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Abstract 

It was recently conjectured that Dark Matter consists of Cantor Dust, a relic cosmic web 

structure formed by condensation of continuous spacetime dimensions far above the Fermi 

scale. In this brief analysis we speculate that the Cantor Dust equations may generate the 

gravitational background recently reported by several international collaborations. 
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1. Introduction 

A few weeks ago, several collaborations reported evidence for continuous 

low frequency gravitational waves (GW) [1-2, 12]. Unlike the high-frequency 
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GW’s seen by ground-based instruments like the Laser Interferometer 

Gravitational-wave Observatory (LIGO), this low-frequency signal forms a 

stochastic gravitational wave background (SGWB), which can only be detected 

over long times using Pulsar Timing Arrays. The current belief is that there 

are several possible astrophysical sources of SGWB, besides supermassive 

Black Holes binaries that were abundant in the early Universe [12]. 

The goal of this brief report is to suggest an unconventional explanation of 

SGWB based on the hypothesis of Cantor Dust. According to this hypothesis, 

Cantor Dust is a relic cosmic web formed by the condensation of continuous 

spacetime dimensions in the deep ultraviolet (UV) sector of field theory. As 

argued in [8-10], there are two key points to consider here, namely, 

1) The formation of Cantor Dust follows from the nonintegrability of UV 

dynamics and the onset of fractal spacetime. 

2) Adequate modeling of this regime requires the tools of fractional 

differential and integral operators. 
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Our paper proceeds from these premises and is partitioned in the following 

way: Section 2 lists the main working assumptions; the putative duality of 

fractal spacetime and classical gravitation is discussed in section 3; the 

possible path leading from Cantor Dust to SGWB is detailed in the last 

section.  

We caution upfront that ideas presented here are controversial. Readers are 

encouraged to keep an open mind and recall that our analysis is entirely 

provisional. Researchers unfamiliar with the topic are urged to carefully 

study the references prior to drawing premature conclusions.  

2. Working assumptions 

A1) To enable a meaningful analogy with the metric tensor, dimensional 

deviations (13) are configured as tensor-like entities. This ansatz implies that 

dimensional deviations are considered locally dependent on all four 

spacetime coordinates.  
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A2) In general, dimensional deviations are assumed to be anisotropic and 

have a preferential orientation in four-dimensional spacetime.  

3. Duality of fractal spacetime and classical gravitation  

To begin with, consider the fractional analog of a free particle Hamiltonian 

given by [4] 

 21

2
H p

m
=   (1) 

in which   denotes the order of fractional integration. If 1 = − , with 1   

(1) approximates the classical non-relativistic Hamiltonian in the limit 0 =  

namely, 

 2 (1 ) 21 1

2 2
H p p

m m
−=   (2) 

Refer now to the action of a free non-relativistic particle in a weak 

gravitational field, 

 21

2
S dx g g p

m
= −  (3a) 
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where   is the Minkowski metric, det( )g g=  and 

 g h  = + ;  1h   (3b) 

Side-by-side comparison of (2) and (3) suggests the following analogy 

between the dimensional deviation   and gravitational metric, 

 2(1 ) 2p gg p −  −  (4) 

Consider next a slightly different context involving the action functional for 

a classical field in 1d D= +  spacetime dimensions [6], 

 [ ] ( , ) ( ) ( , )DS dt d xL dt d x L      =  =    (5) 

Here, the differential measure is  

 
3

1

( ) ( )ii
i

d x d x 
=

=  (6) 

where, 

 
11

( )
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d x x dx
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 (7) 
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For the sake of convenience and simplicity, we take all fractional orders and 

all coordinates to be equal in magnitude, that is, i = , 1,2,3i =  and x x= , 

0,1, 2,3 = . As a result, (6) assumes the form, 

 
3( 1)

3[ ( )]

x dx
d d



 


−

 =


 (8) 

If the spacetime is endowed with minimal fractality, (8) turns into [4-5] 

 

3
3

1 3[ (1 )]

x dx
d x dx







−
−

− = 
 −

 (9) 

where   depends on the one-dimensional deviation 1   via  

 1 = −  (10) 

Next, insert (9) into (5) and compare (5) with the action functional of a free 

massless scalar field in curved spacetime, 

 
1

[ ] [ ]
2

S dx g g
   = −    (11) 
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Recalling that, by construction, all fractional orders and coordinates are set 

to be equal in magnitude, leads to an analogy similar to (4), that is,     

 
3

x g g
 −
 −  (12) 

By assumption A1), (12) links the dimensional deviation   to an analogue 

gravitational metric, which is symbolically presented as  

 
)log(

3log

g g

x




−
−  (13) 

The notation    highlights the fact that only the diagonal elements of 

the corresponding dimensional deviation tensor   are considered in (13).   

4. From Cantor Dust to SGWB  

In what follows, we take the diagonal elements   to represent a single-

variable function as in 

 ( )  =  (14) 
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By assumption A2), (14) can be configured as a vector-like entity having both 

amplitude and phase. Presented in complex form, (14) turns into, 

 0( ) ( )exp[ ( )]i     =  (15) 

From these observations, the action functional of Cantor Dust may be 

presented as, 

 4[ , ] [ ( )]S d x g g V
        = −   +  (16) 

Here, ( )V    stands for the self-interaction potential of the field. Equation 

(16) underlines the description Cantor Dust as a classical complex scalar field 

placed in a background metric g . As a side note, it is instructive to point 

out that (16) models superfluidity in curved spacetime, as well as the 

behavior of Higgs-like fields over cosmological scales [7]. 

The equation of motion derived from (16) reads, 

 [ ] 0
( )

V
 

 


  − =


 (17) 

where   represents the covariant derivative and, 
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1

( )gg
g

 
     =  − 

−
 (18) 

The vacuum solution of (16) corresponds to the minimum of the potential, 

in which case (17) reduces to the classical wave equation in free space, 

 0
 =  =  (19) 

Taking the real and imaginary parts of (15) yields two equations describing, 

respectively, the relativistic Euler fluid and the continuity equation, [7] 

 0
0

1
( ) 0 

   


  −  =  (20) 

 0j  =  (21) 

Here, the four-dimensional current takes the form, 

 0j     (22) 

and the oscillation frequency is given by, 

 02  = =   (23) 
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There are two independent scenarios related to (20): 

a) 0( ) ( )   =  is a pure scalar and the phase term drops out [ ( ) 0  = ]. 

In this case, dimensional deviations are isotropic and (20) is identical 

to (19). 

b) the amplitude of the dimensional deviation ( 0 ) is coordinate 

independent and the first term of (20) drops out. 

In either one of these cases, (20) echoes the equation of plane gravitational 

waves in empty space [13] 

 0h =  (24) 

It follows that, at least in principle, appealing to the (13), (19) - (20) and (24), 

hints that Cantor Dust equations can mimic the behavior of SGWB.  

In closing, we point out that there are currently many studies on modeling 

scalar Dark Matter through a variety of equations (such as Schrödinger-

Poisson, Vlasov-Boltzmann, anyon wave equations, complex Ginzburg-

Landau, time dependent Ginzburg-Landau, fractional wave equations, 
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stochastic equations and so on – see e.g. [11]). According to these models, 

Dark Matter consists of exotic objects such as (but not limited to) scalars, 

complex scalars, superfluids, axions, gravitons, glueballs and q-bosons. It is 

conceivable that either one of these proposals may be used for building 

alternative scenarios regarding the physics of SGWB.   
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