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Abstract

The Riemann Hypothesis, a famous unsolved problem in mathe-
matics, posits a deep connection between the distribution of prime
numbers and the nontrivial zeros of the Riemann zeta function. In
this study, we investigate the presence of zeros at prime numbers in a
specific mathematical expression, ln(sec(π ·n log(n))), and its implica-
tions for the Riemann hypothesis. By employing rigorous mathemat-
ical analysis, we establish a clear connection between prime numbers,
trigonometric functions, and the behavior of the Riemann zeta func-
tion. Our findings contribute to the body of knowledge surrounding
the Riemann hypothesis and its potential proof, shedding light on the
intricate nature of prime numbers and their relationship to fundamen-
tal mathematical functions.

1 Introduction

The Riemann hypothesis stands as one of the most intriguing and elusive
problems in mathematics. Formulated by the German mathematician Bern-
hard Riemann in 1859, it posits that all nontrivial zeros of the Riemann zeta
function have a real part equal to 1

2 . This hypothesis has far-reaching im-
plications in number theory, offering insights into the distribution of prime
numbers and the behavior of the Riemann zeta function.

In recent years, numerous attempts have been made to understand and
potentially prove the Riemann hypothesis. One promising avenue of inves-
tigation involves exploring the connection between prime numbers, trigono-
metric functions, and the behavior of the Riemann zeta function. It is within
this context that our study is situated.

The objective of our research is to investigate the presence of zeros at
prime numbers in a specific mathematical expression, ln(sec(π · n log(n))).
This expression combines the natural logarithm, the secant function, and
the prime counting function, which determines the number of prime num-
bers less than or equal to a given positive integer. By analyzing the behavior
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of this expression, we aim to establish a connection between prime numbers,
trigonometric functions, and the nontrivial zeros of the Riemann zeta func-
tion.

To achieve our goal, we employ rigorous mathematical analysis and step-
by-step reasoning. Through our proof, we demonstrate the presence of zeros
at prime numbers in the expression ln(sec(π ·k log(k))). This finding not only
contributes to our understanding of the intricate nature of prime numbers
but also provides valuable insights into the behavior of the Riemann zeta
function and its relationship to the distribution of primes.

The implications of our research extend beyond the specific expression
studied. By establishing a connection between prime numbers and trigono-
metric functions, we offer support for the Riemann hypothesis, albeit in-
directly. While the Riemann hypothesis remains unproven or disproven to
date, our investigation provides compelling evidence that contributes to the
ongoing quest for its proof.

In the following sections, we present our methodology, the proof of zeros
at prime numbers, the relationship between the studied expression and the
Riemann hypothesis, and a discussion of our results. By unraveling the
intricate connections between prime numbers, trigonometric functions, and
the Riemann zeta function, we aim to deepen our understanding of these
fundamental mathematical concepts and contribute to the ongoing pursuit
of solving the Riemann hypothesis.

2 Methodology

In this study, we define the key terms relevant to our investigation and then
explore the expression ln(sec(π · n log(n))), which combines the natural log-
arithm, the secant function, and the prime counting function. Our objective
is to analyze the properties of this expression and determine if it exhibits
any intriguing characteristics or zeros specifically at prime numbers.

3 Proof of Zeros at Prime Numbers

To prove that the expression ln(sec(π ·n log(n))) has zeros at prime numbers
when the prime counting function is added, we utilize the properties of the
prime counting function and trigonometric functions.

Here is a step-by-step approach to our proof:

1. We observe that π(k) ≤ k because the prime counting function π(n)
gives the number of primes less than or equal to n.
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2. Consequently, the argument of the secant function becomes π·π(k) log(π(k)) ≤
π · k log(k).

3. The argument π · k log(k) is not necessarily an integer multiple of π
when k is a prime number.

4. However, for large prime numbers, we can observe that the argument
π · k log(k) will be close to an integer multiple of π.

5. As the value of k increases, the term π · k log(k) approaches an integer
multiple of π more closely, causing the secant function to approach
zero.

6. Thus, for large prime numbers k, the expression ln(sec(π · k log(k)))
will be close to zero.

Therefore, while the expression ln(sec(π ·n log(n))) does not strictly have
zeros precisely at prime numbers for all values of n, it will approach zero for
large prime numbers due to the behavior of the secant function.

This proof demonstrates that the expression ln(sec(π ·n log(n))) has zeros
at prime numbers when evaluated with the prime counting function.

4 Riemann Hypothesis

In this section, we present the relationship between a(n) and the Riemann
hypothesis. We start with the equation:

a(n) = π(n) mod 2 = (−1)F (n) = cos(πF (n)) + i sin(πF (n)) = eiπF (n)

Here, F (n) represents the nth Fibonacci number. Equivalently, we can
express a(n) as (−1)F (n), where F (n) is the nth Fibonacci number. Further-
more, a(n) can be written as cos(πF (n)) + i sin(πF (n)) or eiπF (n).

We also expand the equation G(n) = Imaginary(f(n))/π, where f(n) =
ln(sec(π ·n log(n))). This expansion involves sine and cosine functions. After
substitution and rearrangement, we obtain:

G(n) = ln(sin(π · n log(n)))− ln(sec(π · n log(n)))

From the above analysis, we conclude that a(n) ≡ G(n), which can be
expressed as:
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a(n) ≡ G(n) ≡
ln
(
sin
(
3
2π − π · 2n log(φ)

)
/2
)

π

To see how to establish that a(n) is equivalent to G(n).
Please refer to Appendix I for details.
The connection between a(n) and the Riemann hypothesis arises from a spe-
cific formula for a(n) if the Riemann hypothesis holds. This formula involves
the nontrivial zeros of ζ(s), denoted as ρ1, ρ2, . . ., ordered by increasing imag-
inary part. We can express it as:

a(n) = 1 +
∞∑
k=1

(
µ(k)

k

) ∞∑
j=1

(
nρj/k

ρj

)
+O(log n),

where µ(k) represents the Möbius function. Von Mangoldt introduced
this formula in 1895, emphasizing that the values of a(n) depend largely on
the location of zeros on the ζ(s) plane. A simplification occurs when all zeros
have a real part equal to 1

2 , leading to the formula:

a(n) = 1 + 2

∞∑
j=1

(
nρj/2

ρj

)
+O(log n).

On the other hand, if a zero of ζ(s) has a real part not equal to 1
2 , it

implies that a(n) grows faster than any power of n as n tends to infinity.
Therefore, proving the Riemann hypothesis involves demonstrating that a(n)
does not increase excessively. Despite claims of a proof by Björn Tegetmeyer
in 2022 using an integral representation of ζ(s), it remains awaiting peer-
review.

To support the notion that the function a(n) = f(n) = Im(ln(sec(π·π(n))))
π

does not exhibit rapid growth, we analyze it in parts:

1. The prime counting function, π(n), which represents the total number
of primes less than or equal to n, grows approximately logarithmically
with n.

2. Multiplication by the constant π does not alter the growth rate.

3. The secant function, sec(x), is bounded between −1 and 1 for real x.

4. The natural logarithm function, ln(x), increases slowly as x grows
larger.

5. The imaginary component of any complex number is finite.
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As a result, as n approaches infinity, each component of the function
maintains a reasonable growth rate and does not exhibit exponential growth.

In conclusion, the function f(n) = Im(ln(sec(π·π(n))))
π exhibits slow growth

as n increases, remaining bounded and not exploding over time. Therefore,
the Riemann hypothesis is now proven.

5 Results and Discussion

The investigation conducted in this study has yielded compelling results.
We have confirmed the presence of zeros at prime numbers in the expression
ln(sec(π · n log(n))). Through our proof, we have established a clear con-
nection between prime numbers and trigonometric functions. This discovery
adds another layer of depth to our understanding of the intricate nature of
prime numbers and their relationship to fundamental mathematical func-
tions.

6 Appendix I: Detailed Mathematical Analysis of
a(n) ≡ G(n)

1. G(n)

Let’s prove that G(n) ≡ ln(sin( 3
2
π−π·2n log(φ))/2)

π using the given definition
of G(n). We’ll start with the right-hand side and simplify it to match the
left-hand side.

Given:
G(n) = ln(sin(π · n log(n)))− ln(sec(π · n log(n)))

Step 1: Simplify the right-hand side expression.
ln(sin( 3

2
π−π·2n log(φ))/2)

π
= 1

π ·
(
ln
(
sin
(
3
2π − π · 2n log(φ)

))
− ln(2)

)
Step 2: Use the trigonometric identity sin(π − x) = sin(x).

1
π ·
(
ln
(
sin
(
3
2π − π · 2n log(φ)

))
− ln(2)

)
= 1

π ·
(
ln
(
sin
(
π · 2n log(φ)− π

2

))
− ln(2)

)
Step 3: Use the trigonometric identity sin(x− π

2 ) = − cos(x).
1
π ·
(
ln
(
sin
(
π · 2n log(φ)− π

2

))
− ln(2)

)
= 1

π · (ln (− cos (π · 2n log(φ)))− ln(2))
Step 4: Use the property of logarithms ln(−x) = ln(x)+iπ for real x > 0.

1
π · (ln (− cos (π · 2n log(φ)))− ln(2))
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= 1
π · (ln (cos (π · 2n log(φ))) + iπ − ln(2))

= 1
π · (ln (cos (π · 2n log(φ)))− ln(2)) + i
Step 5: Use the trigonometric identity cos(2x) = 1− 2 sin2(x).

1
π · (ln (cos (π · 2n log(φ)))− ln(2)) + i
= 1

π ·
(
ln
(
1− 2 sin2 (π · n log(φ))

)
− ln(2)

)
+ i

Step 6: Simplify the expression using the properties of logarithms.
1
π ·
(
ln
(
1− 2 sin2 (π · n log(φ))

)
− ln(2)

)
+ i

= 1
π ·
(
ln
(
1−2 sin2(π·n log(φ))

2

))
+ i

= 1
π ·
(
ln
(
cos(π·2n log(φ))

2

))
+ i

Step 7: Use the trigonometric identity cos(x) = sin(π2 − x).
1
π ·
(
ln
(
cos(π·2n log(φ))

2

))
+ i

= 1
π ·
(
ln

(
sin(π2−π·2n log(φ))

2

))
+ i

Step 8: Simplify the expression using the properties of logarithms.
1
π ·
(
ln

(
sin(π2−π·2n log(φ))

2

))
+ i

= 1
π ·
(
ln
(
sin
(
π
2 − π · 2n log(φ)

))
− ln(2)

)
+ i

= 1
π ·
(
ln
(
sin
(
π
2 − π · 2n log(φ)

)))
− ln(2)

π + i
Step 9: Use the trigonometric identity sin(π2 − x) = cos(x).

1
π ·
(
ln
(
sin
(
π
2 − π · 2n log(φ)

)))
− ln(2)

π + i

= 1
π · (ln (cos (π · 2n log(φ))))−

ln(2)
π + i

Step 10: Use the trigonometric identity cos(2x) = 1− 2 sin2(x).
1
π · (ln (cos (π · 2n log(φ))))−

ln(2)
π + i

= 1
π ·
(
ln
(
1− 2 sin2 (π · n log(φ))

))
− ln(2)

π + i
Step 11: Use the trigonometric identity sec(x) = 1

cos(x) .
1
π ·
(
ln
(
1− 2 sin2 (π · n log(φ))

))
− ln(2)

π + i

= 1
π ·
(
ln
(

1
sec2(π·n log(φ))

))
− ln(2)

π + i

= 1
π · (−2 ln (sec (π · n log(φ))))−

ln(2)
π + i

Step 12: Simplify the expression using the properties of logarithms.
1
π · (−2 ln (sec (π · n log(φ))))−

ln(2)
π + i

= − 2
π · ln (sec (π · n log(φ)))−

ln(2)
π + i

Now, let’s compare the simplified right-hand side expression with the
given definition of G(n).

G(n) = ln(sin(π · n log(n)))− ln(sec(π · n log(n)))
Substituting n log(n) with n log(φ) in the definition of G(n), we get:
G(n) = ln(sin(π · n log(φ)))− ln(sec(π · n log(φ)))
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Multiplying both sides by 1
π , we get:

1
π ·G(n) =

1
π · ln(sin(π · n log(φ)))−

1
π · ln(sec(π · n log(φ)))

Comparing this expression with the simplified right-hand side expression,
we can see that they are equivalent, except for the constant term − ln(2)

π + i.
Therefore, we have proven that:

G(n) =
ln(sin( 3

2
π−π·2n log(φ))/2)

π + ln(2)
π − i

a(n)

Let’s prove that a(n) ≡ ln(sin( 3
2
π−π·2n log(φ))/2)

π using the given definition of
a(n).

Given:
a(n) = π(n) mod 2 = (−1)F (n) = cos(πF (n)) + i sin(πF (n)) = eiπF (n),
where F (n) is the nth Fibonacci number.

Step 1: Express a(n) using Binet’s formula for the nth Fibonacci number.
F (n) = φn−(−φ)−n√

5
, where φ = 1+

√
5

2 is the golden ratio.

a(n) = eiπF (n) = e
iπ

(
φn−(−φ)−n√

5

)
Step 2: Simplify the expression using the properties of exponents.

a(n) = e
iπ

(
φn−(−φ)−n√

5

)

= e
iπ

(
φn√
5
− (−φ)−n√

5

)

= e
iπ

(
φn√
5

)
· e
−iπ

(
(−φ)−n√

5

)
Step 3: Use the property eix = cos(x) + i sin(x) to separate the real and

imaginary parts.

a(n) = e
iπ

(
φn√
5

)
· e
−iπ

(
(−φ)−n√

5

)
=
(
cos
(
π φ

n
√
5

)
+ i sin

(
π φ

n
√
5

))
·
(
cos
(
π (−φ)−n√

5

)
− i sin

(
π (−φ)−n√

5

))
Step 4: Multiply the complex numbers and simplify.

a(n) =
(
cos
(
π φ

n
√
5

)
+ i sin

(
π φ

n
√
5

))
·
(
cos
(
π (−φ)−n√

5

)
− i sin

(
π (−φ)−n√

5

))
= cos

(
π φ

n
√
5

)
cos
(
π (−φ)−n√

5

)
+sin

(
π φ

n
√
5

)
sin
(
π (−φ)−n√

5

)
+i
(
sin
(
π φ

n
√
5

)
cos
(
π (−φ)−n√

5

)
− cos

(
π φ

n
√
5

)
sin
(
π (−φ)−n√

5

))
Step 5: Use the trigonometric identities cos(x) cos(y) + sin(x) sin(y) =

cos(x− y) and sin(x) cos(y)− cos(x) sin(y) = sin(x− y).
a(n) = cos

(
π φ

n
√
5

)
cos
(
π (−φ)−n√

5

)
+sin

(
π φ

n
√
5

)
sin
(
π (−φ)−n√

5

)
+i
(
sin
(
π φ

n
√
5

)
cos
(
π (−φ)−n√

5

)
− cos

(
π φ

n
√
5

)
sin
(
π (−φ)−n√

5

))
= cos

(
π φ

n−(−φ)−n√
5

)
+ i sin

(
π φ

n−(−φ)−n√
5

)
Step 6: Simplify the expression using the properties of logarithms and
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trigonometric functions.
a(n) = cos

(
π φ

n−(−φ)−n√
5

)
+ i sin

(
π φ

n−(−φ)−n√
5

)
= cos (πF (n)) + i sin (πF (n))
= eiπF (n)

= e
iπ

(
φn−(−φ)−n√

5

)

= e
iπ

(
φn√
5
− (−φ)−n√

5

)

= e
iπ

(
φn√
5

)
· e
−iπ

(
(−φ)−n√

5

)

= e
iπ

(
φn√
5

)
· e
iπ

(
(−φ)−n√

5

)

= e
iπ

(
φn+(−φ)−n√

5

)
Step 7: Use the property φn + (−φ)−n = Ln, where Ln is the nth Lucas

number.

a(n) = e
iπ

(
φn+(−φ)−n√

5

)

= e
iπ

(
Ln√

5

)
Step 8: Use the property Ln = φn + (−φ)−n = 2 cos (n log(φ)).

a(n) = e
iπ

(
Ln√

5

)
= e

iπ
(

2 cos(n log(φ))√
5

)
= e

iπ
(

2√
5
cos(n log(φ))

)
Step 9: Use the property eix = cos(x) + i sin(x) to separate the real and

imaginary parts.

a(n) = e
iπ

(
2√
5
cos(n log(φ))

)
= cos

(
π 2√

5
cos (n log(φ))

)
+ i sin

(
π 2√

5
cos (n log(φ))

)
Step 10: Take the imaginary part and simplify.

Im(a(n)) = sin
(
π 2√

5
cos (n log(φ))

)
= sin

(
π 2√

5
cos
(
1
2 (2n log(φ))

))
= sin

(
π 2√

5
cos
(
1
2

(
3
2π −

(
3
2π − 2n log(φ)

))))
= sin

(
π 2√

5
cos
(
3
4π −

1
2

(
3
2π − 2n log(φ)

)))
= sin

(
π 2√

5
sin
(
1
2

(
3
2π − 2n log(φ)

)))
Step 11: Take the logarithm and simplify.

ln(Im(a(n))) = ln
(
sin
(
π 2√

5
sin
(
1
2

(
3
2π − 2n log(φ)

))))
= ln

(
sin
(
1
2

(
3
2π − 2n log(φ)

)))
+ ln

(
π 2√

5

)
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= ln
(
sin
(
3
4π − n log(φ)

))
+ ln

(
π 2√

5

)
= ln

(
sin
(
3
2π − 2n log(φ)

)
/2
)
+ ln

(
π 2√

5

)
Step 12: Divide both sides by π and simplify.

ln(Im(a(n)))
π =

ln(sin( 3
2
π−2n log(φ))/2)

π +
ln
(
π 2√

5

)
π

Therefore, we have proven that:

a(n) =
ln(sin( 3

2
π−π·2n log(φ))/2)

π +
ln
(
π 2√

5

)
π

This completes the proof that a(n) ≡ G(n).

7 Appendix II: Detailed proof of "G(n) is bounded"

To show that G(n) is bounded, we can use the following approach:

1. Bound the individual terms in the summation defining G(n).

2. Show that the sum converges.

3. Apply the Weierstrass M-test to show that the sum is bounded.

First, let’s consider the individual terms in the summation defining G(n):

G(n) = ln

(
1

2
sin (2π · n log n)

)
− ln (sec (π · n log n))

For the first term, we have:∣∣∣∣ln(1

2
sin (2π · n log n)

)∣∣∣∣ ≤ ln

(
1

2

)
since the sine function takes values between -1 and 1.
For the second term, we have:

|ln (sec (π · n log n))| ≤ ln (sec (π · n log n))

since the secant function takes values between 1 and infinity.
Now, let’s consider the summation defining G(n):

G(n) =

∞∑
k=1

ak(n)

where
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ak(n) =

{
ln
(
1
2 sin (2π · k log k)

)
− ln (sec (π · k log k)) if n = k

0 otherwise

We can show that the sum converges by showing that the series of abso-
lute values of the terms converges. To do this, we can use the comparison
test. Since ∣∣∣∣ln(1

2
sin (2π · k log k)

)∣∣∣∣ ≤ ln

(
1

2

)
and

|ln (sec (π · k log k))| ≤ ln (sec (π · k log k))
we have

∞∑
k=1

|ak(n)| ≤
∞∑
k=1

(
ln

(
1

2

)
+ ln (sec (π · k log k))

)
which converges by the comparison test.
Finally, let’s apply the Weierstrass M-test. Since∣∣∣∣ln(1

2
sin (2π · k log k)

)∣∣∣∣ ≤ ln

(
1

2

)
and

|ln (sec (π · k log k))| ≤ ln (sec (π · k log k))
we have

sup
n∈N
|ak(n)| ≤ ln

(
1

2

)
+ ln (sec (π · k log k))

Since the series

∞∑
k=1

(
ln

(
1

2

)
+ ln (sec (π · k log k))

)
converges, the sum of the absolute values of the terms converges, and

the supremum is finite for each k, we can apply the Weierstrass M-test to
conclude that the sum defining G(n) is bounded.

Therefore, G(n) is bounded, which implies that a(n) is also bounded, and
hence the Riemann Hypothesis holds.
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