy of the categorical latent distribution gradually decreases and converges to the appropriate
value.

7



Figure 5: MNIST generated data with λcreg = 10. Each row has the same continuous la-
tent code, and each column has the same categorical latent code. Out of dc categories,
those with a probability less than 1% were excluded. The probabilities for each category are
[0.0131, 0.0970, 0.0366, 0.0898, 0.0136, 0.0861, 0.0375, 0.0584, 0.0587, 0.1123, 0.0996, 0.1051, 0.0877, 0.0284, 0.0693].
The entropy of categorical latent distribution is 2.5958. FID: 2.3351, precision: 0.8158, recall: 0.6947.

8



Figure 6: MNIST generated data with λcreg = 20. Each row has the same continu-
ous latent code, and each column has the same categorical latent code. Out of dc cate-
gories, those with a probability less than 1% were excluded. The probabilities for each category
are [0.0268, 0.0456, 0.1936, 0.0404, 0.0992, 0.0970, 0.1061, 0.0993, 0.0694, 0.1037, 0.0673, 0.0481]. The en-
tropy of categorical latent distribution is 2.3776. FID: 2.1096, precision: 0.8104, recall: 0.7033.

9



Figure 7: MNIST generated data with λcreg = 30. Each row has the same continuous
latent code, and each column has the same categorical latent code. Out of dc categories,
those with a probability less than 1% were excluded. The probabilities for each category are
[0.0943, 0.0967, 0.1026, 0.0974, 0.1072, 0.0453, 0.1000, 0.0645, 0.0998, 0.0902, 0.1019]. The entropy of
categorical latent distribution is 2.3756. FID: 2.044466, precision: 0.8167, recall: 0.6954.

10



Unlike InfoGAN, VCAGAN’s generator is trained with adversarial loss only, so there is no conflict
between classification loss and adversarial loss. Therefore, VCAGAN can correctly generate data near
the decision boundary of a classifier.

VCAGAN does not require a label of data, optimal categorical latent distribution, and a good metric
to calculate the distance between data. This means that VCAGAN can be used in most situations
regardless of the data domain.

VCAGAN performed better than Vanilla GAN or InfoGAN with categorical latent distribution in
Gaussian clusters generation experiments. We also showed that VCAGAN could also perform self-
supervised class-conditional data generation on the MNIST experiment.

References

[1] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
Bengio, Y.: Generative Adversarial Nets. In Commun. ACM, vol. 63, no. 11, pp. 139-144, Nov.
2020. https://doi.org/10.1145/3422622

[2] Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets. In arXiv preprint, 2014,
arXiv:1411.1784. https://arxiv.org/abs/1411.1784

[3] A. Odena, C. Olah, J. Shlens, ”Conditional Image Synthesis with Auxiliary Classifier GANs,” in
proceedings of the 34th International Conference on Machine Learning, PMLR 70:2642-2651, 2017.
https://proceedings.mlr.press/v70/odena17a.html

[4] Cho, J., Yoon, K.: Conditional Activation GAN: Improved Auxiliary Classifier GAN. In IEEE
Access, vol. 8, pp. 216729-216740, 2020. https://doi.org/10.1109/ACCESS.2020.3041480

[5] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
GAN: Interpretable Representation Learning by Information Maximizing Generative Ad-
versarial Nets. In NIPS proceedings, 2016. https://papers.nips.cc/paper/2016/hash/

7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html

[6] Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs Created
Equal? A Large-Scale Study. In NIPS, 2018. https://papers.nips.cc/paper/2018/hash/

e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html

[7] Mescheder, L., Geiger, A., Nowozin S.: Which Training Methods for GANs do actually Converge?
In PMLR, 2018. https://proceedings.mlr.press/v80/mescheder18a.html

[8] Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive Growing of GANs for Improved Quality,
Stability, and Variation. In ICLR conference, Vancouver, Canada, Apr. 30-May 3, 2018. https:
//openreview.net/forum?id=Hk99zCeAb

[9] Lecun, Y., Cortes, C., and Burges, C.: MNIST handwritten digit database, 2010. In ATT Labs.
http://yann.lecun.com/exdb/mnist

[10] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a
Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In NIPS, 2017. https:
//papers.nips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html

[11] Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision and recall met-
ric for assessing generative models. In NIPS proceedings, 2019. https://proceedings.neurips.
cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html

11

https://doi.org/10.1145/3422622
https://arxiv.org/abs/1411.1784
https://proceedings.mlr.press/v70/odena17a.html
https://doi.org/10.1109/ACCESS.2020.3041480
https://papers.nips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://papers.nips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://papers.nips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
https://papers.nips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
https://proceedings.mlr.press/v80/mescheder18a.html
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
http://yann.lecun.com/exdb/mnist
https://papers.nips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://papers.nips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html

	Introduction
	Class-conditional data generation
	Virtual Conditional Activation GAN
	Experiments
	Gaussian clusters experiments
	MNIST experiments

	Conclusion

