Any Formal System That Contains Sets Arithmetic and Rational Numbers is Inconsistent
 By Jim Rock

Abstract: Gödel proved that any formal system containing arithmetic is incomplete. We show that any such formal system is inconsistent. We establish a collection of nested sets of rational numbers in a descending hierarchy. The sets higher in the descending hierarchy contain element(s) that are not in the sets below them in the hierarchy. Given such a descending set hierarchy, it is easy to develop two arguments that contradict each other. The conclusion of Argument $\# 2$ is false. But, Argument $\# 2$ is a valid argument.
For rational numbers a in $[0,1]$ let the collection of $R a$ sets be $\{y$ is a rational number $\mid 0 \leq y<a\}$
Argument\#1: No Racontains a largest element.

1) Suppose there is a largest element a^{\prime} in some individual Ra.
2) $a^{\prime}<\left(a^{\prime}+a\right) / 2<a$.
3) Let $b=\left(a^{\prime}+a\right) / 2$.
4) Then b is in Ra and $a^{\prime}<b$.
5) a^{\prime} is in $\mathrm{R} b$ a proper subset of $\mathrm{R} a$.

When a largest element is assumed in Argument\#1, it leads to a contradiction; so there is no largest element. Every Ra set element is in one of the proper subsets below $\mathrm{R} \boldsymbol{a}$ in the set hierarchy. It is a valid proof by contradiction.
Argument\#2: Each Racontains a largest element.

1) Below each $\mathrm{R} \boldsymbol{a}$ for all rationals $\boldsymbol{x}<\boldsymbol{a}$ is a collection of $\mathrm{R} \boldsymbol{x}$ subsets $\{y$ is a rational number $\mid 0 \leq y<x\}$.
2) Each $R \boldsymbol{a}$ and its collection of $\mathrm{R} \boldsymbol{x}$ subsets comprise a descending set hierarchy.
3) Each $\mathrm{R} \boldsymbol{x}$ is missing its index " \boldsymbol{x} ". Ra contains all the " x " indices.
4) Since the union of the collection of $R \boldsymbol{x}$ sets does not contain any element greater than the elements in all the individual $\mathrm{R} \boldsymbol{x}$ sets, the union of the collection of $\mathrm{R} \boldsymbol{x}$ sets does not equal Ra .
5) There exists at least one $\mathrm{R} a$ set element $s \geq$ (all values of) \boldsymbol{x}.
6) Let \boldsymbol{c} and \boldsymbol{d} be two elements of a single $\mathrm{R} \boldsymbol{a}$ set with $\boldsymbol{c}>\boldsymbol{d}$.
7) \boldsymbol{d} is an element of $\mathrm{R} \boldsymbol{c}$, which is a proper subset of Ra .
8) For any two elements in $\mathrm{R} \boldsymbol{a}$ the smaller element is contained in a $\mathrm{R} \boldsymbol{x}$ subset of $\mathrm{R} \boldsymbol{a}$.
9) By steps 6) 7) and 8), there is at most one $\mathrm{R} \boldsymbol{a}$ set element missing from all the $\mathrm{R} \boldsymbol{x}$ subsets.
10) By steps 5) 9), each $R \boldsymbol{a}$ set contains a largest element \boldsymbol{a}^{\prime} not in a $\mathrm{x} \boldsymbol{x}$ set below in the hierarchy.
11) There is no $b=\left(a^{\prime}+a\right) / 2$. It would be a second element not in a $\mathrm{R} \boldsymbol{x}$ set below $\mathbf{R} \boldsymbol{a}$ in the hierarchy. We know by step 8) that isn't possible.

Some people will claim that Argument\#2 step 5 is false. For any single Rx there is always an element of $\mathrm{R} \boldsymbol{a}$ that is greater than all the elements in that single $\mathrm{R} \boldsymbol{x}$ set, but no element of $\mathrm{R} \boldsymbol{a}$ is greater than all the elements in the entire collection of $\mathrm{R} \boldsymbol{x}$ sets. As argument\#1 shows for any element a^{\prime} in $\mathrm{R} \boldsymbol{a}$ there is always a larger element $b=\left(a^{\prime}+a\right) / 2$ in $\mathrm{R} \boldsymbol{a}$ and so a^{\prime} is in the $\mathrm{R} \boldsymbol{x}$ set where $\boldsymbol{x}=\boldsymbol{b}$.
However, Argument\#2 is also a valid argument. That's why any formal system that contains sets, arithmetic, and rational numbers is inconsistent.
© 2023 James Edwin Rock. This work is licensed under a Creative Commons AttributionShareAlike 4.0 International License. If you wish, email comments to Jim Rock at collatz3106@gmail.com.

