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Abstract. The 3D-brane universe model is an alternative non-Einsteinian theory

of gravity. The initial version of this theory uses the so-called equidistance postulate.
Recently a new version of theory was started which is free of this postulate. In this

paper we continue building the new version of theory by applying the Lagrangian
approach to it.

1. Introduction.

The 3D-brane universe model was first suggested in [1] (see also [2] and [3]).
This theory is based on a criticism of the standard concept of four-dimensional
spacetime and on the assertion that the spacetime is not a physical continuum. It
is a mathematical continuum that subdivides into a dense foliation of 3D-branes
each representing some instantaneous state of the physical universe. From the
standard relativity this mathematical continuum inherits the metric and some other
attributes. The initial version of theory (see [1,4–8] and [9–11]) was built using the
so-called equidistance postulate.

Postulate 1.1. Watches of any two comoving observers can be synchronized.

Comoving observers in this context are those observers whose world lines (see [12]
and [13]) are perpendicular to all 3D-branes in the spacetime foliation. Geometri-
cally the postulate 1.1 means that the segments of world lines of comoving observers
enclosed between any two given 3D-branes all are of the same length.

A new version of the 3D-brane universe model was started in [14]. It does not use
the postulate 1.1 and deals with arbitrary foliations of 3D-branes in the spacetime.
Spacial coordinates x1, x2, x3 which are constant along world lines of comoving
observers are called comoving coordinates. A time variable t is called a brane time
if it is constant throughout each 3D-brane of the spacetime foliation:

t
3D-brane

= const . (1.1)

Using some brane time variable we define the associated brane time coordinate:

x0 = cgr t. (1.2)
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The constant cgr in (1.2) is interpreted as the speed of gravitational waves. As it
was declared in [7], in the 3D-brane universe model this constant is not necessarily
equal to the speed of electromagnetic waves cel, which is the speed of light.

Comoving coordinates and brane time variables obeying the condition (1.1) do
exist. If we complement comoving coordinates x1, x2, x3 with a brane time co-
ordinate x0 from (1.2), then we get four-dimensional coordinates x0, x1, x2, x3

associated with the foliation of 3D-branes in the spacetime. The coordinates x0,
x1, x2, x3 are special ones. The four-dimensional metric tensor in these coordinates
is given by a block-diagonal matrix:

Gij =

∥

∥

∥

∥

∥

∥

∥

∥

∥

g00 0 0 0
0 −g11 −g12 −g13

0 −g21 −g22 −g23

0 −g31 −g32 −g33

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (1.3)

The quantities gij from the lower right diagonal block of the matrix (1.3) are inter-
preted as the components of a time-dependent three-dimensional metric:

gij = gij(t, x
1, x2, x3), 1 6 i, j 6 3. (1.4)

The quantity g00 from the upper left diagonal block in the matrix (1.3) is interpreted
as a time dependent scalar function

g00 = g00(t, x
1, x2, x3). (1.5)

By substituting (1.3) into the standard Einstein’s gravity equation

rij −
r

2
Gij − Λ Gij =

8 π γ

c4
gr

Tij (1.6)

in [14] three groups of differential equations for the function (1.5) and for the
metric (1.4) were derived (see (4.35), (4.36), and (4.37) therein). The first group of
equations is the most numerous:

g−2
00

2 cgr

(

gij

3
∑

k=1

bk
k − bij

)

ġ00 +
g−1
00

2

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇kq g00 −

− g−2
00

4

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇k g00 ∇q g00 + g−1
00

(

1

cgr

ḃij −

−
3

∑

k=1

1

cgr

ḃk
k gij −

3
∑

k=1

(bki bk
j + bkj bk

i ) − gij

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k −

− gij

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +

3
∑

k=1

bk
k bij

)

+ Rij −
R

2
gij + Λ gij =

8 π γ

c4
gr

Tij,

(1.7)

where 1 6 i, j 6 3. Here in (1.7) and in (1.6) γ is Newton’s gravitational constant
(see [6]), Λ is the cosmological constant (see [7]), Rij are the components of the
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three-dimensional Ricci tensor of the metric (1.4), R is the three-dimensional scalar
curvature, and bij are given by the formula

bij =
ġij

2 cgr

=
1

2 cgr

∂gij

∂t
=

1

2

∂gij

∂x0
. (1.8)

The quantities bi
j in (1.7) are produced by raising one of the two indices in (1.8).

The second group of equations derived in [14] is written as follows:

3
∑

k=1

∇k bk
i −

3
∑

k=1

∇i bk
k +

1

2
g−1
00

3
∑

k=1

(

bk
k ∇i g00 − bk

i ∇k g00

)

=
8 π γ

c4
gr

Ti0, (1.9)

where 1 6 i 6 3. The third group comprises exactly one equation. It is written as

−1

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k +

1

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +
R

2
g00 − Λ g00 =

8 π γ

c4
gr

T00. (1.10)

The quantities Tij, Ti0, and T00 in (1.7), (1.9), and (1.10) are the components
of the energy-momentum tensor (see [17]) from (1.6). In the present paper we
consider two of the three groups of equations (1.7), (1.9), (1.10) and apply the
Lagrangian approach to deriving them. These are the equations (1.7) and (1.10).
As for the equations (1.9), we exclude them from the theory thus making our theory
non-equivalent to the standard relativity.

2. Action integral and its reduction.

In the standard theory of relativity the Einstein equation (1.6) is derived with
the use of the following standard action integral (see § 2 in Chapter V of [18]):

Sgr = −
c3
gr

16 π γ

∫

(r + 2 Λ)
√
− det G d4x. (2.1)

Here r is the four-dimensional scalar curvature associated with the metric (1.3).
Applying (1.2) and (1.3) to (2.1) we write (2.1) in the three-dimensional form

Sgr = −
c4
gr

16 π γ

∫∫

(r + 2 Λ)
√

det g
√

g00 d3x dt. (2.2)

In [14] the following formula for the scalar curvature r was derived:

r = g−2
00

ġ00

cgr

3
∑

k=1

bk
k + g−1

00

3
∑

k=1

3
∑

q=1

gkq ∇kq g00 −

− g−2
00

2

3
∑

k=1

3
∑

q=1

gkq ∇k g00∇q g00 − 2 g−1
00

3
∑

k=1

ḃk
k

cgr

−

−R − g−1
00

3
∑

k=1

3
∑

q=1

bk
q b

q
k − g−1

00

3
∑

k=1

3
∑

q=1

bk
k bq

q.

(2.3)
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Let’s take the first and the fourth terms in the right hand side of the formula (2.3).
When substituting them into (2.2) we get the following time integral:

I =

u
∫

v

(

g−2
00

ġ00

cgr

3
∑

k=1

bk
k − 2 g−1

00

3
∑

k=1

ḃk
k

cgr

)

√

det g
√

g00 dt =

=

u
∫

v

(

g
−3/2

00

ġ00

cgr

3
∑

k=1

bk
k − 2 g

−1/2

00

3
∑

k=1

ḃk
k

cgr

)

√

det g dt.

(2.4)

The further transformation of the integral (2.4) yields

I =

u
∫

v

∂

∂t

(

−2 g
−1/2

00

3
∑

k=1

bk
k

cgr

)

√

det g dt =

= −2 g
−1/2
00

3
∑

k=1

bk
k

cgr

√

det g

u

v

+

u
∫

v

2 g
−1/2
00

3
∑

k=1

bk
k

cgr

∂(
√

det g )

∂t
dt.

(2.5)

The non-integral term in (2.5) can be omitted since non-integral terms do not affect
differential equations derived from action integrals. The integral term in (2.5) is
transformed using Jacobi’s formula for differentiating determinants (see [19]):

∂(
√

det g )

∂t
=

1

2

3
∑

k=1

3
∑

q=1

gkq ∂gkq

∂t

√

det g . (2.6)

Applying the formulas (2.6) and (1.8) to the integral (2.5), we derive

I = −2 g
−1/2

00

3
∑

k=1

bk
k

cgr

√

det g

u

v

+

u
∫

v

2 g
−1/2

00

3
∑

k=1

3
∑

q=1

bk
k bq

q

√

det g dt. (2.7)

Due to the formula (2.7) the action integral (2.2) is written as

Sgr = −
c4
gr

16 π γ

∫∫

(ρ + 2 Λ)
√

det g
√

g00 d3x dt, (2.8)

where the scalar function ρ is given by the following formula:

ρ = g−1
00

3
∑

k=1

3
∑

q=1

gkq ∇kq g00 −
g−2
00

2

3
∑

k=1

3
∑

q=1

gkq ∇k g00 ∇q g00 −

−R − g−1
00

3
∑

k=1

3
∑

q=1

bk
q b

q
k + g−1

00

3
∑

k=1

3
∑

q=1

bk
k bq

q.

(2.9)

The formula (2.8) is analogous to the formula (2.2) in [5], while the formula (2.9)
is an analog of the formula (2.6) therein. Unlike the initial action (2.2), the action
integral (2.8) is of the first order with respect to the time derivatives of gij and g00.
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3. Lagrangians of the gravitational field and matter.

Action integrals are usually written as time integrals of Lagrangians, while La-
grangians are spacial integrals of Lagrangian densities. Therefore we write (2.8) as

Sgr =

∫

Lgr dt, Lgr =

∫

Lgr

√

det g d3x. (3.1)

Matter has its own action integral and its own Lagrangian:

Smat =

∫

Lmat dt, Lmat =

∫

Lmat

√

det g d3x. (3.2)

The Lagrangian density in (3.1) for the gravitational field is given by the formula

Lgr = −
c4
gr

16 π γ

√

g00 (ρ + 2 Λ), (3.3)

where ρ is taken from (2.9). The square root of g00 is inherited from the four-
dimensional action. Therefore here in the three-dimensional approach we do not
include it to (3.1) and (3.2) and attribute it to the Lagrangian density (3.3).

Due to (2.9) the Lagrangian density (3.3) depends on g00 from (1.5), on gij from
(1.4) and on the time derivatives of these dynamic variables. The time derivatives
of gij are replaced by bij from (1.8). Therefore we write

Lgr = Lgr(g, ġ,g,b). (3.4)

Here g and ġ represent g00 and ġ00, while g and b represent gij and bij. The
Lagrangian density of matter can depend on some auxiliary dynamic variables re-
sponsible for the state of matter. Like in [5], we denote these auxiliary dynamic

variables through Q1, . . . , Qn and their time derivatives through Q̇1, . . . , Q̇n:

Q̇i =
∂Qi

∂t
. (3.5)

The relationships (3.5) are analogous to (1.8). Using them, we write

Lmat = Lmat(g, ġ,g,b,Q, Q̇). (3.6)

Each argument in the argument lists of Lgr and Lmat in (3.4) and (3.6) represents
not only the corresponding group of dynamic variables, but some finite number of
partial derivatives of them with respect to the spacial variables x1, x2, x3.

The total action integral of the gravitational field and matter is the sum of action
integrals (3.1) and (3.2). We write it as

S =

∫

L dt, L =

∫

L
√

det g d3x, L = Lgr + Lmat. (3.7)

The next step in developing the theory is to apply the stationary action principle
(see [20]) to the action integral S in (3.7). Applying this principle formally, we get
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three groups of differential equations. The first group is written as

− 1

2 cgr

∂

∂t

( δL
δbij

)

g,ġ,g

Q,Q̇

− 1

2

( δL
δbij

)

g,ġ,g

Q,Q̇

3
∑

q=1

bq
q +

( δL
δgij

)

g,ġ,b
Q,Q̇

= 0, (3.8)

where 1 6 i, j 6 3. This group of equations is associated with the dynamic variables
gij and bij. The second group of equations is associated with g00 and ġ00:

− ∂

∂t

( δL
δġ00

)

g,g,b

Q,Q̇

− cgr

( δL
δġ00

)

g,g,b

Q,Q̇

3
∑

q=1

bq
q +

( δL
δg00

)

ġ,g,b

Q,Q̇

= 0. (3.9)

This group of equations comprises exactly one equation. And the third group of
equations, which is associated with Q1, . . . , Qn and Q̇1, . . . , Q̇n, is written as

− ∂

∂t

( δL
δQ̇i

)

g,ġ,g

b,Q̇

− cgr

( δL
δQ̇i

)

g,ġ,g
b,Q

3
∑

q=1

bq
q +

( δL
δQi

)

g,ġ,g

b,Q̇

= 0, (3.10)

where 1 6 i 6 3. The equations (3.8) and (3.9) describe the evolution of the
gravitational field, while the equations (3.10) describe the evolution of matter.

Below we shall not transform the equations (3.10) since in the present paper the
variables Q1, . . . , Qn are not specified and no explicit expression for the Lagrangian
density of matter Lmat in (3.2) is given. As for the equations (3.8) and (3.9), we
shall transform them. Let’s denote

δLmat

δgij
= − 1

2 cgr

∂

∂t

(δLmat

δbij

)

g,ġ,g

Q,Q̇

−

− 1

2

(δLmat

δbij

)

g,ġ,g

Q,Q̇

3
∑

q=1

bq
q +

(δLmat

δgij

)

g,ġ,b

Q,Q̇

,

(3.11)

δLmat

δgij
= −

3
∑

k=1

3
∑

q=1

δLmat

δgkq
gki gqj. (3.12)

The formulas (3.11) and (3.12) are analogs of the formulas (3.20) and (3.21) from
[5]. Apart from these two formulas we consider the following ones:

δLmat

δg00

= − ∂

∂t

(δLmat

δġ00

)

g,g,b

Q,Q̇

−

− cgr

(δLmat

δġ00

)

g,g,b

Q,Q̇

3
∑

q=1

bq
q +

(δLmat

δg00

)

ġ,g,b

Q,Q̇

,

(3.13)

δLmat

δg00
= −δLmat

δg00

g2
00. (3.14)

Taking into account (3.7) and applying (3.11) to (3.8), we derive

− 1

2 cgr

∂

∂t

(δLgr

δbij

)

g,ġ,g

Q,Q̇

− 1

2

(δLgr

δbij

)

g,ġ,g

Q,Q̇

3
∑

q=1

bq
q +

(δLgr

δgij

)

g,ġ,b

Q,Q̇

= −δLmat

δgij
. (3.15)
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Similarly, taking into account (3.7) and applying (3.13) to (3.9), we derive

− ∂

∂t

(δLgr

δġ00

)

g,g,b

Q,Q̇

− cgr

(δLgr

δġ00

)

g,g,b

Q,Q̇

3
∑

q=1

bq
q +

(δLgr

δg00

)

ġ,g,b

Q,Q̇

= −δLmat

δg00

. (3.16)

The rest is to derive explicit expressions for the left hand sides of the equations
(3.15) and (3.16) using (3.1), (3.3), and (2.9).

4. The equations for the three-dimensional metric.

In implicit form the required differential equations for the three-dimensional
metric gig are written as the Euler-Lagrange equations (3.15). In order to make it
explicit we need to calculate the partial variational derivatives in the left hand side
of the equations (3.15). Let’s introduce a small variation to bij as follows:

b̂ij = bij(t, x
1, x2, x3) + ε hij(t, x

1, x2, x3). (4.1)

Here ε → 0 is a small parameter and hij(t, x
1, x2, x3) are arbitrary smooth functions

with compact support (see [21]). Then the partial variational derivative of the
Lagrangian density Lgr with respect to bij is defined through the formula

L̂gr = Lgr + ε

∫ 3
∑

i=1

3
∑

j=1

(δLgr

δbij

)

g,ġ,g

Q,Q̇

hij

√

det g d3x + . . . , (4.2)

where Lgr is taken from (3.1) and L̂gr is its deflection upon substituting b̂ig for bij.
The Lagrangian density Lgr in (4.2) is given by the formula (3.3). It depends on
bij only through the last two terms in the right hand side of the formula (2.9) for
ρ. Similar terms are available in the formula (2.6) from [5]. Therefore we can apply
the formula (6.3) from [5] having slightly modified it:

(δLgr

δbij

)

g,ġ,g

Q,Q̇

=
c4
gr g

−1/2

00

8 π γ

(

bij −
3

∑

k=1

bk
k gij

)

. (4.3)

Now, according to (3.15), we should differentiate the partial variational derivative
(4.3) with respect to the time variable t:

− 1

2 cgr

∂

∂t

(δLgr

δbij

)

g,ġ,g

Q,Q̇

=
c3
gr g

−3/2

00

16 π γ

(

bij

2
−

3
∑

k=1

bk
k

gij

2

)

ġ00 −

−
c4
gr g

−1/2
00

16 π γ

(

1

cgr

ḃij −
3

∑

k=1

1

cgr

ḃk
k gij +

3
∑

k=1

2 bk
k bij

)

.

(4.4)

In deriving (4.4) we used the formula for differentiating the inverse matrix:

ġij = −
3

∑

k=1

3
∑

q=1

gik ġkq gqj . (4.5)
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Along with (4.5) in deriving (4.4) we applied the formula (1.8) for ġkq.
The second term in the left hand side of (3.15) is transformed as follows:

−1

2

(δLgr

δbij

)

g,ġ,g

Q,Q̇

3
∑

q=1

bq
q = −

c4
gr g

−1/2

00

16 π γ

( 3
∑

k=1

bk
k bij −

3
∑

k=1

3
∑

q=1

bk
k bq

q gij

)

. (4.6)

The third term in the left hand side of (3.15) comprises the partial variational de-
rivative of Lgr with respect to gij. In order to calculate this derivative we introduce
a small variation of the metric:

ĝij = gij(t, x
1, x2, x3) + ε hij(t, x

1, x2, x3). (4.7)

Despite the relationship (1.8) the variations (4.1) and (4.7) are treated as indepen-
dent. Here again ε → 0 is a small parameter and hij(t, x

1, x2, x3) are arbitrary
smooth functions with compact support. The partial variational derivative of the
Lagrangian density Lgr with respect to gij is defined through the formula

L̂gr = Lgr + ε

∫ 3
∑

i=1

3
∑

j=1

(δLgr

δgij

)

g,ġ,b
Q,Q̇

hij

√

det g d3x + . . . . (4.8)

The second integral Lgr in (3.1) upon substituting (3.3) into it and upon applying
the formula (2.9) can be subdivided into six integrals:

Lgr = L1 + L2 + L3 + L4 + L5 + L6. (4.9)

Here is the first of these six integrals:

L1 = −
c4
gr

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−1/2

00 ∇kq g00

√

det g d3x. (4.10)

The second summand in the right hand side of (4.9) is similar to (4.10):

L2 =
c4
gr

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−3/2

00

2
∇k g00 ∇q g00

√

det g d3x. (4.11)

The third term in the right hand side of (4.9) comprises the scalar curvature R:

L3 =
c4
gr

16 π γ

∫

g
1/2
00 R

√

det g d3x. (4.12)

The fourth and fifth terms in the right hand side of (4.9) are similar to each other:

L4 =
c4
gr

16 π γ

∫ 3
∑

k=1

3
∑

q=1

g
−1/2
00 bk

q b
q
k

√

det g d3x, (4.13)

L5 = −
c4
gr

16 π γ

∫ 3
∑

k=1

3
∑

q=1

g
−1/2

00 bk
k bq

q

√

det g d3x. (4.14)
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The sixth term in the right hand side of (4.9) comprises the cosmological constant:

L6 = −
c4
gr

16 π γ

∫

g
1/2

00 2 Λ
√

det g d3x. (4.15)

In order to derive the explicit expression for the partial variational derivative in
(4.8) we need to substitute (4.7) for gij in each of the integrals (4.10), (4.11),
(4.12), (4.13), (4.14), (4.15) and then expand each of them with respect to the
small parameter ε up to the first order.

In the formula (4.10) we see the double covariant derivative ∇kq g00. It is calcu-
lated using the components Γs

kq of the metric connection for the metric (1.4):

∇kq g00 =
g00

∂xk ∂xq
−

3
∑

s=1

Γs
kq

g00

∂xs
. (4.16)

The connection components Γs
kq are given by the Levi-Civita formula:

Γs
kq =

1

2

3
∑

r=1

gsr

(

∂grq

∂xk
+

∂gkr

∂xq
− ∂gkq

∂xr

)

(4.17)

(see § 7 of Chapter III in [22]). Applying (4.7) to the term gsr in (4.10), we get

ĝsr = gsr − ε

3
∑

k=1

3
∑

q=1

gsk hkq gqr + . . . . (4.18)

Through dots in (4.2), (4.8), and (4.18) we denote higher order terms with respect
to the small parameter ε. The formula (4.18) is analogous to (4.5). Applying (4.7)
and (4.18) to (4.17), we derive the formula

Γ̂s
kq = Γs

kq +
ε

2

3
∑

r=1

gsr (∇k hrq + ∇q hkr −∇r hkq) + . . . . (4.19)

Then we apply (4.19) to (4.16). As a result we get

∇̂kq g00 = ∇kq g00 −
ε

2

3
∑

r=1

3
∑

s=1

gsr
(

∇k hrq +

+ ∇q hkr −∇r hkq

)

∇s g00 + . . . .

(4.20)

Apart from the double covariant derivative (4.16), the integral L1 in (4.10) com-

prises gkq and the square root
√

det g . The term gkq is handled with the use of

the formula (4.18). For the square root
√

det g we write

√

det ĝ =
√

det g +
ε

2

3
∑

r=1

3
∑

s=1

grs hrs

√

det g + . . . . (4.21)

Like the time derivative in (2.6), the formula (4.21) is derived using Jacobi’s formula
for differentiating determinants (see [19]).
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Now we apply (4.18), (4.20) and (4.21) to the integral (4.10). As a result we get

L̂1 = L1 +
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−1/2

00

(

gik gqj − 1

2
gkq gij

)

·

·∇kq g00 hij

√

det g d3x +
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

3
∑

r=1

3
∑

s=1

g
−1/2
00

gkq gsr

2
·

·
(

∇k hrq + ∇q hkr −∇r hkq

)

∇s g00

√

det g d3x + . . . .

(4.22)

The second integral in (4.22) is transformed integrating by parts:

L̂1 = L1 +
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−1/2
00

(

gik gqj − 1

2
gkq gij

)

·

·∇kq g00 hij

√

det g d3x−
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

(2 gik gqj −

− gij gkq)∇kq(g
1/2

00 ) hij

√

det g d3x + . . . .

(4.23)

The integration by parts in spaces with metric is based on the formula

∫

Ω

3
∑

k=1

∇kzk
√

det g d3x =

∫

∂Ω

g(z,n) dS. (4.24)

This formula (4.24) is a three-dimensional version of the formula (4.14) from Chap-

ter IV of [18]. Note that ∇kq(g
1/2

00 ) can be written as

∇kq(g
1/2

00 ) =
1

2
g
−1/2

00 ∇kqg00 −
1

4
g
−3/2

00 ∇kg00 ∇qg00. (4.25)

Applying the relationship (4.25) to (4.23), we get

L̂1 = L1 +
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−3/2
00

2

(

gik gqj − 1

2
gkq gij

)

·

·∇k g00 ∇q g00 hij

√

det g d3x + . . . .

(4.26)

The second integral (4.11) is more simple than the first one since the covari-
ant derivatives ∇k g00 and ∇q g00 do not use the connection components (4.17).
Applying (4.18) and (4.21) to this integral, we derive

L̂2 = L2 −
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−3/2
00

2

(

gik gqj − 1

2
gkq gij

)

·

·∇k g00 ∇q g00 hij

√

det g d3x + . . . .

(4.27)
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The third integral (4.12) is the most complicated. It comprises the three-dimen-
sional scalar curvature R. The scalar curvature R is calculated in several steps.
First of all the curvature tensor is calculated. Its components are

Rk
qij =

∂Γk
jq

∂ri
−

∂Γk
iq

∂rj
+

3
∑

s=1

Γk
is Γs

jq −
3

∑

s=1

Γk
js Γs

iq. (4.28)

(see (1.1) in Chapter V of [18]). We apply (4.19) to (4.28). This yields

R̂k
qij = Rk

qij + ε
(

∇iY
k
jq −∇jY

k
iq

)

+ . . . , (4.29)

where the following notations are introduced:

Y s
kq =

1

2

3
∑

r=1

gsr (∇k hrq + ∇q hkr −∇r hkq) (4.30)

The Ricci tensor is produced from the curvature tensor (4.28). Its components are

Rqj =

3
∑

k=1

Rk
qkj. (4.31)

Applying (4.29) to the formula (4.31), we derive

R̂qj = Rqj + ε

3
∑

k=1

(

∇kY k
jq −∇jY

k
kq

)

+ . . . . (4.32)

The scalar curvature is produced from the Ricci tensor

R =

3
∑

q=1

3
∑

j=1

gqj Rqj. (4.33)

Applying (4.18) and (4.32) to the formula (4.33), we obtain

R̂ = R − ε

3
∑

i=1

3
∑

j=1

Rij hij + ε

3
∑

k=1

∇kZ
k + . . . , (4.34)

where the following notations are introduced:

Zk =

3
∑

q=1

3
∑

j=1

(

gjq Y k
jq − gkq Y

j
jq

)

. (4.35)

Now we are ready to apply (4.34) to the third integral L3 in (4.12). Along with
(4.34) we apply the formula (4.21). As a result we get

L̂3 = L3 −
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

g
1/2

00

(

Rij − R

2
gij

)

hij

√

det g d3x +

+
c4
gr ε

16 π γ

∫ 3
∑

k=1

g
1/2
00 ∇kZk

√

det g d3x + . . . .

(4.36)
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The second integral in (4.36) is transformed integrating by parts:

L̂3 = L3 −
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

g
1/2
00

(

Rij − R

2
gij

)

hij

√

det g d3x−

−
c4
gr ε

16 π γ

∫ 3
∑

k=1

Zk ∇k(g
1/2
00 )

√

det g d3x + . . . .

(4.37)

In order to make the second integral in (4.37) explicit we calculate Zk explicitly by
substituting (4.30) into (4.35). This yields

Zk =

3
∑

q=1

∇q hkq −
3

∑

q=1

3
∑

r=1

gkq ∇q hr
r. (4.38)

Before substituting (4.38) into (4.37) we transform it as follows:

Zk =
3

∑

q=1

3
∑

j=1

3
∑

i=1

(

gki gjq ∇q hij − gkq gij ∇q hij

)

. (4.39)

Now we substitute (4.39) into (4.37) and apply integration by parts:

L̂3 = L3 −
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

g
1/2

00

(

Rij − R

2
gij

)

hij

√

det g d3x +

+
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

(

gki gjq − gkq gij
)

∇kq(g
1/2

00 ) hij

√

det g d3x + . . . .

(4.40)

The integral L4 in (4.13) is much easier to handle than the previous one. It
is because it does not comprise any spacial derivative of the metric gij. Before
applying (4.18) and (4.21) we write (4.13) as

L4 =
c4
gr

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−1/2

00 gki biq gqj bjk

√

det g d3x. (4.41)

Then, applying (4.18) and (4.21) to (4.41), we get

L̂4 = L4 +
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−1/2

00 bk
q b

q
k

gij

2
hij

√

det g d3x−

−
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

g
−1/2
00 (bik b

j
k + bjk bi

k) hij

√

det g d3x + . . . .

(4.42)

The integral L5 in (4.14) is treated similarly. First of all it is rewritten as

L5 = −
c4
gr

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−1/2
00 gik bik gqj bqj

√

det g d3x. (4.43)
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Then, applying (4.18) and (4.21) to (4.43), we get

L̂5 = L5 +
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

2 g
−1/2
00 bk

k bij hij

√

det g d3x−

−
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

3
∑

k=1

3
∑

q=1

g
−1/2

00 bk
k bq

q

gij

2
hij

√

det g d3x + . . . .

(4.44)

The formulas (4.42) and (4.44) are analogous to the formulas (6.10) and (6.11) in

[5]. The difference is in the factor g
−1/2

00 , which is taken to be equal to 1 in [5].
The integral L6 in (4.15) is the most simple among the six integrals from (4.9).

Applying (4.21) to this integral, we obtain

L̂6 = L6 −
c4
gr ε

16 π γ

∫ 3
∑

i=1

3
∑

j=1

g
1/2

00 2 Λ
gij

2
hij

√

det g d3x + . . . . (4.45)

Now we can put the formulas (4.26), (4.27), (4.40), (4.42), (4.44), and (4.45)
together and derive the formula for the required partial variational derivative

(δLgr

δgij

)

g,ġ,b

Q,Q̇

=
c4
gr g

−1/2
00

16 π γ

( 3
∑

k=1

3
∑

q=1

bk
q b

q
k

gij

2
−

3
∑

k=1

(bik b
j
k + bjk bi

k) +

+

3
∑

k=1

2 bk
k bij −

3
∑

k=1

3
∑

q=1

bk
k bq

q

gij

2

)

−
c4
gr g

1/2

00

16 π γ

(

Rij − R

2
gij + Λ gij

)

+

+
c4
gr

16 π γ

3
∑

k=1

3
∑

q=1

(

gki gjq − gkq gij
)

∇kq(g
1/2
00 ).

(4.46)

The next step is to put the formulas (4.4), (4.6), and (4.46) together and then apply
the equation (3.15) to them. As a result we get the equation

g−2
00

2 cgr

( 3
∑

k=1

bk
k gij − bij

)

ġ00 +
g−1
00

2

3
∑

k=1

3
∑

q=1

(

gkq gij − gki gjq
)

∇kq g00 −

−g−2
00

4

3
∑

k=1

3
∑

q=1

(

gkq gij − gki gjq
)

∇k g00∇q g00 + g−1
00

(

1

cgr

ḃij −

−
3

∑

k=1

1

cgr

ḃk
k gij +

3
∑

k=1

(bik b
j
k + bjk bi

k) −
3

∑

k=1

3
∑

q=1

bk
q b

q
k

gij

2
−

−
3

∑

k=1

3
∑

q=1

bk
k bq

q

gij

2
+

3
∑

k=1

bk
k bij

)

+ Rij − R

2
gij + Λ gij =

16 π γ

c4
gr g

1/2
00

δLmat

δgij
.

(4.47)

In order to compare (4.47) with (1.7) we need to lower indices i and j in (4.47).
Doing it, we take into account the following relationship:

ḃij =

3
∑

k=1

3
∑

q=1

gik ḃkq gqj −
3

∑

k=1

2 cgr (bik b
j
k + bjk bi

k). (4.48)
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We derive (4.48) using (1.8). Now, applying (4.48) and (3.12), we write (4.47) as

g−2
00

2 cgr

( 3
∑

k=1

bk
k gij − bij

)

ġ00 +
g−1
00

2

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇kq g00 −

−g−2
00

4

3
∑

k=1

3
∑

q=1

(

gkq gij − δk
i δ

q
j

)

∇k g00 ∇q g00 + g−1
00

(

1

cgr

ḃij −

−
3

∑

k=1

1

cgr

ḃk
k gij −

3
∑

k=1

(bki bk
j + bkj bk

i ) −
3

∑

k=1

3
∑

q=1

bk
q b

q
k

gij

2
−

−
3

∑

k=1

3
∑

q=1

bk
k bq

q

gij

2
+

3
∑

k=1

bk
k bij

)

+ Rij −
R

2
gij + Λ gij = − 16 π γ

c4
gr g

1/2
00

δLmat

δgij
.

(4.49)

Comparing (4.49) with (1.7) we derive the relationship

Tij = − 2

g
1/2

00

δLmat

δgij
for 1 6 i, j 6 3. (4.50)

The relationship (4.50) is analogous to the relationship (3.25) in [7].

Theorem 4.1. The gravity equations (1.7) are equivalent to the Euler-Lagrange

equations (3.15), which are explicitly written in the form of (4.47) or (4.49).

5. The equation for the time scale function.

The time-dependent scalar function (1.5) arises as the temporal component of
the four-dimensional metric (1.3). It is assumed to be positive. In [14] this function
was introduced through the formula

g00(t, x
1, x21, x3) =

(∂t′

∂t

)2

, (5.1)

where t′ is the proper time of the comoving observer with the comoving coordinates
x1, x2, x3 (see (2.3) and (3.2) in [14]). Due to the formula (5.1) the function g00

is called the time scale function. It is described by the Euler-Lagrange equation
(3.16). Our goal in this section is to write this equation in an explicit form.

Looking at the formula (3.3) and taking into account (2.9), we find that Lgr does
not depend on the time derivative ġ00. Therefore

(δLgr

δġ00

)

g,g,b

Q,Q̇

= 0. (5.2)

Due to (5.2) the Euler-Lagrange equation (3.16) reduces to

(δLgr

δg00

)

ġ,g,b
Q,Q̇

= −δLmat

δg00

. (5.3)

In order to calculate the partial variational derivative in the left hand side of the
equation (5.3) we introduce the small variation of the time scale function:

ĝ00 = g00(t, x
1, x2, x3) + ε h(t, x1, x2, x3). (5.4)
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Here ε → 0 is a small parameter and h(t, x1, x2, x3) is an arbitrary smooth function
with compact support. The small variation (5.4) is applied to the Lagrangian Lgr

in (3.1). Then the partial variational derivative of the Lagrangian density Lgr with
respect to g00 is defined through the formula

L̂gr = Lgr + ε

∫

(δLgr

δg00

)

ġ,g,b

Q,Q̇

h
√

det g d3x + . . . . (5.5)

Like in the previous section, here we subdivide the Lagrangian Lgr into six parts
using the formula (4.9) for this purpose. The integrals L1, L2, L3, L4, L5, and L6

in (4.9) are given by the formulas (4.10), (4.11), (4.12), (4.13), (4.14), and (4.15).
Applying (5.4) to the first of these six integrals, we get

L̂1 = L1 −
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−1/2
00 ∇kq h

√

det g d3x +

+
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−3/2

00

2
∇kq g00 h

√

det g d3x + . . . .

(5.6)

The first integral in (5.6) is transformed integrating by parts:

L̂1 = L1 −
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq 3 g
−5/2
00

4
∇k g00 ∇q g00 h

√

det g d3x +

+
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−3/2

00 ∇kq g00 h
√

det g d3x + . . . .

(5.7)

Then we apply (5.4) to the integral L2 in (4.11):

L̂2 = L2 +
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−3/2

00 ∇k g00 ∇q h
√

det g d3x−

−
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq 3 g
−5/2
00

4
∇k g00 ∇q g00 h

√

det g d3x + . . . .

(5.8)

The first integral in (5.8) is transformed integrating by parts:

L̂2 = L2 −
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq g
−3/2

00 ∇kq g00 h
√

det g d3x +

+
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

gkq 3 g
−5/2
00

4
∇k g00 ∇q g00 h

√

det g d3x + . . . .

(5.9)

The next in turn is the integral L3 in (4.12). Applying (5.4) to it, we get

L̂3 = L3 +
c4
gr ε

16 π γ

∫

g
−1/2

00

2
R h

√

det g d3x + . . . . (5.10)
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Then we proceed to the integral L4 in (4.13). Applying (5.4) to it, we obtain

L̂4 = L4 −
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

g
−3/2

00

2
bk
q b

q
k h

√

det g d3x + . . . . (5.11)

The integral L5 in (4.14) is treated similarly. Applying (5.4) to it, we derive

L̂5 = L5 +
c4
gr ε

16 π γ

∫ 3
∑

k=1

3
∑

q=1

g
−3/2
00

2
bk
k bq

q h
√

det g d3x + . . . . (5.12)

And finally, we come to the integral L6 in (4.15). Applying (5.4) to it, we get

L̂6 = L6 −
c4
gr ε

16 π γ

∫

g
−1/2

00 Λ h
√

det g d3x. (5.13)

Now we can put the formulas (5.7), (5.9), (5.10), (5.11), (5.12), and (5.13) to-
gether and apply all of them to (5.5). As a result we obtain

(δLgr

δg00

)

ġ,g,b

Q,Q̇

=
c4
gr

16 π γ

g
−1/2

00

2

(

R − 2Λ
)

+

+
c4
gr

16 π γ

g
−3/2

00

2

( 3
∑

k=1

3
∑

q=1

bk
k bq

q −
3

∑

k=1

3
∑

q=1

bk
q b

q
k

)

.

(5.14)

Then by substituting (5.14) into (5.3) we derive the equation

−1

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k +

1

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +
R

2
g00−Λ g00 = −16 π γ

c4
gr

g
3/2
00

δLmat

δg00

. (5.15)

If we recall the relationship g00 = g−1
00 and apply the formula (3.14) derived from

it, then the equation (5.15) can be rewritten as

−1

2

3
∑

k=1

3
∑

q=1

bk
q b

q
k +

1

2

3
∑

k=1

3
∑

q=1

bk
k bq

q +
R

2
g00 − Λ g00 =

16 π γ

c4
gr g

1/2

00

δLmat

δg00
. (5.16)

Comparing the equation (5.16) with the equation (1.10) we derive

T00 =
2

g
1/2
00

δLmat

δg00
. (5.17)

The relationship (5.17) is similar to the relationship (4.50).

Theorem 5.1. The gravity equation (1.10) is equivalent to the Euler-Lagrange

equation (3.16), which is explicitly written in the form of (5.16) or (5.17).

The Lagrangian density of matter Lmat in the right hand sides of the equations
(4.47), (4.49), (5.16), and (5.17) is not specified explicitly. It will be specified when
considering specific sorts of matter such as gases, liquids, and solids.



LAGRANGIAN APPROACH . . . WITHOUT EQUIDISTANCE POSTULATE. 17

6. Conclusions.

Theorems 4.1 and 5.1 constitute the main result of the present paper. They
show that within the new version of the 3D-brane universe model that does not
use the equidistance postulate 1.1 the gravity equations can be derived in a purely
three-dimensional Lagrangian approach. The 3D-brane universe model is an al-
ternative non-Einsteinian theory, though it still inherits many features from the
standard Einsteinian theory. The 3D-brane universe model is more flexible than
four-dimensional theories. It can admit more differences from the standard theory
in future provided these differences will be motivated by experimental data and
astronomical observations.

7. Dedicatory.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.
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