
A Comparative Analysis of Smart Contract Fuzzers’
Effectiveness

Antonio Viggiano
agfviggiano@gmail.com

Abstract
This study presents a comparative analysis of randomized
testing algorithms, commonly known as fuzzers, with a spe-
cific emphasis on their effectiveness in catching bugs in So-
lidity smart contracts. We employ the non-parametric Mann
Whitney U-test to gauge performance, defined as the “time
to break invariants per mutant”, using altered versions of
the widely-forked Uniswap v2 protocol. We conduct 30 tests,
each with a maximum duration of 24 hours or 4,294,967,295
runs, and evaluate the speed at which the fuzzers Foundry
and Echidna can breach any of the 22 protocol’s invariant
properties for each of the 12 mutants, created both with mu-
tation testing tools and with manual bug injection methods.
The research shows significant performance variabilities be-
tween runs for both Foundry and Echidna depending on
the instances of mutated code. Our analysis indicates that
Foundry was able to break invariants faster in 9 out of 12
tests, while Echidna in 1 out of 12 tests, and in the remain-
ing 2 tests, the difference in performance between the two
fuzzers was not statistically significant. The paper concludes
by emphasizing the necessity for further research to incor-
porate additional fuzzers and real-world bugs, and paves
ground for further developments of more precise and rigor-
ous evaluations of fuzzer effectiveness.

CCS Concepts: • Security and privacy→ Software and
application security.

Keywords: blockchain, smart contracts, fuzz testing, muta-
tion testing, application security

1 Introduction
A fuzz tester (or fuzzer) is a tool that randomly generates
inputs in iterative fashion to test a target program. Research
demonstrates that fuzzers can be surprisingly effective [1],
and within the realm of blockchain, it has been established
that custom user-defined properties in fuzzing can detect up
to 63% of the most severe and exploitable flaws in contracts
[2].
Several fuzz testing tools exist for Ethereum smart con-

tracts, such as Echidna [3], Foundry [4], Medusa [5], and Har-
vey [6], yet few studies offer comparative analysis to assess
their effectiveness. Recent efforts to automatically generate
benchmarks for smart-contract fuzzers have emerged [7],
with the limitation of measuring a fuzzer’s performance in

DeFi Security Summit 2023, July 15-16, 2023, Paris, France
Antonio Viggiano.

non-production code. Hence, different methodologies may
still be valuable when comparing fuzzers against typical DeFi
smart contracts.
In order to circumvent general issues found in existing

experimental evaluations, which could potentially lead to
inaccurate or misleading assessments, this paper seeks to
adhere to the methodology and guidelines prescribed by
Klees et al. [8], which will be presented in Section 2.

2 Methodology
Evaluating a fuzz testing algorithm A involves several steps:
(a) selecting a baseline algorithm B for comparison; (b) choos-
ing a representative set of target programs for testing; (c)
determining how to measure A’s performance against B’s,
ideally in terms of bugs found; (d) establishing algorithm pa-
rameters, such as the choice of seed files and the algorithm’s
run duration; and (e) conducting multiple runs for both A
and B and statistically comparing their performance.
A study surveying 32 fuzzing papers by Klees et al. [8]

uncovered problems in every evaluation reviewed, which
led to the formation of guidelines designed to improve the
experimental evaluations of fuzz testing algorithms and to
enhance the robustness of reported results. In brief, they rec-
ommend comparing the median and standard deviation over
many runs, using different seeds, using different test environ-
ments, fuzzing over long hours, plotting performance over
time, measuring unique bugs by counting each single con-
ceptual bugfix, directly measure the number of bugs found,
and using a statistical test to compare performance.

In our study, we selected echidna 2.2.0 (using slither
0.9.3) and forge 0.2.0 (588ad27) for comparison and
tested the Uniswap v2 protocol [9], compiled with solc
0.8.20, with a set of 22 properties that should hold under
stateful invariant tests. We gauged performance by measur-
ing the time taken to find injected bugs in 12 mutant tests
using both a mutation testing tool and some manually in-
jected bugs. We selected 30 different seeds and allowed the
fuzzers to run with a 24-hour timeout or 232−1 = 4294967295
runs on a 1 vCPU general purpose m3.medium AWS EC2 in-
stance on Ubuntu 22.04.2 LTS [10].
We conducted multiple runs and statistically compared

their performance by analyzing the median time taken to
find the bug on each mutant and the standard deviation
between runs for different seed values and applying the
Mann-Whitney U Test.

DeFi Security Summit 2023, July 15-16, 2023, Paris, France Antonio Viggiano

It should be noted that slight alterations to the methodol-
ogy prescribed in [8] were carried out due to operational con-
straints and particularities of Solidity smart contract fuzzers.
In particular, Klees et al. suggests running fuzzers 𝑁 times
with the same configuration, each with a timeout 𝑇 , and
tallying the unique number of bugs found after the timeout.
In our case, we performed 𝑁 runs, each with 𝑇 timeout and
a different seed, and and measured the time to find the bug
present in each mutant. Our approach is due to the practical
difficulties of making the fuzzers continue running after the
invariants break, and the complexities involved in analyzing
which bug was found when several are injected simultane-
ously. By running the fuzzers against code containing one
injected bug at a time, it was possible to analyse how the
performance varies between each mutant and more easily
derive conclusions from the results.

2.1 Choosing algorithms to compare
For our evaluation, we selected Echidna [3] and Foundry [4],
two popular open source fuzz tools used by Ethereum smart
contract developers, as evidenced by their GitHub stars —
6.2k for Foundry and 2.2k for Echidna respectively.

2.2 Choosing a representative set of target programs
to test

The reference paper [8] advises testing fuzzers against many
different programs representative of the target population,
preferably over 100, in order to establish the general supe-
riority of one fuzzing algorithm over another. Due to time
constraints, however, we limited our analysis to just one pro-
gram, Uniswap v2 [9]. We chose this protocol not only for
being a fair representative of DeFi smart contracts in general,
but also for its sheer relevance to the blockchain ecosystem:
according to DeFiLlama [11], a major DeFi TVL aggregator,
Uniswap v2 is the most forked protocol in crypto, with 437
forks valued over $2.6 billion at the time of writing, and the
number one decentralized exchange (DEX) [12], with over
$4.0b in Total Value Locked (TVL).

2.3 Choosing how to measure performance
When dealing with statistical measurements, high variance
can render a difference in averages statistically insignificant.
Tomitigate this, it is recommended to employ a statistical test
[13] that can provide an indication of whether the observed
performance difference is due to a real effect rather than a
mere product of chance.

For randomized testing algorithms like fuzzers, Arcuri and
Briand [14] recommend using the Mann Whitney U-test to
determine the stochastic ranking between two algorithms,
A and B. The test assesses whether outcomes from A’s data
sample are more likely to exceed those in B’s. The advantage
of the Mann Whitney test is that it is non-parametric, mean-
ing it does not make assumptions about the distribution of a
randomized algorithm’s performance. When comparing the

median values of the two groups, if the Mann-Whitney U test
yields a p-value less than 0.05, it indicates the distributions
are significantly different and helps us infer which one is
more efficient.
In our evaluation, we gauge performance based on the

time required to break invariants per mutant. We chose this
parameter because it provides a measure of efficiency and
effectiveness, given that a superior fuzzer should exhibit
both speed and precision in identifying and breaking in-
variants. Moreover, the choice of this criterion is rooted in
the real-world application of fuzzers where time is often a
critical factor, and the faster a fuzzer can identify and break
invariants, the more efficient the debugging process becomes.
Therefore, our analysis results are specific to the selected
mutants and to the specific configurations and choice of
algorithm parameters in our study.

2.4 Choosing algorithm parameters
Our analysis includes 30 seeds, 12 mutants, and a set of 22
properties. The seed values were chosen based on a combina-
tion of natural numbers and pseudorandom 32-byte unsigned
integers. These values include 0, 1, 2, type(int64).max, and
uint256(keccak256(abi.encodePacked(uint256(i)))),
where i varies from 0 to 25.

The mutants were initially selected from a pool of 20, fur-
ther narrowed down to 15, and eventually to 12. The selection
process involved a combination of the mutation testing tools
Slither [15] and Gambit [16], as well as the manual injection
of bugs. Manually injected bugs were designed to simulate
common errors made by developers, such as rounding errors
(as shown below) or missing state variable updates.
diff --git a/UniswapV2Library.sol b/UniswapV2Library.sol
index 83cb0b6..3991c50 100644
--- a/UniswapV2Library.sol
+++ b/UniswapV2Library.sol
@@ -84,7 +84,7 @@ library UniswapV2Library {

uint amountInWithFee = amountIn.mul(997);
uint numerator = amountInWithFee.mul(reserveOut);
uint denominator = reserveIn.mul(1000).add(amountInWithFee);

- amountOut = numerator / denominator;
+ amountOut = (numerator / denominator).add(1);

}

After the initial generation, we discarded 5mutants crafted
by slither-mutate due to their tendency to inject an exces-
sive number of bugs by default, which would render the eval-
uation of results more challenging. In a second step, 3 other
mutants were discarded due to a failure in producing any
crashes within the 24-hour timeout or 232 − 1 = 4294967295
runs for any of the fuzzers. Out of the 12 final patch files, 3
were generated by Gambit and 9 manually.

The choice of the test duration was set to one day fol-
lowing the suggestion of [8], with the limitation of a maxi-
mum number of runs due to Foundry using Rust’s u32 (un-
signed 32-bit integer) type for the runs parameter, below
Echidna’s usage of Haskell’s Int (signed 64-bit integer) for
the testLimit parameter.

A Comparative Analysis of Smart Contract Fuzzers’ Effectiveness DeFi Security Summit 2023, July 15-16, 2023, Paris, France

Regarding the selection of invariants, we performed a
comprehensive analysis of the Uniswap v2 Core protocol
properties, which are detailed in Table 1.
Besides the choice of test parameters, we conducted the

invariant tests following a stateful invariant testing approach.
In stateful fuzzing, the ending state of one fuzzing iteration
serves as the initial state for the subsequent iteration, which
can be particularly sensitive to initial conditions. In our case,
we set the initial token balance of the User.sol handler
smart contract during the first transaction, and this balance
is not replenished in subsequent transactions.
The fuzzer parameters were chosen to closely align the

behavior of the two tools within the limitations of the test
environment. Specifically, Echidna’s testMode was set to as-
sertion, shrinkLimit was set to zero, and stopOnFail was
enabled. In addition, Foundry’s depth was set to 25 to match
Echidna’s seqLen, and fail_on_revert was disabled.
config.yaml
testMode: assertion
corpusDir: corpus
seqLen: 25
testLimit: 4294967295
shrinkLimit: 0
stopOnFail: true

foundry.toml
[invariant]
runs = 4294967295
depth = 25
fail_on_revert = false
call_override = false
dictionary_weight = 80
include_storage = true
include_push_bytes = true

To ensure maximum code coverage, we studied the main-
tenance of invariants in both successful and failed calls. This
enabled the test contract to identify particular values con-
tributing to test failure, as can be seen in properties P-08,
P-09, P-16, P-17, and P-22 from Table 1.

2.5 Comparing algorithm performances
To execute the benchmark, we crafted a collection of Ter-
raform [17] and Packer [18] configuration files and bash
scripts for the deployment of an infrastructure consisting
of numerous AWS EC2 instances. These instances operated
the benchmark and collected results, which are available for
review at [19].

In order to analyse the results, a Python script was created
to plot results and perform statistical tests to assess fuzzer
performance.

3 Results
The summarized results are presented in Figure 1. This chart
offers a logarithmic representation of the “Time to break
invariants” for each Mutant, measured in seconds. To bet-
ter understand the dispersion and central tendency of the
results, we have utilized a box-and-whisker plot, overlaid
with a scatterplot of individual runs. The box in the box-
and-whisker plot, often referred to as the “box” part of the
plot, is drawn from the first quartile (Q1) to the third quar-
tile (Q3) of the data, with a line at the median (the second
quartile, Q2). This visualization technique effectively shows
the interquartile range (the range between Q1 and Q3), rep-
resenting the middle 50% of the data. The line within the box
depicts the median value, providing a picture of the central
tendency of the data. The scatterplot overlay helps in visual-
izing the individual data points, thus providing additional
insight into the data distribution beyond the summary sta-
tistics presented in the boxplot. At the bottom of each test,
the p-value from the Mann-Whitney U Test is annotated,
offering further statistical significance context.

The analysis indicates that different mutants produce sig-
nificantly different outcomes in terms of performance vari-
ability for each fuzzer. For both Echidna and Foundry, differ-
ent runs can have a drastic three orders of magnitude differ-
ence in performance depending on the code under test. Some
tests may finish within minutes, while others can stretch for
several hours.

With regard to the difference in performance, the results
show that, out of 12 mutants, Foundry is able to identify bugs
quicker in 9 of them (mutants 01, 03, 06, 07, 08, 09, 10, 11, and
12), and Echidna in 1 of them (mutant 05), while in the other
2 (mutants 02, and 04), there were no display statistically
significant difference between the two fuzzers.

It should be noted that although both programs were con-
figured to fuzz for up to 232 − 1 = 4294967295 runs, Foundry
produced some false negatives, in which it finished success-
fully after around 8 hours but did not break any of the in-
variants. We chose not to discard these results in the same
way as timeouts produced by Echidna were counted for their
elapsed time in the statistics.

4 Conclusion and future work
This paper delivers a comparative examination of random-
ized testing algorithms, primarily focusing on their capacity
to detect bugs in Solidity smart contracts. We measured their
efficacy via “time to break invariants per mutant”, employ-
ing modified versions of the extensively-forked Uniswap v2
protocol.

We determined that performance can vary greatly across
different runs due to initial conditions or seed values, high-
lighting the importance of numerous, extensive testing runs.

Regarding the difference in time to break invariants, Foundry
demonstrates superior performance for 9 out of 12 tests,

DeFi Security Summit 2023, July 15-16, 2023, Paris, France Antonio Viggiano

Property Description
P-01 Adding liquidity increases k
P-02 Adding liquidity increases the total supply of LP tokens
P-03 Adding liquidity increases reserves of both tokens
P-04 Adding liquidity increases the user’s LP balance
P-05 Adding liquidity decreases the user’s token balances
P-06 Adding liquidity does not decrease the feeTo LP balance
P-07 Adding liquidity for the first time should mint LP tokens equals to the square root of the product of

the token amounts minus a minimum liquidity constant
P-08 Adding liquidity should not change anything if it fails
P-09 Adding liquidity should not fail if the provided amounts are within the valid range of uint112,

would mint positive liquidity and are above the minimum initial liquidity check when minting for
the first time

P-10 Removing liquidity decreases k
P-11 Removing liquidity decreases the total supply of LP tokens if fee is off
P-12 Removing liquidity decreases reserves of both tokens
P-13 Removing liquidity decreases the user’s LP balance
P-14 Removing liquidity increases the user’s token balances
P-15 Removing liquidity does not decrease the feeTo LP balance
P-16 Removing liquidity should not change anything if it fails
P-17 Removing liquidity should not fail if the returned amounts to the user are greater than zero
P-18 Swapping does not decrease k
P-19 Swapping increases the sender’s tokenOut balance
P-20 Swapping decreases the sender’s tokenIn balance by swapAmountIn
P-21 Swapping does not decrease the feeTo LP balance
P-22 Swapping should not fail if there’s enough liquidity, if the output would be positive and if the input

would not overflow the valid range of uint112
Table 1. Uniswap v2 properties

while Echidna performs better in 1 out of 12 tests, and in the
other 2 tests, the difference was not statistically significant.
Due to the constraints of the test setup, several features of
both tools were not assessed, including aspects like coverage
guidance, shrinking, and multi-core support. Also, the con-
figuration parameters were not necessarily fine-tuned for
each specific fuzzer, such as the sequence length or corpus
generation. Consequently, to ensure thorough testing, we
recommend the utilization of multiple fuzzers.
Areas for future research could involve expanding the

number of tested protocols, in order to enhance the study’s
generalizability, and increasing the number of evaluated
fuzzers. Conducting tests in varying environments, testing
different fuzzer configurations, assessing fuzzers against real-
world issues rather than artificial bugs, analyzing perfor-
mance progression over time, and creating a robust, indepen-
dently defined benchmark suite would further contribute to
the research.

While our research offers significant insights into the anal-
ysis of fuzzers’ effectiveness in finding bugs in typical DeFi
smart contracts, its limitations preclude a comprehensive
conclusion. Nevertheless, we hope that this study will inspire

and direct future researchers toward continuous improve-
ment in the tooling and benchmarks used in this space.

References
[1] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,

Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2016.

[2] Alex Groce, Josselin Feist, Gustavo Grieco, and Michael Colburn. What
are the actual flaws in important smart contracts (and how can we
find them)? In International Conference on Financial Cryptography and
Data Security, 2020.

[3] Trail of Bits. Echidna: Ethereum fuzz testing framework, 2018. URL
https://github.com/crytic/echidna.

[4] Foundry: a blazing fast, portable and modular toolkit for ethereum
application development written in rust, 2022. URL https://github.
com/foundry-rs/foundry.

[5] Trail of Bits. Parallelized, coverage-guided, mutational solidity smart
contract fuzzing, powered by go-ethereum, 2023. URL https://github.
com/crytic/medusa.

[6] Valentin Wüstholz and Maria Christakis. Harvey: A greybox fuzzer
for smart contracts. 2019.

[7] Valentin Wüstholz. Benchmarking smart-contract fuzzers, 4 2023.
URL https://consensys.net/diligence/blog/2023/04/benchmarking-
smart-contract-fuzzers/.

https://github.com/crytic/echidna
https://github.com/foundry-rs/foundry
https://github.com/foundry-rs/foundry
https://github.com/crytic/medusa
https://github.com/crytic/medusa
https://consensys.net/diligence/blog/2023/04/benchmarking-smart-contract-fuzzers/
https://consensys.net/diligence/blog/2023/04/benchmarking-smart-contract-fuzzers/

A Comparative Analysis of Smart Contract Fuzzers’ Effectiveness DeFi Security Summit 2023, July 15-16, 2023, Paris, France

Figure 1. Time to break invariants per Mutant

[8] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. CoRR, abs/1808.09700, 2018. URL
http://arxiv.org/abs/1808.09700.

[9] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap
v2 core, 3 2020. URL https://uniswap.org/whitepaper.pdf. hay-
den@uniswap.org, noah@uniswap.org, dan@paradigm.xyz.

[10] Amazon Web Services. Amazon ec2 previous generation instances
pricing | aws. URL https://aws.amazon.com/ec2/previous-generation/.

[11] Forks - defillama, . URL https://defillama.com/forks.
[12] Dexes tvl rankings - defillama, . URL https://defillama.com/protocols/

Dexes.
[13] R. Lyman Ott and Micheal T. Longnecker. Introduction to Statistical

Methods and Data Analysis (with CD-ROM). 2006.

[14] Andrea Arcuri and Lionel Briand. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In
Proceedings of the International Conference on Software Engineering
(ICSE), 2011.

[15] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither Analyzer, June
2023. URL https://github.com/crytic/slither.

[16] Certora. Gambit, 2023. URL https://github.com/Certora/gambit.
[17] HashiCorp. Terraform by hashicorp, . URL https://www.terraform.io/.
[18] HashiCorp. Packer by hashicorp, . URL https://www.packer.io/.
[19] Antonio Viggiano. Evaluating fuzzer effectiveness, 2023. URL https:

//github.com/aviggiano/fuzzer-evaluation.

http://arxiv.org/abs/1808.09700
https://uniswap.org/whitepaper.pdf
https://aws.amazon.com/ec2/previous-generation/
https://defillama.com/forks
https://defillama.com/protocols/Dexes
https://defillama.com/protocols/Dexes
https://github.com/crytic/slither
https://github.com/Certora/gambit
https://www.terraform.io/
https://www.packer.io/
https://github.com/aviggiano/fuzzer-evaluation
https://github.com/aviggiano/fuzzer-evaluation

	Abstract
	1 Introduction
	2 Methodology
	2.1 Choosing algorithms to compare
	2.2 Choosing a representative set of target programs to test
	2.3 Choosing how to measure performance
	2.4 Choosing algorithm parameters
	2.5 Comparing algorithm performances

	3 Results
	4 Conclusion and future work
	References

