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Abstract. There are two mutually exclusive concepts of the electrodynamics spin. 

According to the widespread concept, the spin density is proportional to the gradient of the 

electromagnetic energy density. Therefore, an unlimited plane wave of circular polarization 

does not contain spin, and a real wave, limited in space, carries all spin at its boundary, 

separately from energy. In contrast, according to the original concept, the spin density is 

proportional to the energy density, and the spin of plane waves is not related to the existence 

of the boundaries. Within the framework of this concept, we calculate the spin fluxes of 

plane waves in various situations and the previously unnoticed spin flux in the dipole 

radiation. The reason for the transition from this initial concept to the concept of a spin 

proportional to energy density gradient is discussed. 

Keywords: classical spin; electrodynamics, field theory 

 

1. Introduction. Spin and moment of a linear momentum. 

The idea of the classical spin of electromagnetic radiation, in fact, dates back to the 19th century 

and belongs to Sadowsky [1] and Poynting [2]. Poynting wrote, referring to circularly polarized 

electromagnetic waves: “If we put E for the energy in unit volume and G for the torque per unit 

area, we have πλ= 2/EG ”. 

This statement means, in particular, that a plane wave of circular polarization with intensity 

I cE=  [J/ m
2
s], which propagates along the z-axis and is absorbed by the xy-plane, acts on this 

plane with a distributed torque so that the infinitesimal area 
z

da  of the xy-plane receives a flux of 

angular momentum, i.e. torque  

( / )
z z

d I daτ = ω . 

In this case, there is no linear momentum directed in the xy-plane, which could create angular 

momentum along the z-axis. This statement means the existence of a density of angular momentum, 

which is not a moment of a linear momentum and is generally independent of a linear momentum.  

This is the situation described by Weyssenhoff [3], giving the definition of a spin liquid: 

“By spin-fluid we mean a fluid each element of which possesses besides energy and linear 

momentum also a certain amount of angular momentum, proportional – just as energy and the linear 

momentum – to the volume of the element”. Thus, a circularly polarized electromagnetic radiation 

should be regarded as a spin liquid.  

At present, the torque ( / )
z z

d I daτ = ω  can be easily explained using the concept of photon 

spin. The flux density of photons is /I hν , and each photon carries the spin angular momentum � . 

Therefore, the spin flux density is just equal to /I ω .  

After the work of Noether [4], this local angular momentum is mathematically expressed as 

a tensor spin density (in short, the spin tensor). The spin tensor is obtained by varying the action 

using one or the other Lagrangian. We use the letter upsilon as the root letter to denote the spin 

tensor: λµνϒ . The meaning of the spin tensor is given by the formula for the infinitesimal 4-spin 

dS dV
λµ λµν

ν= ϒ ,  , , ... , , ,x y z tλ µ ν → .                                      (1.1) 

This means that the 4-volume dVν  contains a spin angular 4-momentum dS
λµ . For example,  

xy xyt
dS dV= ϒ   is the z-component of the spin in the volume dV . Weyssenhoff writes just about 

this amount of angular momentum.  
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xy xyz

zdS da dt= ϒ  is the z-component of the spin that has passed through the area 
z

da  in time dt , i.e. 

xy xyz

zd daτ = ϒ  is the torque acting on the area 
z

da , and xyzϒ  is the surface density of the torque, 

similar to pressure, that is, the density of the spin flux. This quantity is denoted by Poynting G (here 

G is used to denote momentum volume density). 

The spin tensor λµνϒ  is similar to the energy-momentum tensor T µν . The meaning of the 

energy-momentum tensor is given by the formula for the infinitesimal 4-momentum 

dp T dV
µ µν

ν= .                                                 (1.2) 

This means that the 4-volume dVν  contains the 4-momentum dpµ . For example, z ztdp T dV=  is a 

z-component of the momentum in the volume dV . That is, zt z
T G=  is the z-component of the 

momentum volume density.  
z zz

zdp T da dt=  is the z-component of the momentum that has passed through the area 
z

da  in time 

dt , that is, z zz

zd T da=F  is the force acting on the area 
z

da , and zzT  is the surface density of the 

normal force, that is, pressure zzT=P .  
t tz

zdp T da dt=  is the mass-energy that has passed through the area 
z

da  in time dt , that is, tzT  is the 

mass-energy flux density or the Poynting vector. We denote the Poynting vector I  because the 

letter S  is occupied by spin. 

Using the radius vector { , , }ix x y z=  allows to enter a moment of a linear momentum 

relative to the origin ij i j j idL x dp x dp= − . In 4-space, the moment of momentum looks like this 

dL x dp x dpλµ λ µ µ λ= −   или  [ ]2dL x dpλµ λ µ=                              (1.3) 

(we use square brackets for antisymmetrization). The moment of momentum of a body is obtained 

by the integration: 
[ ] [ ]2 2L x dp x T dVλµ λ µ λ µ ν

ν= =∫ ∫ .                            (1.4) 

This moment of momentum is the orbital angular momentum If a body or an atom revolves only 

around its center of mass, the moment of momentum Lλµ  is independent of the computation point 

used. The total angular momentum of a body or of radiation is equal to the sum of the moment of 

momentum and spin 
[ ]2J L S x T dV dVλµ λµ λµ λ µ ν λµν

ν ν= + = + ϒ∫ ∫ .                  (1.5) 

A specific generally accepted expression for the spin tensor was obtained within the 

framework of the Lagrangian formalism using the canonical Lagrangian [5-7] / 4F F
µν

µν= −L : 

[ ] [ ] 
)

 2 2
(c

A A F A F A F
A

λµν λ µ λ µν µ λν λ µ ν
α

ν α

∂
ϒ = − δ = − + = −

∂ ∂

L
,              (1.6) 

where λA  and µνF  are the magnetic vector potential and the field-strength tensor of the 

electromagnetic field, respectively. The component expressing the volume density of the spin is  
[ ] [ ]

02 2
ijt i j t i j

c
A F A Dϒ = − = − = ε ×E A .                           (1.7) 

As an example, we consider the use of the canonical spin tensor (1.7) in a circularly 

polarized plane electromagnetic wave propagating along the z axis, as Soper do it [6]. The standard 

expression for such a wave looks like 

exp( )( )ikz i t i E= − ω +E x y  [V/m],    /ik= − ωB E  [Vs/m
2
],                (1.8) 

here x  and y  are the unit coordinate vectors, and E is the wave amplitude. Using the temporal 

gauge of the vector potential (the scalar potential is zero, 0ϕ = ), we find the vector potential  

exp( )( ) /dt ikz i t i E= − = − ω − + ω∫A E x y ,                            (1.9) 

and then find the z-component of the volume spin density: 
[ ] 2

0 0{ } /
xyt x y

c
E A Eϒ = ε ℜ = ε ω                                  (1.10) 



(here the bar means complex conjugation). Taking into account that the energy volume density in a 

circularly polarized wave is 2

0Eε , we see that the ratio of the energy density to the spin density in 

the wave, ω , is the same as the ratio of the energy of photon ω�  to its spin � . 

The use of the spin tensor makes it possible, in particular, to check the conservation law of 

angular momentum, to detect the spin radiation of a rotating dipole and the transfer of spin to a 

mirror, and to explain the result of the classical Beth's experiment. 

 

2. Spin conservation when reflected from a moving mirror 

2.1. Formulation of the situation 

We consider the reflection of a plane wave of circular polarization at normal incidence on a moving 

mirror in order to demonstrate the law of conservation of spin, along with the laws of conservation 

of momentum, energy, and the number of photons. For definiteness, a receding mirror is 

considered. It is shown that the number of returning photons is less than the number of incident 

photons by the number of photons that fill the space vacated by the receding mirror. In this case, the 

energy of the returning photons ω�  turns out to be less due to a decrease in frequency due to the 

Doppler effect, while the photon spin �  remains unchanged. Therefore, the energy in the returning 

wave decreases more significantly than the spin decreases. This corresponds to the fact that a 

moving mirror, when the wave is reflected, receives energy, but does not receive spin. The results 

were presented in [8]. 

The Maxwell tensor in Minkowski space [9 (12.113)],  

/ 4T g F F g F F
µν µα βν µν αβ

αβ αβ= + ,                                   (2.1) 

is used for the calculation of momentum and energy 

We consider the incident plane wave of circular polarization (1.8)  

1 1 1 1
exp( )( )ik z i t i E= − ω +E x y  [V/m],    101 EH ciε−=  [A/m],    11 ω=ck             (2.2) 

and, respectively, the reflected wave 

2 2 2 2
exp( )( )ik z i t i E= − − ω +E x y ,    202 EH ciε= .   22 ω=ck                       (2.3) 

 As is well known [10], the frequency ratio of the reflected and incident waves coincides 

with the ratio of the amplitudes of these waves and is given by the formula 

β+

β−
==

ω

ω

1

1

1

2

1

2

E

E
,                                               (2.4) 

where cv /=β , and v  is the speed of the mirror. 

 

2.2. Momentum flux density, i.e. pressure P  

The wave, which impinges on the moving mirror, has the frequency related to the mirror, according 

to the Doppler effect [11, § 48],  

β+

β−
ω=ω

1

1
10                                            (2.5) 

and, respectively, has the amplitude 

β+

β−
=

1

1
10 EE .                                        (2.6) 

We consider a superconducting mirror, thus the magnetic field doubles on the mirror, and the 

electric field is zero: 

)exp()(2 0000 tiicE ω−+ε= yxH .                                        (2.7) 

Therefore the pressure on the mirror is defined by the formula 2

0 0 0 / 2zzT H= = µP   and turns out to 

be equal to 

2 2

0 0 0 0 0 0 1

1
{ } / 4 2 2

1

zz

x x y y
T H H H H E E

− β
= = µ ℜ + = ε = ε

+ β
P  [N/m

2
].            (2.8) 



 In addition to the momentum flux, which gives pressure on the mirror, there is a filling of 

the space vacated by the moving mirror by momentum. The volume density of the filling, 

1 2

z zt ztG T T= + , consists of two parts, belonging to the incident and to the reflected waves:  

)( 2222111121

yt

zy

xt

zx

yt

zy

xt

zx

zzztzt
FFFFFFFFgTT +++=+                               (2.9) 

1 2 1 1 1 1 2 2 2 2( ) / 2
z zt zt xt yt xt yt

zx zy zx zyG T T B D B D B D B D= + = −ℜ − − − −  

2

2

10

2

1

2

2

2

102

2

2

1
0

)1(

4
)1()(

β+

βε
=−

ε
=−

ε
=

c

E

E

E

c

E
EE

c
 [Ns/m

3
].               (2.10) 

This filling requires the momentum flux density vG z , which we call �P : 
2 2

0 1

2

4

(1 )

z E
G v

ε β
= =

+ β
�P

 [N/m
2
].                                 (2.11) 

The total flux density is equal to: 
2 2

2 2

0 0 1 0 12 2

1 2 1
2 2

1 (1 ) (1 )
E E

 −β β + β
= + = ε + = ε 

+ β + β + β 

�P P P                     (2.12) 

 This total flux density is provided by the oncoming flux density 
1 2

zz zzT T= +P . Really, in 

accordance with the formula (2.1), we have expressions such as 

2/)(
yt

yt

yx

yx

xt

xt

yz

zy

xz

zx

tz

zt

zzzz
FFFFFFFFFFFFgT +++++=  

2/)(
y

y

x

x

yz

zy

xz

zx DEDEHBHB −−+−= ,                                                      (2.13) 

2 2 2 2 2

0 0 0( ) / 4 ( ) / 4
zz

y x y xT H H E E E= µ + + ε + = ε                                          (2.14) 

for the incident or reflected waves. Thus the total momentum flux density, 
2 2 2

2 2 2 2 22
1 2 0 1 2 0 1 0 1 0 12 2 2

1

(1 ) 1
( ) (1 ) 1 2

(1 ) (1 )

zz zz E
T T E E E E E

E

 −β + β
= + = ε + = ε + = ε + = ε 

+ β + β 
P ,         (2.15) 

coincides with expression (2.12).  

 

2.3. Energy conservation law 

The pressure on the mirror 0P  (2.8) produces a work because of the movement of the mirror. The 

corresponding mass-energy flux density is equal to: 
2

0 0 1
0 2

2 1
 

1

v E
I

c c

ε −β
= = β

+ β

P
 






sm

kg
2

                                      (2.16) 

 In addition, there is a filling of the space vacated by the moving mirror by mass-energy. The 

volume density of this filling, >+=< tttt TTu 21 , consists of two parts, belonging to the incident and 

to the reflected waves. Taking into account formula (2.1), we have expressions such as  

2/)(
yz

yz

xz

xz

xy

xy

zt

tz

yt

ty

xt

tx

tttt
FFFFFFFFFFFFgT +++++=  

)2/()(
2

cHBHBDEDE
yz

yz

xz

xz

y

y

x

x +++= ,                                                 (2.17) 

22

0

222

0

222

0 /)4/()()4/()( cEcHHcEET xyyx

tt ε=+µ++ε>=<  [kg/m
3
].               (2.18) 

for the incident or reflected waves. Thus the total mass-energy volume density equals 

2

2

2

2

10

2

2

2

2

10

2

1

2

2

2

2

1022

2

2

1021
)1(

12

)1(

)1(
1)1(/)(

β+

β+ε
=









β+

β−
+

ε
=+

ε
=+ε>=+=<

c

E

c

E

E

E

c

E
cEETTu

tttt
.   (2.19) 

This filling requires the mass-energy flux density, which we call I uv=� , 
2 2

0 1

2

2 1

(1 )

E
I uv

c

ε + β
= = β

+ β
� .                                       (2.20) 

 The total mass-energy flux density,  



2 22

0 1 0 1
0 2 2

2 41 1

1 (1 ) (1 )

E E
I I

c c

 ε ε β−β + β
+ = + β = 

+ β + β + β 
�  






sm

kg
2

                     (2.21) 

is provided by the Poynting vector 
1 2

tz tzI T T=< + > . Really, 

)( 2222111121

xt

zx

xt

zx

yt

zy

xt

zx

zztztz
FFFFFFFFgTT +++=+ )( 12121111

y

zy

x

zx

y

zy

x

zx DBDBDBDB −−−−−= , 

)( 2222111100 yxxyyxxy EHEHEHEH −+−εµ= ,                                                               (2.22) 

2 2 22 2
2 20 0 1 0 1 0 12

1 2 1 2 2 2 2

1

4(1 )
( ) (1 ) 1

(1 ) (1 )

tz tz E E EE
I T T E E

с с E с c

 ε ε ε ε β−β
=< + >= − = − = − = 

+ β + β 
.             (2.23) 

The value (2.23) coincides with (2.21). 

 

2.4. Conservation of the number of photons 

The volume density of photons, n , in the space, vacated by the moving mirror, is obtained by 

dividing the portions of the energy density (2.19) by the energy of a single photon, i.e. by 1ω�  or by 

2ω�  

)1(

2

1

1
1)1()(

1

2

10

1

2

10

1

2

1

2

10

2

2

2

1

2

1
0

β+ω

ε
=









β+

β−
+

ω

ε
=

ω

ω
+

ω

ε
=

ω
+

ω
ε=

�����

EEEEE
n  [1/m

3
].    (2.24) 

Due to the motion of the mirror the number of the photons increases. This requires the photon 

number flux density  

)1(

2

1

2

10

β+ω

ε
=
�

vE
nv  [1/m

2
s].                                     (2.25) 

This flux density is provided by the difference of Poynting vectors from formula (3.8) 

)1(

2

1

1
1)1()(

1

2

10

1

2

10

1

2

1

2

10

2

2

2

1

2

1
0

2

2

2

1

1

βω

ε

β

β

ω

ε

ω

ω

ω

ε

ωω
ε

ωω +
=









+

−
−=−=−=>+<

�������

vEcEcEEE
cc

TT tztz

.   (2.26) 

Photon number flux density (2.26) coincides with the flux density (2.25). 

 

2.5. Conservation of spin 
The number of photons can be calculated not only on the basis of wave energy, but also on the basis 

of wave spin. The volume density of wave spin is given by the component of the canonical spin 

tensor (1.7) 
[ ]

2
xyt x y t

x y y xA F A D A Dϒ = − = − +  [Js/m
3
],                                             (2.27) 

and the spin flux density is given by the component 
[ ]

2
xyz x y z

x x y yA F A H A Hϒ = − = +  [J/m
2
].                                             (2.28) 

Note that the lowering of the spatial index of the vector potential is related to the change of the sign 

in view of the metric signature )( −−−+ . 

 Since for a monochromatic field ∫ ω−=−= /kkk iEdtEA , densities (2.27), (2.28) can be 

expressed through the electromagnetic field: 

( ) / , ( ) /
xyt xyz

x y y x x x y yiE D iE D iE H iE Hϒ = − ω ϒ = − − ω .                         (2.29) 

In our case of reflection from a moving mirror, according to (2.2), (2.3), volume density of the spin 

is equal to: 

1 1 1 1 1 2 2 2 2 2{( ) / ( ) / } / 2
xyt

x y y x x y y xiE D iE D iE D iE Dϒ = ℜ − ω + − ω  

)1(

2

1

1
1)1()(

1

2

10

1

2

10

1

2

1

2

10

2

2

2

1

2

1
0

β+ω

ε
=









β+

β−
+

ω

ε
=

ω

ω
+

ω

ε
=

ω
+

ω
ε=

EEEEE
,             (2.30) 

and the photon volume density is given by dividing by �  and coincides with the value (2.24).  

The spin flux density is equal to:  

1 1 1 1 1 2 2 2 2 2{( ) / ( ) / } / 2
xyz

x x y y x x y yiE H iE H iE H iE Hϒ = ℜ − − ω + − − ω  



)1(
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1
1)1()(

1

2
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1

2
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1

2

1

2

10

2

2

2

1

2

1
0

β+ω

ε
=









β+

β−
−

ω

ε
=

ω

ω
−

ω

ε
=

ω
−

ω
ε=

vEcEcEEE
c ,          (2.31) 

and the photon flux density is given by dividing by �  and coincides with the value (2.26). 

Naturally, the increase in the amount of spin is provided by the spin flux: 
xyt xyzvϒ = ϒ .                                         (2.32) 

 

3. Spin absorption by a moving absorber 

3.1. A symmetric absorber 

In Chapter 2, the spin tensor (1.6) and the energy-momentum tensor (2.1) are used for calculations 

fluxes of energy, momentum and spin when a plane circularly polarized electromagnetic wave (2.2) 

reflects from a moving mirror. But these calculations concern no absorption. In this Chapter, we 

consider such a wave, which falls on a moving "symmetric absorber". We demonstrate the transfer 

of momentum, energy, and spin from a plane circularly polarized electromagnetic wave into the 

absorber. Lorentz transformations are used for these flux densities because our absorber moves. The 

given calculations confirm that spin is the same natural property of a plane electromagnetic wave, 

as energy and momentum. The results were presented in [12].  

We call "symmetric absorber" a medium, which is both dielectric and magnetic with µ=ε . 

Such a medium does not require generating a reflected wave; this simplifies formulas.  

 So, let a plane monochromatic circularly polarized electromagnetic wave (1.8) 

exp( )( )ikz i t i E= − ω +E x y  [V/m],    0i c= − εH E  [A/m],    ω=ck             (3.1) 

impinges normally on a flat x,y-surface of the absorber, which is characterized by complex 

permittivity and permeability ε = µ  and moves along the z axis with a speed v . 

 As is well known, the wave (3.1) carries the volume density of mass-energy u , the flux 

density of mass-energy (the Poynting vector) I , the volume density of momentum G , and flux 

density of momentum (pressure) P , as described by the formulas (2.1) 
2

0

2 3

kg

m

tt E
T u

c

ε  
= =   

,  
2

0

2

kg

m

tz zt E
T T I G

c s

ε  
= = = =   

,  2

0 2 2

kg N

m m

zzT E
s

 
= = ε =  

P ,     (3.2) 

Besides, according to (1.6), the wave carries the volume density and the flux density of spin 
[ ] 2 2

02 { }/ 2 / /
xyt x y t

x y y x
A F A D A D E ucΥ = − = ℜ − + = ε ω = ω  ]Js/m[ 3 ,             (3.3) 

[ ] 2 2

02 { }/ 2 / /
xyz x y z

x x y y
A F A H A H cE IcΥ = − = ℜ + = ε ω = ω  [J/m

2
]                    (3.4) 

( ∫ ω−=−= /kkk iEdtEA , kk

kt EDF 0ε== , x

yz HF = , y

xz
HF −= , kk cEiH 0ε−=   are used). 

But because of Doppler Effect [11 § 48], our wave has lesser frequency and, according to [10], has 

lesser amplitude relative to the moving absorber  

β+

β−
ω=ω′

1

1
,      

β+

β−
=′

1

1
EE                                         (3.5) 

where cv /=β .  So, relative to the absorber, the impinging wave is expressed by the formulas 

exp( )( )ik z i t i E′ ′ ′ ′= − ω +E x y ,    0i c′ ′= − εH E ,    ω′=′kc             (3.6) 

Accordingly, the flux densities prove to be lesser relative to the moving surface 
2

0

2

1

1

E
u u

c

′ε −β
′ = =

+ β
,  

2

0 1

1

E
I I

c

′ε −β
′ = =

+ β
,    2

0

1

1
E

− β
′ ′= ε =

+ β
P P .             (3.7) 

2

0 1

1

xyt xytE′ε − β
′ϒ = = ϒ

′ω + β
,  

2

0 1

1

xyz xyzcE′ε − β
′ϒ = = ϒ

′ω + β
.                       (3.8) 

 

  



3.2. The Lorentz transformations of flux densities of mass-energy and momentum 

However, from the viewpoint of an observer at rest, these latter quantities, i.e. mass-energy and 

momentum flux densities through the surface, have other values. These values must be found by the 

Lorentz transformations for coordinates of a 4-point and for components of 4-momentum 

22

2

1
,

1

/

β−

′+′
=

β−

′+′
=

tvz
z

czvt
t ,   

22

2

1
,

1

/

β−

′+′
=

β−

′+′
=

mvp
p

cpvm
m .           (3.9) 

We denote these flux densities by 
0 0
,I P . Taking into account that densities satisfy the equations,  

0
/I m at= , 

0
/p at=P ,  /I m at′ ′ ′= , /p at′ ′ ′=P ,                        (3.10) 

where a  is an area, which is not being transformed, and substituting values (3.9), when 0=′z , into 

expression (3.10), we get Lorentz transformations for the flux densities 
2

0 /I I v с′ ′= + P ,  
0

I v′ ′= +P P .                                             (3.11) 

So, from the viewpoint of the observer at rest, the flux density of mass-energy, which enters into the 

absorber, equals  
2 2

20 0
0 02 2

1 1
(1 ) (1 ) (1 )

1 1

E Ev v
I I E I I

с c c c

′ ε ε−β −β
′ ′= + = + ε = −β = − β = + β

+ β + β

P
           (3.12) 

Note, the pressure is Lorentz invariant when reflected, 0I ′ = , and 2

0 0 /I v с= P  (2.16)!  

 

3.3. The Lorentz transformations of spin flux densities  

Spin transforms differently. In order to transform it to the laboratory at rest, we must take into 

account that the angular momentum flux density satisfies the identities 

0
/J atϒ = ,   /J at′ ′ ′ϒ = ,                                       (3.13) 

where JJ ′=  is an angular momentum relative to the axis z , which is not being transformed. 

Taking into account (3.9), equations (3.13) yield the spin flux density that enters the absorber from 

the viewpoint of the observer at rest: 
2

2 20
0

1
/ 1 (1 ) 1

1

xyz xyz xyz xyzcE
t t

ε − β
′ ′ ′ϒ = ϒ = − β = ϒ − β = ϒ − β

ω + β
.            (3.14) 

 

3.4. Filling of the space with mass and spin 

Flux density 
0

I  (3.12) is lesser than flux density I  (3.2), which is brought by the incident wave. 

The difference between the mass fluxes (3.2) and (3.12) is spent on filling of the space that is 

vacated by the moving absorber. This filling requires a mass flux density, which we denote I� , 

I uv I= = β� .                                                       (3.15) 

As a result, we obtain the simple equality  

0I I I= +� .                                                         (3.16) 

The absorbed spin 
0

xyzϒ  (3.14) is lesser than the incident spin xyzϒ  (3.4). The difference is the 

spin that fills the space vacated by the plane. Spin volume density is given by the component of the 

spin tensor /xyt xyz cϒ = ϒ  (3.3). So, the filling of the space requires  
xyz xyt xyzvϒ = ϒ = ϒ β� . 

As a result, we obtain a simple equality  

0

xyz xyz xyzϒ = ϒ + ϒ� , 

which is similar to (3.16). 

But it is desirable to demonstrate the mechanism of the absorption of mass and spin flux 

densities, I ′  (3.7) and xyz′ϒ  (3.8), in the symmetric absorber. See next section. 

 

  



3.5. Absorption of energy and spin 

According to (3.6), the wave propagated in the absorber is described by the formulas 

exp( )( )ik kz i t i E′ ′ ′ ′ ′= − ω +E x y
�

,    
0

i c′ ′= − εH E ,    ω′=′kc   1 2k k ik= εµ = ε = µ = +
�

     (3.17) 

The mechanism of the absorption in dielectric was explained by Feynman [13]. According to the 

explanation, the rotating electric field exp( )( )i t i E′ ′ ′= − ω +E x y  exerts a torque ′τ = ×d E  on the 

rotating dipole moments of molecules d  of the polarized dielectric and makes a work. The power 

volume density of this work is 

e e
w ′ ′= × ωP E   [J/m

3
s],   

0
( 1)

e
′= ε − εP E

�
,                             (3.18) 

e
P  is the polarization vector, and  

e
′×P E  [J/m

3
] 

is the torque volume density
2
. The calculation gives  

20 0
2{ } {( 1)( )} exp( 2 ) {( 1)( )}

2 2 2
e ex y ey x x y y xw P E P E E E E E k k z i i E

′ ′′ ω ε ω εω
′ ′ ′ ′ ′ ′ ′ ′= ℜ − = ℜ ε − − = − ℜ ε − − −

2 2

0 2 0 2 2exp( 2 ) ( 1) exp( 2 )k k z E k k z k E′ ′ ′ ′ ′ ′= ω ε − ℑ ε − = ω ε − .                                                 (3.19) 

 Naturally, the rotating magnetic field of electromagnetic wave (3.17) makes the same work 

over rotating magnetic dipoles in the absorber. 

0m m
w ′ ′= × µ ωP H   [J/m

3
s],   ( 1)

m
′= µ −P H ,                             (3.20) 

0 0{ } / 2 {( 1)( )}/ 2
m mx y my x x y y x

w P H P H H H H H′ ′ ′ ′ ′ ′ ′ ′= ω ℜ − µ = ω µ ℜ µ − − .              (3.21) 

Substituting value (3.17) for the magnetic field into (3.21), we see that the work of the magnetic 

field is equal to the work of the electric field 

0 {( 1)( )}/ 2
m x y y x e

w E E E E w′ ′ ′ ′ ′= ω ε ℜ ε − − = .                              (3.22) 

The energy flux density, 2I c′  (not mass flux density I ′ ), which is carried to the surface of the 

absorber by the wave, can be obtained by the integration of the total power volume density,  
2

0 2 22 2 exp( 2 )e m ew w w w k k z k E′ ′ ′= + = = ω ε − ,                             (3.23) 

 over z   

2 2 2 20
0 2 2 0 20 0

J
2 2 exp( 2 )

m
e

I c w dz k k z k E dz E cE
k s

∞ ∞ ′ω ε  
′ ′ ′ ′ ′ ′= = ω ε − = = ε  ′  

∫ ∫ .       (3.24) 

This coincides with 2I c′  (3.7).  

 But we must recognize that the torque volume density
3
  

2

~ 0 0 2 2/ 2 exp( 2 )e mw k k z k E′ ′ ′ ′ ′τ = ω = × + × µ = ε −P E P H ,                    (3.25) 

which brings energy into the absorber, is also a volume density of the angular momentum flux, i.e. a 

volume density of the spin flux, which enters into the absorber. The torque volume density ~τ  

produces specific mechanical stresses in the dielectric [14]. And the torque volume density requires 

spin flux density, which is brought onto the surface of the absorber by the wave. We get this spin 

flux density by integrating the torque volume density ~τ  over z .   
2

20
0

0 0

1
( )

xyz

e m e m

cI c
dz w w dz E

∞ ∞ ′ ε
′ ′ ′ ′ϒ = × + × µ = + = =

′ ′ ′ω ω ω∫ ∫P E P H  







2

m

J
.            (3.26) 

This coincides with (3.8). 

 The results of this Section concerning the absorption of energy and spin in dielectric were 

first published in [15]. 

 

  

                                                 
2
 Do you remember? Poynting's G is a torque surface density! 

3
 We mark pseudo densities by index tilda. The torque volume density ~τ  is a pseudo density, as 

opposed to the torque τ .  



3.6. The use of the energy-momentum and spin tensors 

In this Section, the same results, (3.23) and (3.25), are obtained directly using the energy-

momentum and spin tensors (see also [16]). 

So let the wave propagated in the absorber is described by the formulas (3.17) (without 

stroke) 

{ 1, , / , / }exp( )
x y

x tx y ty zy xzF E F E F i B F i c B F c ikkz i t Eαβ = = = = = = = − ε = = ε − ω
�

, 

ck = ω ,   1 2k k ik= εµ = ε = µ = +
�

,                                 (3.27) 

0 0 0 0{ , , , }exp( )
x xt y yt zy xz

x yF D F D F i H F ic H F c ikkz i t E
µν = = = εε = = εε = = − ε = = ε − ω

�
.  (3.28) 

Using the Maxwell tensor (2.1) yields the Poynting vector in the absorber 
2 2

0 2{ }/ 2 exp( 2 )
tz xz yz

tx ty
с T F F F F c kk z E= ℜ + = × = ε −E H                     (3.29) 

Power volume density of the released energy in the absorber is 
2

2 0 2( ) 2 exp( 2 )zw k kk z E= −∂ × = ωε −E H .                            (3.30) 

This is (3.23). 

Using the spin tensor (1.6) and ∫ ω−=−= /iii iEdtEA  yields the spin flux density in the 

absorber 
2

0 2{ }/ 2 { } / 2 exp( 2 ) /
xyz x yz y xz

x x y y
c

A F A F A H A H c kk z Eϒ = ℜ − + = ℜ + = ε − ω .        (3.31) 

The torque volume density from the absorbed spin in the absorber is 
2

~ 2 0 22 exp( 2 )
xyz

z
c

k kk z Eτ = −∂ ϒ = ε −  [J/m
3
].                   (3.32) 

This is (3.25). 

 

4. Absorption of energy and spin by a conducting medium 

In Chapter 3, the energy-momentum and spin tensors were used to calculate the energy absorption 

and spin in a non-conductive symmetric absorber. In this chapter, the same tensors are used to 

calculate absorption in an electrically conductive medium [17,18]. 

Let 

21),()](exp[),)]((exp[ ikkkiktzkiitzki +=+−−=+−=
����

yxByxE              (4.1) 

is a damping plane circularly polarized electromagnetic wave, which is propagated in a conducting 

medium for 0>z . We set 100 ==== ωµε c , and we indicate complex numbers by the breve 

mark: k
�

. The equations (4.1) mean that 

{ 1, , , }exp( )
x y

x tx y ty zy xzF E F E F i B F ik B F k ikz itαβ = = = = = = = − = = −
� � �

,          (4.2) 

{ 1, , , }exp( )tx ty zy xzF F F i F ik F k ikz itµν = = − = − = − = −
� � �

.                 (4.3) 

Уравнения Максвелла 
[ ]3 Fγαβ γ αβξ = ∂  для магнитных токов γαβξ  показывают, что магнитные 

токи отсутствуют, например 

( ) exp( ) 0yzt z ty t yzF F iki iik ikz itξ = ∂ + ∂ = − − =
� � �

                                   (4.4) 

Уравнения Максвелла j Fµ λµ
λ= ∂  для электрических токов дают 

2 2( )exp( ), ( 1 )exp( )x tx zx y ty zy

t z t z
j F F i ik ikz it j F F k ikz it= ∂ + ∂ = − − = ∂ + ∂ = − + −

� � � �
       (4.5) 

Закон Ома, ,x x y yj E j E= γ = γ , определяет k
�

:  

2 1k i= + γ
�

,  
1 2

2k kγ =                                       (4.6) 

где γ  есть вещественная проводимость. Но это не существенно для нас. 

Волна (4.1) создается падающей и отраженной волнами, распространяющимися при 0z < : 

2/))(1)]((exp[,2/))(1)]((exp[ 11 yxByxE +−+−=++−= iktziiktzi
��

,                   (4.7) 

2/))(1)]((exp[,2/))(1)]((exp[ 22 yxByxE −−−−=+−−−= iktziiktzi
��

                  (4.8) 

are the incident and reflected waves for 0<z , respectively. 



Vector potential waves can be written by the formula ∫ −=−= EEA idt  

))(exp( yxA +−−= iitzki
�

,                                                            (4.9) 

2/))(1)(exp(1 yxA +−+−= ikitiz
�

,                                                   (4.10) 

2/))(1)(exp(2 yxA +−−−−= ikitiz
�

.                                                 (4.11) 

The use of the Maxwell energy-momentum tensor gives the Poynting vectors of the waves: 

)2exp(2/)})(({2/}{2/}{ 21 zkkekieiekeBEBEFFT kkkk

xyyxzi

ti

tz −=−−−ℜ=−ℜ=−ℜ=
��

,  (4.12) 

4/)21(8/)})(1)()(1()1()1{(2/}{ 2

111111 kkiekeikekekBEBET xyyxtz ++=−+−+−++ℜ=−ℜ=
��

,  

(4.13) 

4/)21(8/)})(1)()(1()1()1{(2/}{ 2

122222 kkiekeikekekBEBET xyyxtz +−−=−−−−−−−ℜ=−ℜ=
��

, 

 (4.14) 

0
21 =

=+
z

tztztz
TTT .                                                                    (4.15) 

Here we denoted to shorten the record: )exp(),exp( itizeitzkiek −≡−≡
�

, or )exp( itize −−≡  and 

kkk
�

=2
 

The use of the canonical spin tensor (1.6) gives the spin fluxes in the waves: 

1 2{ } / 2 { } / 2 { ( ) } / 2 exp( 2 )
xyz x yz y xz x x y y

k k k k
c

A F A F A B A B ie k ie e ke k k zϒ = ℜ − + = ℜ + = ℜ − + = −
� �

, 

(4.16) 

  
2

1 1 1 1 1 1{ } / 2 {(1 ) (1 )( ) (1 ) (1 ) } / 8 (1 2 ) / 4
xyz x x y y

c
A B A B k ie k ie k e k e k kϒ = ℜ + = ℜ + + − + + + = + +

� �
 

(4.17) 

  
2

2 2 2 2 2 1{ } / 2 {(1 ) (1 )( ) (1 ) (1 ) } / 8 (1 2 ) / 4
xyz x x y y

c
A B A B k ie k ie k e k e k kϒ = ℜ + = ℜ − − − + − − = − − +

� �
 

(4.18) 

0
21

=

Υ=Υ+Υ
z

xyz

c

xyz

c

xyz

c
.                                                                (4.19) 

The difference between the energy and spin fluxes in the incident and reflected waves is absorbed 

in the medium. The equality between the energy fluxes (4.12) – (4.14) and spin fluxes (4.16) – 

(4.19) is natural because energy of photon ω�  equals spin of photon �  if 1ω = . 

It is natural that the absorbed power density satisfies ( )tz

zT−∂ = ⋅j E . Really, 

1 2 22 exp( 2 )tz

zT k k k z−∂ = −    and 

2 2

1 2 2( ) { } / 2 { (1 ) ( 1)( )}/ 2 2 exp( 2 )x x y yj E j E i k k i k k k z⋅ = ℜ + = ℜ − − − − = −j E
� �

       (4.20)
 

It is important that absorption of the spin flux densities xyz

z−∂ ϒ  equals the torque volume density 

( )xy

∧τ = ×j A  [18]. Really 

1 2 22 exp( 2 )
xyz

z
c

k k k z−∂ Υ = − , and   

1 2 2{ } / 2 2 exp( 2 )x y y xj A j A k k k z× = ℜ − = −j A
                           (4.21)

 

The torque volume density ∧τ = ×j A  is analogical to the Lorentz force density f∧ = ×j B  

ki ik

i iT j F−∂ = = ×j B
.                                        (4.22) 

 

  



5 Radiation of spin by a rotating dipole 

5.1. Emission of energy and moment of momentum according to the classical 

electrodynamics 

As is known, a rotating electric dipole or two dipole oscillators perpendicular to each other,  

)exp(),exp( tiipptipp yx ω−=ω−= ,                                (5.1) 

radiate electromagnetic waves. (In this Chapter, p denotes electric dipole moment) The power and 

the angular distribution of this power (Fig. 1) are, respectively, [11 § 67, Problem 1], [19] 
3

0

24 6/ cpP πεω= ,                                   (5.2) 

3

0

2224 32/)1(cos/ cpddP επ+θω=Ω                     (5.3) 

where ϕθθ=Ω ddd sin  (We use the system of units where 0/div ερ=E ). The polarization of this 

radiation is circular along the axis of rotation and is linear in the plane of rotation (Fig. 3).  

 The electromagnetic field of a rotating electric dipole contains moment of linear momentum 
zL , which flux is [11 § 72, § 75]  

3 2 3
0/ / 6zdL dt p cω πε= ,                                 (5.4) 

Tthis flux is located in the neighborhood of the plane of rotation where the polarization is near 

linear. The angular distribution of the moment of momentum flux, according to [20-24] (see Fig. 2) 

is  
3

0

2223 16/sin/ cpdtddLz επθω=Ω .                             (5.5) 

Heitler noted [25], “The angular momentum (5.4) is not contained in the wave zone, where 

the field strengths are perpendicular to r  and behave like r/1 . In this zone zL  vanishes: zL  is 

proportional to rE , and 2/1~ rE r ”. So, we must recognize that this flux is not a radiation; this is 

an orbital angular momentum flux, although Heitler claims that it is spin radiation: “the 

contributions to zL  arise from a subtle interference effect”. 

The presence of the orbital angular momentum in the field of a rotating dipole is naturally. 

This field is a multipole field of order )1,1( == ml . And equalities (5.3) and (5.4) are in the 

agreement with formula  

ω= // mPdtdLz .                                              (5.6) 

This formula is from [25], [9 (9.144)].Equation (5.6) is an additional proof that the moment of 

linear momentum zL  is not a spin. According to (5.6), each photon has an angular momentum 

�mLz = , not � . 

 

5.2. Spin radiation by a rotating dipole in the frame of the electrodynamics 

At the same time, the modern electrodynamics does not notice an angular momentum flux in the 

direction of the axis of rotation, where the radiation is intense and the polarization is circular, 

although it was suggested as early as 1899 by Sadowsky [1] and as 1909 by Poynting [2] that 

circularly polarized light carries angular momentum volume density, and the angular momentum 

density is proportional to the energy volume density.  

The classical experiments [24 – 27] confirm that the angular momentum density is 

proportional to energy density. In these experiments, the angular momentum of the light was 

transferred to a half-wave plate, which rotated. So, work was performed in any point of the plate. 

This (positive or negative) amount of work reappeared as an alteration in the frequency of the light, 

which resulted in moving fringes in any point of the interference pattern in a suitable interference 

experiment. So, it is natural to recognize a spin radiation (5.1) along the axis of rotation. A 

calculation of this spin radiation is presented here. 

 



 
 

The spin volume density AE×ε0  (1.7) is integrated over a thin spherical layer (of thickness 

dr ), which surrounds the source of the radiation, and then the integral is divided by dt  on the 

assumption cdtdr =/ . So, the formula for the spin flux is  

dtdrdrdtdS xytxy // 2 ΩΥ= ∫ ,                                              (5.7) 

The expression for radiated electric field [19, 30] is used  
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E                                  (5.8) 
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iyxyirp
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ixyxrp
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πε

−−ω
=            (5.9) 

∫ ω−=−= /EEA idt .                                            (5.10) 

Inserting (5.1), (1.7), (5.9), (5.10) into (5.7) yields the time averaged spin flux:  

∫∫ ωΩ−εℜ=Ω−εℜ= 2/)(2/)(/ 2

0

2

0 dcrEEEEidcrAEAEdtdS xyyxxyyx

xy .                (5.11) 
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            (5.12) 

Inserting (5.12) into (5.11) yields 

∫ Ωθ
επ

ω
= d

c

p
dtdS

xy 2

3

0

2

23

cos
16

/ .                                (5.13) 

So, the angular distribution of the spin flux (see Fig. 4) is  
3

0

2223 16/cos/ cpdtddS z επθω=Ω .                             (5.14) 

Integration of equality (5.13) gives the spin flux 
3

0

23 12// cpdtdS z πεω= .                                         (5.15) 

These results were presented in [31-34]. 

 Thus the total angular momentum flux, orbital + spin, (5.4) + (5.15), is  
3

0

233

0

233

0

23 4/12/6//// cpcpcpdtdSdtdLdtdJ zzz πεω=πεω+πεω=+= .               (5.16) 

Thus, the total angular momentum flux exceeds 1.5 times the value now recognized (5.4). 



Note that for 0=θ , i.e. where there is no orbital angular momentum (4.5), according to (5.3) and 

(5.14), the photon relation is valid:  

( ω�  energy) = ω( �  spin),    
3 2 2 3

0( /16 )zdPdt dS p c d dtω ω ω π ε= = Ω .                    (5.17) 

 

5.3. Spin radiation by a rotating dipole in the frame of the quantum mechanics 

It is remarkable that the result (5.14), θΩ 2cos/ ∝∝∝∝dtddS z , for the angular distribution of z-

component of the spin flux was obtained by Feynman beyond the standard electrodynamics. Really, 

the amplitudes that a RHC photon and a LHC photon are emitted in the direction θ  into a certain 

small solid angle Ωd  are [35 (18.1), (18.2)] 

2/)cos1( θ++++a   and  2/)cos1( θ−−−−−−−− a .                   (5.18) 

So, in the direction θ , the spin flux density is proportional to 

θθθ cos]2/)cos1([]2/)cos1([ 222 aaa ====−−−−−−−−++++ .            (5.19) 

The projection of the spin flux density on z -axis is 

θΩ 22 cos/ adtddS z ∝∝∝∝ .                           (5.20) 

Note that the Feynman’s method gives the power distribution (5.3) as well:  

2/)cos1(]2/)cos1([]2/)cos1([/ 2222 θ+=θ−+θ+∝Ω aaaddP .                 (5.21) 

 

 

6. Radiation reaction to an emitting rotating dipole 

6.1. Is there a violation of the momentum conservation law? 

Chapter 5 presents an amazing result. A rotating dipole emits power (5.2) 
3

0

24 6/ cpP πεω= ,                                   (6.1) 

The dipole receives this power from the source of rotation, which for this must act on the dipole 

with a torque /Pτ ω= . In this case, the source of rotation will transmit to the dipole, in addition to 

the energy flux P , also the moment of momentum flux /Pτ ω= . However, according to (5.16), 

the rotating dipole emits a flux of angular momentum, which is one and a half times greater than 

/Pτ ω= , due to the radiation of the spin: 
3

0

233

0

233

0

23 4/12/6//// cpcpcpdtdSdtdLdtdJ zzz πεω=πεω+πεω=+= .               (6.2) 

Thus, a rotating dipole emits more angular momentum, 
3 2 3

0/ 4p cω πε , than it receives from the 

source of rotation, 
3 2 3

0/ / 6P p cτ ω ω πε= = . A problem arises with the implementation of the law 

of angular momentum conservation in relation to a rotating dipole. In this regard, it is interesting to 

study the mechanism of energy and angular momentum transfer from a rotating dipole to an 

electromagnetic field. What is the field response to a rotating dipole? How does the field affect the 

dipole, from which the field receives energy P  and angular momentum per unit time 1,5 /P ω ? 

 As a rotating electric dipole, we consider a pair of oscillating dipoles perpendicular to each 

other and having a quarter-period oscillation shift in time (5.1), 

)exp(),exp( tiipptipp yx ω−=ω−= .                                     (6.3) 

In the present chapter, the energy and angular momentum fluxes (6.1), (6.2) are calculated using the 

same type by the use of the retarded electromagnetic Jefimenko’s field [9, p. 247]. It turned out that 

the forces acting on the dipoles and responsible for the loss of energy (6.1) differ from the forces 

responsible for the loss of angular momentum (6.2) [36]. So it is found that the energy taken from 

the dipole is equal to the recognized value of the radiated energy. At the same time, it is confirmed 

that the angular momentum flux exceeds the generally accepted value by the spin radiation not seen 

before. 

 

6.2. Energy loss by a rotating dipole 
The value (6.1) is calculated as the result of the influence of the electromagnetic field of the dipole on 

the dipole itself, according to the formula for the density of the resulting power  



)( Ej ⋅−=∧P ;                                                     (6.4) 

here j  and E  are current density flowing along the dipole and the electric field in the dipole, 

respectively, and the index ∧  for ∧P  means, in this case, "volume density", xdPdP 3

∧= . First, the 

effect of the x-dipole on itself is calculated. 

 The electric field near the dipole taking into account the retardation [9 (6.55)] is 

∫
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and an "elementary vibrator" is considered as a dipole; the current of the dipole is the same at all 

points, and the charges are only at the ends (see Figure 6.1) 

 
Figure 6.1.  x-dipole 

 

The dipole current xI  is obtained by differentiating the charge  

)exp( tiqlp x ω−= ,                                                        (6.6) 

)exp(/ tiqilpI x

tx ω−ω−=∂= .                                            (6.7) 

 The first term of expression (6.5),  

∫
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is simply the retarded Coulomb field at the point x . Therefore, replacing  

qdxd ′→ρ′
�3 ,  cxltt /)2/( ±−→  ,  xlr ±→ 2/  

and taking into account the direction of the electric field, we obtain the electric field strength from 

both charges at the point x : 
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The corresponding contribution of this term to the power generated by the dipole is given by 

formula (6.4) (we replace Idxxjd →3 , and the bar means complex conjugation) 
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Taking into account the small size of the dipole, we consider only two terms of the expansion of the 

sine in a series  
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Similarly to formula (6.8), we find the electric field provided by the second term of formula (6.5) 
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In contrast to formula (6.8), this formula contains i. 



Formula (6.4) gives the contribution of this term, xE2 , to the power generated by the dipole  
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Restricting ourselves to two terms of the expansion of cosine in a series, we have  
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Surprisingly, the integrals diverging at the ends of the dipole are shortened upon the addition 

21 PP + , and the remaining terms are constants. As 3/2/6/ lll −=− , this part of the power is 
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 The third term of formula (6.5), 
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uses the derivative of the current 
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To calculate the strength at the point x , we divided the region of integration into two parts by the 

point x  
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Using formula (6.4), dxIExddP x−=⋅−= 3)( Ej , and current (6.7), we obtain the power 

corresponding to the third term of formula (6.5) 
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Restricting ourselves to one term in the expansion of the sine in a series, we easily obtain 
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Thus, the power radiated by one x-dipole is 

)12/( 3
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24

321 сpPPPP πεω=++= .                                      (6.19) 

Naturally, the y-dipole, acting on itself, makes the same contribution. It will be shown below that 

the electric field of one oscillating dipole in the territory of another oscillating dipole is 

perpendicular to the current, and therefore does not produce energy. So a rotating dipole delivers 

power (6.1) to the radiation: 
3

0

24 6/ cpP πεω= . 

 

6.3. The torque experienced by the charges of a rotating dipole 

We now calculate the electric field E  created by the y-dipole at the location of the charge of the x-

dipole, that is, at the point 2/lx =  (see Fig. 6.2) 

To shorten the notation, we rewrite formula (6.5) in terms of charges and currents: 
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here the charge and current belong to the y-dipole: 

)exp( tiiqq y ω−= ,  )/exp(][ ret critiiqq y ω+ω−= ,  )/exp(][ ret critiqq yt ω+ω−ω=∂ ′       (6.21) 

)exp( tiqqI yty ω−ω=∂= ,  )/exp(][ ret critiqI y ω+ω−ω= .  )/exp(][ 2

ret critiqiI yt ω+ω−ω−=∂ ′ . 

(6.22) 

 
Fig. 6.2. The pair of oscillating dipoles. Current elements and radii used in the formulas are indicated. 

The electric field created by the charge consists of two terms: 
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2

ret21 4/)/][/]([ˆ πε∂+=+ ′ crqrq ytyrEE .                                   (6.23) 

However, the forces created by these terms on the charge )exp( tiqqx ω−=  are mutually eliminated 

when the dipole size tends to zero, although they tend to infinity. 

 
.08/)//(8/}/)/cos(/)/sin({

8/}/)/exp(/)/exp({2/}){(

0

2

0

22

0

22

2121

=πεω+ω−→πεωω+ω−=

πεωω+ωℜ=+ℜ=+

qcrcrqcrcrrcr

qcrcrircriiqEEFF x
      (6.24) 

Similarly, the total interaction forces of other pairs of charges are zero. So the damping of 

the rotating dipole is provided only by the third term of the formula (6.20): 
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The force acting on the charge xq  along the y-axis is  
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The torque acting on both charges of the x-dipole is .8/ 3

0

223 clq πεω−  Therefore, the torque acting 

on the rotating dipole is directed against the rotation of the dipole and is equal to (6.2) 
3
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23 4/ cp πεω . 

 

6.4. Magnetic field torque 

In addition to the electric field (6.5), Jefimenko's formulas give the magnetic field [9 (6.56)],  
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This field acts on dipoles (6.3) by the Lorentz force. Consider the magnetic field created by the y-

dipole on the territory of the x-dipole. By analogy with (6.20), we write 
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However, using (6.22) and (6.7), we find that the average value of the Lorentz force acting on the x-

dipole is zero: 

0

22 8/)}ˆ(]/)/exp(/)/exp([{2/}{ πε××ωω−ωωωℜ=×ℜ= ∫∫∫ rdydxBdxF crcriqircriqqiI x
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2322 →→πε××ωω+ωω−= ∫∫ rqcrcrrcr rdydx .          (6.29) 

So the total torque acting on the rotating dipole is (6.2) 

 

6.5. Conclusion. Angular momentum without rotation 

A direct calculation showed that a pair of oscillating dipoles (6.3), which creates the field of a 

rotating dipole, actually provides the energy flux P  (6.1) and the angular momentum flux 

tot 1,5 /Pτ ω=  (6.2), which are not related to each other. In this case, there is no violation of the 

conservation laws, because these flows are provided by the sources of oscillations of these dipoles. 

These flows are generated independently of each other, because in this case ω  is not a rotational 

speed. 

 In the case of a really rotating dipole, that is, in the case of really rotating electrons, the 

energy flux LP ωτ=   is created by the angular momentum flux L /Pτ ω= , coming from the source 

of rotation, due to the presence of the angular frequency ω . The spin flux in the field of a rotating 

dipole, S tot L 0,5 /Pτ τ τ ω= − = , is not associated with energy. From this we can conclude that spin 

is not related to rotation. Indeed, Hehl writes, referring to the spin of an electron: 

“The current density in Dirac’s theory can be split into a convective part and a polarization part. 

The polarization part is determinated by the spin distribution of the electron field. It should lead to 

no energy flux in the rest system of the electron because the genuine spin “motion” take place only 

within a region of the order of the Compton wavelength of the electron. The convective part of the 

current density describes the average motion of the electron field and leads to a momentum and to 

an energy flux”. 

The spin flux in the field, Sτ , is also not associated with the flux of angular momentum Lτ  coming 

from the source of electron rotation. By virtue of the angular momentum conservation law, it can be 

concluded from this that rotating electrons accumulate in themselves a spin of the opposite 

orientation relative to the orientation of the emitted spin. In other words, a rotating electric dipole is 

magnetized by radiation. This conclusion was made in [22] 

 

7. Modification of the canonical energy-momentum and spin tensors 

7.1.Incorrectness of the canonical spin tensor  

In the previous chapters, the canonical spin tensor (1.6) [ ]2
c

A F
λµν λ µ νϒ = −  has been successfully 

applied. However, generally speaking, the tensor is not true. Really, consider e.g. a circularly 

polarized plane wave (4.1) when 1k =
�

 

),cos(),sin(),sin(),cos( tzBtzBtzEtzE yxyx −=−=−−=−=  

)cos(),sin( tzAtzA yx −=−=                                            (7.1) 

A calculation of components of the canonical spin tensor (1.6) yields 

1, 1
xyt xyz

c c
ϒ = ϒ = ,  2sin ( )

zxy z xy x zy x
x

c
A F A F A B z tϒ = − + = = − ,  2cos ( )

yzx y
y

c
A B z tϒ = = − .   (7.2) 

This result is absurd, because, though 
xyt

c
ϒ  and 

xyz

c
ϒ  are adequate (we used them), the result means 

that there are spin fluxes in the directions, along x, and along y, which are transverse to the 

direction of the wave propagation. 

Moreover, the canonical spin tensor predicts an interference of counter propagating waves, 

which is not actually observed. Let us consider a standing electromagnetic wave. The wave incident 



on a mirror and the reflected wave are supplied with indices 1 and 2, respectively, and the following 

expressions are used for them: 

1 1( ) , ( )iz it iz iti e i e− −= + = − +E x y B x y                                  (7.3) 

2 2( ) , ( )iz it iz iti e i e− − − −= − − = − +E x y B x y                                (7.4) 

Here ,x y  are the unit coordinate vectors, and for the sake of simplicity 100 =µ=ε===ω ck . 

Bearing in mind expression (1.6), we write out the components of the field-strength tensor (without 

an exponential factor) 

1 1 1 1 1 1 1 11, , , 1,x tx y ty x zy y xzE F E F i B F i B F= = = = = = − = =                  (7.5) 

2 2 2 2 2 2 2 21, , , 1,x tx y ty x zy y xzE F E F i B F i B F= = − = = − = = − = =                (7.6) 

Raising the indices gives, by virtue of the signature ( )+ − − − , 

1 1 1 11, , , 1,tx ty zy xzF F i F i F= − = − = − =                          (7.7) 

2 2 2 21, , , 1,tx ty zy xzF F i F i F= = = − =                            (7.8) 

When calculating the magnetic vector potential, it is natural to use the Weyl gauge, 0ϕ = , so 

,tk t k k k tkF A iA A iF= ∂ = − = . 

1 1 2 2, 1, , 1.x y x yA i A A i A= = − = − =                                   (7.9) 

Raising indices reverses the signs  

1 1 2 2, 1, , 1.x y x yA i A A i A= − = = = −                                  (7.10) 

Let us first determine the spin density in the incident wave (the bar means complex conjugation). 

1 1 1 1 1{ }/ 2 ( 1 1) / 2 1xyt x yt y xt

c
A F A F ii< ϒ >= −ℜ − = − − ⋅ = .                       (7.11) 

The spin density in the reflected wave, 2

xyt

c
ϒ , is naturally the same. 

2 2 2 2 2{ }/ 2 {( )( ) ( 1)( 1)}/ 2 1xyt x yt y xt

c
A F A F i i< ϒ >= −ℜ − = − − − − − − = .                   (7.12) 

However, the spin density in the real field, 1 2 1 2,k k k kl kl klA A A F F F= + = + , calculated using formula 

(1.6), contains the nonphysical oscillating cross term. 

1 2 1 2 1 2 1 2
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The cross term: 
2 2
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= −
  (7.14) 

So   2 2cos 2xyt

c
z< ϒ >= − .                                                     (7.15) 

 

7.2. Incorrectness of the canonical energy-momentum tensor  
To modify the canonical spin tensor we must remember that the electrodynamics starts from the 

canonical Lagrangian [37 (4-111)], 4/µν
µν−= FF

c
L . Then, by the Lagrange formalism, the canonical 

energy-momentum tensor [37 (4-113)] 

/ 4
( )c

T A g g A F g F F
A

µν µ µν µα νβ µν αβ
α α β αβ

ν α

∂
= ∂ − = − ∂ +

∂ ∂
c

c

L

L                        (7.16) 

and the canonical total angular momentum tensor [37 (4-147)] 
[ ]2

c cc
J x T

λµν λ µ ν λµν= + ϒ                                                                (7.17) 

are obtained, where 



[ ] [ ]2 2
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A A F
A

λµν λ µ λ µ ν
α

ν α

δ
∂

ϒ = − = −
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c

L

,                                          (7.18) 

is the incorrect canonical spin tensor (1.6) [37 (4-150)]. 

However, the canonical energy-momentum tensor (7.16) is incorrect as well [38, 39]. It 

gives, for example, a negative energy density tt

c
T  of a constant uniform electric field xE  (we 

assume 0 1c ε= = ):  

2, , , 0, / 4 / 2 / 2tx tx
tx tx x t t x txE F F F A A xE A F F F F E

αβ
αβ= = − = −∂ = − = = = −  

The first term in (7.16) is zero, and the second is negative, 
2( ) / 4 / 2tt tt tx tt

t x
c
T g A F g F F E

αβ
αβ= − ∂ + = −  

In contrast, in Maxwell's tensor (2.1) 

/ 4T g F F g F F
µν µα βν µν αβ

αβ αβ= +                                    (7.19) 

the first term is 2E : 
2( ) / 4 / 2tt tt tx tt

t x x tT g A A F g F F E
αβ

αβ= − ∂ − ∂ + = . 

Moreover, the canonical tensor (7.16) is not symmetric and has irregular divergence. 

As is known, divergence of the Maxwell tensor is [11 (33.7)] 

T g j F
µν µα β

ν αβ∂ = −                                      (7.20) 

where g j F f
µα β µ

αβ =  is volume density of the 4-Lorentz force, with which the electromagnetic 

field acts on charges and currents of matter, and j Fβ νβ
ν= ∂  is the current density. The canonical 

energy-momentum tensor differs from Maxwell's tensor by g A F
µα νβ

β α∂ , 

c
T T g A F

µν µν µα νβ
β α= − ∂  

Therefore, instead of (7.20), the divergence of the canonical energy-momentum tensor is equal to 

the inappropriate value 

( ) ( )
c
T g j A A g A F A j g j A

µν µα β µα νβ β µα β
ν α β β α νβ α β α α β∂ = − ∂ − ∂ − ∂ + ∂ = − ∂         (7.21) 

 

7.3.The Belinfante-Rosenfeld procedure 

In order to transform the canonical energy-momentum tensor (7.16) into the Maxwell tensor (7.19), 

the term A F
µ νβ

β∂  should be added to the canonical tensor (7.16). Instead, as a part of the 

Belinfante-Rosenfeld procedure, a divergence-free divergence of an antisymmetric quantity is 

added to the canonical tensor. We name this quantity µν∆ : 

( )A F
µν µ νβ

β∆ = ∂ .                                                  (7.22) 

The result is a meaningless tensor 
BR
T

µν
 that differs from both the Maxwell tensor and the canonical 

energy-momentum tensor 

( )
BR c
T T A F T A j

µν µν µ νβ µν µ ν
β= + ∂ = − .                                  (7.23) 

This tensor is never used and its existence is not a problem. However, the addition of term (7.22) to 

the canonical energy-momentum tensor is accompanied by the addition of a term λµν∆  to the 

canonical spin tensor (7.18).  

BR c

λµν λµν λµνϒ = ϒ + ∆  

The term λµν∆  is related to the term µν∆  by the well-known relation [6 (9.4)]  
[ ]2λµν λµ

ν∂ ∆ = ∆ ,                                                       (7.24) 

and the term λµν∆  turned out to be equal to the canonical spin tensor (7.18) with a minus sign  



c

λµν λµν∆ = − ϒ .                                                    (7.25) 

Really: 
[ ] [ ]2 ( ) 2

c
A F

λµν λ µ ν λµ
ν ν−∂ ϒ = ∂ = ∆                             (7.26) 

This means that the Belinfante-Rosenfeld procedure eliminates the spin tensor of electrodynamics. 

Thus, the Belinfante-Rosenfeld spin tensor is zero 
[ ] [ ] 0

BR c
A F A F

λµν λµν λµν λ µ ν λ µ νϒ = ϒ + ∆ = − + = ,                            (7.27) 

 

7.4. Professor Soper's mistake 

But let us return temporarily to the energy-momentum tensor. Wanting to obtain the Maxwell tensor 

by adding a divergence-free term to a canonical tensor, Soper changes the Lagrangian by adding the 

term A jνν−  [6 (8.3.3)], 

/ 4
S

F F A j
µν λ

µν λ= − −L ,                                (7.28) 

and obtains a “Soper-canonical” energy-momentum tensor [6 (8.3.7),(8.3.8)] 

/ 4
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Sc S c
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α α β αβ

ν α

∂
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∂ ∂

L

L ,      (7.29) 

This tensor really differs from Maxwell's tensor by a divergence-free term, and therefore has the 

correct divergence (7.20). However, this tensor is not obtained from the Soper Lagrangian. Soper 

was mistaken in calculating his additional term in tensor (7.29). In fact, Lagrangian (7.28) 

obviously gives another energy-momentum tensor 

c
T T g A j

µν µν µν λ
λ= +� ,                                     (7.30) 

which is no better than the usual canonical tensor (7.16). There is no Lagrangian giving Maxwell's 

tensor within the canonical formalism. 

 

7.5. Electrodynamics’ spin tensor 

We have noted that the Maxwell energy-momentum tensor can be gained by adding the term 

c
t T T A F

µν µν µν µ νβ
β= − = ∂ ,                                               (7.31) 

instead of (7.22) ( )A F
µν µ νβ

β∆ = ∂ , to the canonical energy-momentum tensor 
c
T

µν . Here a 

question arises, what term λµνs , instead of (7.25) λµν∆ , must be added to the canonical spin tensor  

[ ]2
c

A F
λµν λ µ νϒ = −  to transform it into a required unknown electrodynamics spin tensor  

c
s

λµν λµν λµνϒ = ϒ + ? 

Our answer is [39,40]: the addends t µν , λµνs  must satisfy the relationship (7.24) 
[ ]2s tλµν λµ

ν∂ = ,  i.e.  [ ]2s A Fλµν λ µ ν
ν ν∂ = ∂ .                                    (7.32) 

A simple expression 
νµλλµν AAs ][2 ∂=                                                       (7.33) 

satisfies Eq. (7.32). So, the suggested electrodynamics spin tensor is 
[ ] [ ] [ | | ] [ ]2 2 2 2

c
s A F A A A A A A g

λµν λµν λµν λ µ ν λ µ ν λ ν µ λ µ κν
κϒ = ϒ + = − + ∂ = ∂ = ∂ .            (7.34) 

The spin tensor (7.34) does not give spin fluxes across the direction of wave propagation as 

the canonical spin tensor (1.6) gives. For the wave (7.1), it turns out, for example,  

0zxy z y x x y z
A A A Aϒ = − ∂ + ∂ = .                                  (7.35) 

But the spin tensor (7.34) predicts the interference of counter propagating waves as well as the 

canonical spin tensor predicts. For the field (7.7) - (7.10), spin tensor (7.34) gives the cross term 



1 2 1 2 2 1 2 1
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i i i i e i i i i e z
−

ℜ ∂ − ∂ + ∂ − ∂

= − − − − + − − − − − − = −
                (7.36) 

 

7.6. Symmetrisation of the electrodynamics’ spin tensor 

The expression (7.34) was obtained heuristically. It is not final one. We saw the imperfection of the 

spin tensor (7.34) in the fact that it unjustifiably selects the part of the electromagnetic field, which 

is associated with the magnetic vector potential A  and, accordingly, with the electric current j . It 

represents only the electric field, dt∫−= EAE, .  The fields of this part constitute, according to 

[41,42], the chain 

( ) ( )j F F A A
µ µν λ

αβ β∧ ∧ ∧
× ×

∂ ∂
� �

�

* * .                             (7.37) 

Here the index ∧  marks tensor densities of weight +1; the five-pointed asterisk is the conjugation 

operator: /g gβλ ∧
=*  or g g g

µα νβ

∧
=* ; symbol ( )∂  is a boundary operator: [ ]( ) 2A Aβ α β

× ×
∂ = ∂  

or ( ) F F
µν µν

ν∧ ∧
× ×

∂ = ∂ ; the symbol �  denotes closed differential forms or closed vector densities, and 

×  denotes conjugate closed quantities. 

The spin tensor (7.34) is composed of the fields of this chain. So, we denote it the electric 

spin tensor 
[ ]2

e
A A g

λµν λ µ κν
κϒ = ∂ .                                        (7.38) 

However, there is an alternative chain of fields, including the electric three-vector potential V  and 

the current density of magnetic monopoles ξ  

( ) ( )F F V V
µν µνλ

γαβ αβ γαβξ ∧ ∧
× ×

∂ ∂
� ��

* * .                             (7.39) 

The corresponding spin tensor must be composed of the fields V
µνλ
∧

×
 of this chain. To give this spin 

tensor the form of (7.34), dual expressions are used, obtained using the antisymmetric pseudo 

density αβγδε ∗ . We will mark pseudo-values with the asterisk ∗ : 

V V
βγδ

αβγδ αε ∗ ∗
∗ = .                                               (7.40) 

This gives the magnetic spin tensor 
[ ]2

m
V V g

λµν λ µ κν
κ∗ ∗ϒ = ∂ .                                           (7.41) 

An analogue of the Weyl gauge 0ϕ =  is now 0xyzV = . Therefore, to obtain the electric 

potential from the formula F Vµν µνλ
λ= ∂ , only kl klt klt

tF V iV= ∂ = −  is used. So klt klV iF= . The 

field (7.7), (7.8) give a contravariant electric potential in the considered standing wave situation. 

1 1 2 21, , 1,zyt xzt zyt xztV V i V V i= = = = .                              (7.42) 

Lowering indices does not change these values 

1 1 2 21, , 1,zyt xzt zyt xztV V i V V i= = = = .                             (7.43) 

After dualizing with 1zytx xztyε ε= = , we obtain the values for composing the magnetic spin tensor in 

the considered situation 

1 2 1 1 2 11, ,x x zytx y y xzty

zyt xztV V V V V V iε ε∗ ∗ ∗ ∗= = = = = =                            (7.44) 

and the magnetic spin tensor (7.41) gives the cross term of the opposite sign 

1 2 1 2 2 1 2 1

2 2

{ }/ 2

{[( ) ( )( )] [( ) ( )( )] } / 2 2cos 2

x y y x x y y x

t t t t

iz iz

V V V V V V V V

i i i i e i i i i e z

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−

ℜ ∂ − ∂ + ∂ − ∂

= − − − − + − − − − =
                     (7.45) 

Since the fields of both chains are equally present in electromagnetic radiation n vacuum, it 

is natural to use the half-sum of the electric and magnetic tensors as the spin tensor 

( ) / 2
e m

λµν λµν λµνϒ = ϒ + ϒ .                                  (7.46) 



In the considered case of a standing wave, such a generalized spin tensor gives the correct result 

2λµνϒ = .                                                (7.47) 

 

 

8. Explanation of the Beth’s experiment 

8.1. Poynting vector in the Beth's experiment. 

The well-known Beth’s experiment [43] proves that circularly polarized light contains an angular 

momentum, as predicted by Sadowsky [1] and Poynting [3]. According to Beth's idea, a beam of 

circularly polarized light passes through a half-wave plate, which changes the chirality of the light 

and, accordingly, changes the direction of rotation of the electromagnetic vectors and the direction 

of the angular momentum of light to opposite directions. As a result, by virtue of the angular 

momentum conservation law, the half-wave plate receives twice the amount of angular momentum 

contained in the beam. However, as it was just proved at the conference [44], in the Beth’s 

experiment, in reality, there is no rotation of electromagnetic mass-energy. Moreover, there is no 

mass-energy flow at all. The Poynting vector ×E H  and the linear momentum density 0ε ×E B  are 

equal to zero in the Beth’s apparatus. This has also been proven earlier [39,40,45,46]. As a 

consequence, the electromagnetic field in the Beth’s apparatus has no angular momentum, 

according to the existing definition of the angular momentum of an electromagnetic field [9,25,47-

49] 

0 ( )dV= ε × ×∫J r E B .                                                 (8.1) 

According to definition (8.1), the angular momentum of an electromagnetic field is the moment of 

the linear momentum of the field, and it is equal to zero in the Beth’s apparatus. So the 

experimentally recorded transfer of the angular momentum of light to the plate occurs in the 

absence of any angular momentum in the light, according to (8.1). Therefore, the receipt of the 

angular momentum by the half-wave plate from the electromagnetic field in the Beta experiment is 

inexplicable within the framework of definition (8.1). 

The point is that in the Beth’s experiment, light that has passed through a half-wave plate 

passes through it a second time after being reflected from a mirror covered with a quarter-wave 

plate. And such a mirror does not change the chirality of light when reflected. Therefore, the light 

that has passed through the half-wave plate returns to it after reflection with the same chirality. But 

circularly polarized beams of the same chirality, having the opposite direction, create the opposite 

rotation of electromagnetic vectors. Therefore, when such beams interference in the Beth’s 

apparatus, a pulsation of the field vectors arises without rotation at any point in space around the 

half-wave plate. 

To show this, consider a simple model of a right-handed circularly polarized light beam 

directed along z-axis with the plane phase front, which was proposed by Jackson [9]: 

)()]()[exp( 01 rEiiitiz yx ∂−∂++−= zyxE ,   222 yxr += ,                  (8.2) 

)()]()[exp( 01 rEiiitiz yx ∂+∂++−−= zyxH ,                                      (8.3) 

Here 1E  and 1H  are complex vectors of the electromagnetic field, zyx ,,  are unit coordinate 

vectors. yx ∂∂ ,  mean partial derivatives with respect to x and y. For simplicity, 

100 =µ=ε===ω ck . Index 1 in (8.2), (8.3) means that the formulas describe the primary beam 

after passing through the half-wave plate. The beam amplitude is indicated by )(0 rE . The function 

)(0 rE  is considered constant throughout the entire beam area, that is, under the condition Rr < , 

where R  is the radius of the beam. However, on the surface of the beam, where Rr ≈ , the function 

)(0 rE  quickly decreases to zero.  

We mark the reflected beam incident on the plate with index 2. This beam has the same 

helicity as the primary beam passing through the plate (that is, it has the same mutual direction of 



momentum and spin). Therefore, it’s formulas are obtained from formulas (8.2), (8.3) by changing 

the signs of z  and y : 

2 0exp( )[ ( )] ( )x yiz it i i E r= − − − − ∂ + ∂E x y z ,                          (8.4) 

2 0exp( )[ ( )] ( )x yiz it i i E r= − − − − − ∂ − ∂H x y z                         (8.5) 

Adding the primary and reflected beams and writing out explicitly the real parts of the 

complex expressions, we obtain the components of the resulting electromagnetic field 

( ) ( ) tzEEitizitizEx coscos2]exp[exp 00 =−−+−ℜ= ,                   (8.6) 

( ) ( ) tzEEitiziitiziEy cossin2]expexp[ 00 −=−−−−ℜ= ,              (8.7) 

( ) ( )

tEzz

EiitiziitizE

yx

yxyxz

cos)cos(sin2

)](exp)([exp

0

0

∂+∂−=

∂−∂−−−+∂−∂−ℜ=
           (8.8) 

( ) ( ) tzEEitiziitiziH x sincos2]expexp[ 00 −=−−−−−ℜ= ,           (8.9) 

( ) ( ) tzEEitizitizH y sinsin2]exp[exp 00 =−−−−ℜ= ,                 (8.10) 

( ) ( )

tEzz

EiitiziitizH

yx

yxyxz

sin)cos(sin2

)](exp)([exp

0

0

∂+∂=

∂+−∂−−+∂+∂−ℜ=
,         (8.11) 

and the resulting electromagnetic field in the vector form is 

tEzzzz yx cos)]cos(sin)sincos[2 0∂+∂−−= zyxE ,                    (8.12) 

tEzzzz yx sin)]cos(sin)sincos[2 0∂+∂−−−= zyxH .                  (8.13) 

It can be seen that the electric and magnetic fields are parallel to each other everywhere. Therefore, 

the Poynting vector is zero everywhere. There is no movement. There is no momentum. 

 

8.2. Spin tensor in the Beth's experiment. 

Let us now calculate the spin flux in the resulting electromagnetic field (8.12), (8.13) adjacent to the 

Beth’s half-wave plate on one side. We calculate sequentially, first the vector potential A , and 

then, using formula (1.6), the component xyzϒ  of the spin tensor λµνϒ ,  

tEzzdt sin)sincos(2 0yxEA −−=−= ∫ ,                              (8.14) 

2 2
04 sinxyz x yz y xz x y

x yA F A F A H A H E tϒ = − + = + = ,  
2
02xyz E< ϒ >= .            (8.15) 

A similar calculation for the other side of the plate gives the same result. Thus, as a result of 

the existence of the spin flows to two sides, the plate receives the resultant torque 

PER 44 2

0

2

tot =π=τ ,                                              (8.16) 

where  Р represents the power of the beam. This is consistent with the outcome of the Beth's 

experiment. 

 Thus the concept of spin of electromagnetic radiation, which goes back to Sadowsky & 

Poynting [1.2], according to which the angular momentum is proportional to the radiation energy, 

requires the spin term to be introduced into the definition of the angular momentum of 

electromagnetic radiation (1.5). The Beth's experiment proves this. 

 

8.3. Illustrations 

Now we illustrate the content of this article. See please. Figures 1, 2, 3 present the interference of an 

incident beam and the beam reflected by an ordinary mirror. Figures 5, 6, 7 present the interference 

in the Beth’s apparatus. 

In Figure 1, the left helix of the right-hand circular polarization wave moves translationally 

upward along the z-axis with the speed of light V. Electric field E is represented by red arrows, 

magnetic field H is represented by blue arrows. The right half of the figure shows a side view of the 

wave. The crosses in circles represent the tails of the arrows. The dots within the circles represent 

the noses of the arrows. The left half of the figure shows cross sections of the wave by xy-planes at 

three different locations. The direction of rotation of the E-H pair of vectors observed at these 



locations is shown. The spins of the photons are directed along the z-axis; we say that they have +z-

spin. The direction of the spins coincides with the direction of the wave velocity. Therefore, the 

spin flux is positive. At the same time, this means the existence of a downward –z-spin flux. The 

spin flux situation is similar to the momentum flux situation, i.e. to pressure situation. Positive 

pressure in a vertical cylinder means that the +z-directed momentum passes through the upper end 

of the cylinder and, at the same time, the –z-momentum passes down through the lower end of the 

cylinder. But we do not know how to depict a flow in the picture. 

 
Figure 2 shows the same wave after reflection from an ordinary mirror. It moves in the 

opposite +z-direction. But the pair of vectors E-H rotates in the same way as in Figure 1. 

Accordingly, the direction of the photon spins remains + z. However, the speed changes direction to 

the opposite direction. Therefore, the spin flux is negative. This is analogous to negative pressure. 

This wave has left-hand circular polarization. 

Figure 3 shows the resulting standing wave of circular polarization. The total vectors E and 

H rotate in the same way as in Figures 1 and 2. However, now the E and H-fields have nodes. In 

some places there is no electric field, and the magnetic field is doubled, in other places there is no 

magnetic field, and the electric field is doubled. The volume density of the spin is doubled and still 

has the +z direction. But the spin flux is zero. Spin is without spin flux! This is natural, because the 

spin flux onto the mirror is zero. The average speed of movement of the electromagnetic mass-

energy is zero. 

Figure 4 shows a portion of the Beth’s apparatus. We are considering the space between the 

half-wave plate and the quarter-wave plate with mirror sputtering. 

Figure 5 shows the same wave of right-hand circular polarization as in Fig. 1. The direction 

of the photon spins coincides with the direction of the velocity and with the direction of the +z-spin 

flux. So, we have a -z-spin flux down again. But now this wave is used in the Beth’s experiment. It 

emerges from the half-wave plate and is directed at the mirror covered with a quarter-wave plate. 



Figure 6 shows the wave of Figure 5 after reflection from the mirror covered with the 

quarter-wave plate. When reflected from such a mirror, the wave passes through the quarter-wave 

plate twice. Therefore, the quarter wave plate plays the role of a half wave plate. But a half-wave 

plate changes the chirality of the transmitted wave to the opposite one. Therefore, in contrast to the 

ordinary reflection as in Figure 2, in the Beth's experiment, the reflected wave retains the right-hand 

circular polarization. Its speed is downward. Spin of photons is directed downward as well. It is the 

–z-spin. We have a -z-spin flux down. Thus, the total flux of the –z-spin down to the half-wave 

plate is doubled. The plate experiences a torque corresponding to this doubled flux from the 

considering space. This torque is directed against the z-axis. 

The standing electromagnetic wave arising in the Beth’s experiment (Figure 7) differs 

significantly from the usual standing wave shown in Figure 3. There are no nodes in such a wave. 

For example, at the depicted time moment, there is a doubled magnetic field in all space. Over time, 

this magnetic field, without changing its direction, is replaced by an electric field, because the 

vectors of both fields are obtained by adding the vectors of the primary and reflected waves, which 

have opposite rotation. In this case, the vectors E and H of the fields always and everywhere 

coincide in direction. This means that the Poynting vector is identically zero. There is no rotation, 

and even no movement of the electromagnetic mass-energy. All fluxes are equal to zero, except for 

the spin flux. In this case, the volume density of the spin is equal to zero due to the fact that the 

spins of the primary and reflected waves have the opposite direction. 

 

8.4. Conclusion 

The concept of spin of electromagnetic radiation, which goes back to Sadowsky & Poynting [2,3], 

according to which the angular momentum is proportional to the electromagnetic energy, requires 

the spin term to be present in the definition of the angular momentum of electromagnetic radiation 

(14). Definition (1) is not correct. The Beth's experiment proves this. 

 

I am eternally grateful to Robert Romer for courageously publication the question, "Does a 

plane wave really carry no spin?" [50]. 
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