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Abstract: We prove no singularities in Schwarzschild black hole (SBH) and Big Bang considering the quantum effect. We find the 

equation of gravitational energy density inside SBH; derive that the gravitational energy density is proportional to the square 

effective temperature far from the event horizon in SBH interior, whether the gravitational fields of SBH are Coulomb-like or 

wave-like; obtain their entropic density is direct proportion with the effective temperature. Then we assume that the center of SBH 

and Big Bang being in the minimum entropy state, which value is equal to the Boltzmann constant; propose and prove the SBH 

uncertainty relation (UR) and Big Bang UR by the generalized relational expression (GRE), which suggest no singularity in them. 

 

 

1. Introduction 

S.W. Hawking and R. Penrose proved the theory of singularities 

[1-3]. It shows that the singularities are in the black holes and 

the universe originated the Big Bang singularity. Many 

literatures discussed no singularity in black holes and Big Bang 

with the quantum effect; please refer to [4-18]. Moreover, M. 

Planck considered the reduced Planck constant ħ being the 

minimum action [19]. R. Penrose considered the Big Bang 

being in the minimum entropy equal to zero [20], which is the 

initial condition of Big Bang probably. Similarly, we propose 

the center of Schwarzschild black hole (SBH) and Big Bang 

being in the minimum entropy, but the minimum entropy 

doesn’t equal to zero. Then we can prove the uncertainty 

relation (UR) of Schwarzschild black hole (SBH) and Big Bang 

UR which suggest no singularity in them [21]. 

This paper is organized as follows. In Sec. 2, we find that 

the gravitational energy density is proportional to the square 

effective temperature far from the horizon inside SBH, and its 

entropic density is direct proportion with the effective 

temperature. In Sec. 3, we propose the SBH UR and Big Bang 

UR by the generalized relational expression (GRE), and prove 

them. We conclude in Sec. 4. 

 

2. Relations for Coulomb-like Gravitational Fields 

and Wave-like Ones 

In this section, we review [22] briefly; find that the 

gravitational energy density is proportional to the square 

effective temperature far from the event horizon inside SBH, 

and its entropic density is direct proportion with the effective 

one. 

 

2.1 Relations for Coulomb-like gravitational fields 

First let us review [22] briefly. Gravitational fields can be 

classified two types: Coulomb-like gravitational fields and 

wave-like ones. In general, they are mixed. For the 

Coulomb-like gravitational fields 

8π𝜌𝑔𝑟𝑎𝑣= 2α√2𝑊/3 and 𝑝𝑔𝑟𝑎𝑣= 0      (1) 

where 𝜌𝑔𝑟𝑎𝑣 is the gravitational energy density, αis a constant, 

W= 𝑇𝑎𝑏𝑐𝑑𝑢𝑎𝑢𝑏𝑢𝑐𝑢𝑑 , 𝑇𝑎𝑏𝑐𝑑 is the Weyl tensor, 

𝑢𝑎, 𝑢𝑏 , 𝑢𝑐 , 𝑢𝑑are the timelike unit vectors, and 𝑝𝑔𝑟𝑎𝑣 is the 

isotropic pressure. The Schwarzschild geometry can be written 

in Gullstrand– Painlevé coordinates as 

d𝑠2 = －[1－(2m/r)] c2d𝑡2－2√2𝑚/𝑟drcdt＋d𝑟2＋𝑟2dΩ2 

(2) 

where m = GM/c2 is the constant mass parameter, G the 

gravitational constant, and c the speed of light in vacuum. 

Gravitational energy density and temperature is given at each 

point in the region r < 2m by 

𝜌𝑔𝑟𝑎𝑣= 2αmc4/8π𝑟3                   (3) 

𝑇𝑔𝑟𝑎𝑣= ħcm/2πκ𝑟2√|1 − (2𝑚/r)|        (4) 

where 𝑇𝑔𝑟𝑎𝑣 is the effective temperature and κ the Boltzmann 

constant.  

Taking (4) to (3), we find 

𝜌𝑔𝑟𝑎𝑣= απ[2－(r/m)]κ2c2𝑇𝑔𝑟𝑎𝑣
2 /ħ

2
G      (5) 

That is the equation concerning the gravitational energy 

density and effective temperature in the region r < 2m. Note 

that the isotropic pressure is zero. When r << 2m, we derive 

𝜌𝑔𝑟𝑎𝑣= 2απκ2c2𝑇𝑔𝑟𝑎𝑣
2 /ħ

2
G              (6) 

So the gravitational energy density is proportional to the 

square effective temperature far from the horizon inside SBH. 

It includes two regions far from horizon inside SBH: 

singularity and vacuum. In (5) when r → 0, we gain (6) also, 
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that is the gravitational energy density being proportional to 

the square effective temperature in the singularity and near the 

one. 

 

2.2 Relations for the wave-like gravitational fields 

In [22], for the wave-like gravitational fields 

8π𝜌𝑔𝑟𝑎𝑣= β√4𝑊 and 𝑝𝑔𝑟𝑎𝑣= 𝜌𝑔𝑟𝑎𝑣/3    (7) 

where β is a constant. For the SBH, the gravitational energy 

density is given at each point in region r < 2m by 

𝜌𝑔𝑟𝑎𝑣= √6βmc4/𝑟3                    (8) 

Taking (4) to (8), we find 

𝜌𝑔𝑟𝑎𝑣= √6βπ[2－(r/m)]κ2c2𝑇𝑔𝑟𝑎𝑣
2 /ħ

2
G    (9) 

When r << 2m or r → 0, we obtain 

𝜌𝑔𝑟𝑎𝑣= 2√6βπκ2c2𝑇𝑔𝑟𝑎𝑣
2 /ħ

2
G          (10) 

Above is very similar to (6). Therefore, the gravitational 

energy density is proportional to the square effective 

temperature far from the horizon inside SBH, whether the 

gravitational fields are Coulomb-like or wave-like.  

 

2.3 Relations of entropic density 

For the Coulomb-like gravitational fields, its entropic density 

𝑠𝑔𝑟𝑎𝑣 is [22] 

δ𝑠𝑔𝑟𝑎𝑣= δ(𝜌𝑔𝑟𝑎𝑣v)/κ𝑇𝑔𝑟𝑎𝑣             (11) 

where v = 𝑧𝑎𝜂𝑎𝑏𝑐𝑑d𝑥𝑏d𝑥𝑐d𝑥𝑑 and we can set an arbitrary 

constant to zero.   

Substituting (5) into (11) and integral, we get 

𝑠𝑔𝑟𝑎𝑣= απ[2－(r/m)]κ2c2𝑇𝑔𝑟𝑎𝑣/ħ
2
G     (12) 

That is the equation concerning the entropic density and 

effective temperature in the region r < 2m. When r << 2morr 

→ 0, we derive 

𝑠𝑔𝑟𝑎𝑣= 2απκ2c2𝑇𝑔𝑟𝑎𝑣/ħ
2
G             (13) 

So the entropic density is direct proportion to the effective 

temperature far from the horizon inside SBH.  

For the wave-like gravitational fields, substituting (9) into 

(11) and integral, we obtain 

𝑠𝑔𝑟𝑎𝑣= √6βπ[2－(r/m)]κ2c2𝑇𝑔𝑟𝑎𝑣/ħ
2
G  (14) 

When r << 2m or r → 0, we derive 

𝑠𝑔𝑟𝑎𝑣= 2√6βπκ2c2𝑇𝑔𝑟𝑎𝑣/ħ
2
G          (15) 

Therefore, the entropic density is direct proportion to the 

effective temperature far from the horizon inside SBH, 

whether the gravitational fields are Coulomb-like or wave-like. 

 

3. No Singularity in SBH and Big Bang 

In this section, we review [21] briefly, propose the SBH UR and 

Big Bang UR by the GRE, assume that the SBH center and Big 

Bang are in the minimum entropy being equal to the Boltzmann 

constant, find the temperature of SBH center and its volume 

having the inversely-proportional relationship, prove the SBH 

UR and the Big Bang UR. 

 

3.1 Basic relationship and GRE 

Basic relationship [21] is 

A～AP 

=[ħ(𝛼＋𝛽＋𝛾＋𝛿) G(𝛼−𝛽＋𝛾−𝛿) c−(3𝛼−𝛽＋5𝛾−5𝛿) κ−2𝛿 e2 ]1/2 

(16) 

Where A is any physical quantity, [A] = [L]𝛼[M]𝛽[t]𝛾[T]𝛿[Q]  

its dimensions, L, M, t, T and Q are the dimensions of length, 

mass, time, temperature and electric charge separately (here we 

use the LMTΘQ units [21]), AP  the corresponding Planck 

scale of A, 𝛼, 𝛽, 𝛾, 𝛿 and 휀the real number, ħ, G, c, κ and e 

the reduced Planck constant, gravitational constant, speed of 

light in vacuum, Boltzmann constant and elementary charge 

separately.  

GRE [21] is 

∏ 𝐴i
𝑎in

i=1  ～ ∏ AiP
𝑎in

i=1 ; i = 1, 2, 3…n   (17) 

where 𝐴𝑖 is the physical quantity, 𝛼i the real number, and A𝑖P 

the corresponding Planck scale. 

 

3.2 Big Bang UR 

S.W. Hawking and R. Penrose proved that the universe 

originated the Big Bang singularity [23]. Many literatures 

discussed no singularity at the Big Bang and black holes with 

the quantum effect, please refer to [24] [9-29]. One of the 

characteristic of Big Bang singularity is zero volume and 

limitless high temperature. 

Then we can find the relationship of Big Bang temperature 

and its volume by the GRE (17) [21] 

𝑇𝐵𝑉𝐵 ～ TPVP=TPLP
3 = ħ

2
G/κc2        (18) 

where 𝑇𝐵 is the Big Bang temperature, 𝑉𝐵  its volume, TP 

the Planck temperature, VP = LP
3  the Planck volume, and 

LP =√ħG/c3 the Planck length. Above is the Big Bang UR. 

That is impossible to measure the Big Bang temperature and 

its volume simultaneously. When ħ → 0, we obtain 

𝑇𝐵𝑉𝐵 ～ 0                          (19) 

Because 𝑇𝐵 > 0[30], we gain 𝑉𝐵～ 0, the Big Bang volume 

is zero, thus the Big Bang singularity appears without the 

quantum effect. We suggest no singularity at the Big Bang with 

quantum effect.  

 

3.3 SBH UR 

Similarly considering the SBH mass and its volume, we find 

[21] 
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𝑀𝐻𝑉𝐻 ～ MPVP = MPLP
3 = ħ

2
G/c4       (20) 

where 𝑀𝐻  is the SBH mass, 𝑉𝐻  its volume, and the MP 

Planck. Above is the SBH UR. Also that is impossible to 

measure the SBH mass and volume simultaneously. When ħ → 

0, we obtain 

𝑀𝐻𝑉𝐻 ～ 0                         (21) 

Because 𝑀𝐻 > 0, we have 𝑉𝐻～ 0, the volume is zero, the 

SBH singularity appears without quantum effect also. We also 

suggest no singularity in SBH with quantum effect. Taking M 

= ρV to (20), we gain  

𝑀𝐻
2 /𝜌𝐻 ～ ħ

2
G/c4, 𝜌𝐻𝑉𝐻

2 ～ ħ
2
G/c4  (22) 

where 𝜌𝐻 is the mass density of SBH. Above are the URs for 

the mass density of SBH and its mass or volume. 

 

3.4 Proving SBH UR 

We prove (20) now. For the Coulomb-like gravitational fields, 

from (13) and 𝑆𝑔𝑟𝑎𝑣 = ∫ 𝑠𝑔𝑟𝑎𝑣𝑉
[22], we obtain 

𝑆𝑔𝑟𝑎𝑣 = 2απκ2c2𝑇𝐻𝑉𝐻/ħ
2
G            (23) 

where 𝑆𝑔𝑟𝑎𝑣 is the entropy, and V the spatial volume. For the 

SBH center, V →  𝑉𝐻  and 𝑇𝑔𝑟𝑎𝑣 →  𝑇𝐻 , where 𝑇𝐻  is the 

temperature of center. 

We assume 𝑆𝑔𝑟𝑎𝑣 ～ κ, which is SBH center being in the 

minimum entropy equal to Boltzmann constant, and the 

Boltzmann constant being the minimum entropy, resembling ħ. 

Then we find 

𝑇𝐻𝑉𝐻 ～ ħ
2
G/2απκc2                (24) 

Therefore, the temperature of SBH center and its volume has 

the inversely-proportional relationship.  

From the gravitational analogue of the fundamental law of 

thermodynamics in the form [22] 

𝑇𝑔𝑟𝑎𝑣d𝑆𝑔𝑟𝑎𝑣= d𝑈𝑔𝑟𝑎𝑣＋𝑝𝑔𝑟𝑎𝑣dV        (25) 

where 𝑈𝑔𝑟𝑎𝑣  and 𝑝𝑔𝑟𝑎𝑣  denote the internal energy and 

isotropic pressure of the free gravitational field, respectively. 

Taking (24), 𝑝𝑔𝑟𝑎𝑣= 0 [22], and d𝑈𝑔𝑟𝑎𝑣≈ d(𝑀𝐻c2) to (25), we 

give 

𝑀𝐻𝑉𝐻 ～ ħ
2
G/2απc4                 (26) 

Similarly for the wave-like gravitational fields, 𝑝𝑔𝑟𝑎𝑣= 

𝜌𝑔𝑟𝑎𝑣/3 [22], we obtain 

𝑀𝐻𝑉𝐻 ～ 3ħ
2
G/8√6βπc4             (27) 

Then we prove (20). 

 

3.5 Gravitational fields near SBH center 

Substituting 𝑀𝐻 =  𝜌𝑔𝑟𝑎𝑣𝑉𝐻/c2  and 𝑉𝐻 =  4π𝑅3/3  to 

(26), we get 

 𝜌𝑔𝑟𝑎𝑣～ 9ħ2G/32απ3c2𝑅6            (28)                                    

where R is the SBH radius. So the energy density of 

Coulomb-like gravitational fields is inversely proportional to 

sextic radius. 

Similarity  

𝜌𝑔𝑟𝑎𝑣～ 27ħ2G/128√6βπ3c2𝑅6       (29)                                   

The energy density of wave-like gravitational fields is 

inversely proportional to sextic radius. 

Taking 𝑎 ～ c2/R [31] to (28), we obtain 

𝜌𝑔𝑟𝑎𝑣～ 9ħ2G𝑎6/32απ3c14  

→ 𝑎 ～ c2 √32απ3𝜌𝑔𝑟𝑎𝑣c2/9ħ2G
6

 (30) 

It is the gravitational acceleration for Coulomb-like 

gravitational fields near SBH center. 

Substituting 𝑀𝐻
2 /𝜌𝑔𝑟𝑎𝑣 ～ ħ

2
G/2απc6 to (30), we get 

𝑎 ～ 2c3 √απ2𝑀𝐻c/3ħ2G
3

             (31) 

Thus gravitational acceleration for Coulomb-like gravitational 

fields near SBH center is direct proportion to the third SBH 

mass. 

Similarity  

𝜌𝑔𝑟𝑎𝑣～ 27ħ2G𝑎6/128√6βπ3c14  

→ 𝑎 ～ 2c2 √2√6βπ3𝜌𝑔𝑟𝑎𝑣c2/27ħ2G
6

 (32) 

This is the gravitational acceleration for wave-like 

gravitational fields near SBH center. 

Similarity  

𝑎 ～ 2c3 √4√6βπ2𝑀𝐻c/9ħ2G
3

         (33) 

The gravitational acceleration for wave-like gravitational fields 

near SBH center is direct proportion to the third SBH mass. 

Taking (6) to (30), we gave 

𝑇𝑔𝑟𝑎𝑣～3 ħ2G𝑎3/8απ2kc8             (34) 

Therefore, the effective temperature is direct proportion to 

cube gravitational acceleration for Coulomb-like gravitational 

fields near SBH center, like Unruh formula [32]. 

Substituting (33) to (34), or 𝑆𝑔𝑟𝑎𝑣 ～ κ, 𝑝𝑔𝑟𝑎𝑣= 0 [22], 

and d𝑈𝑔𝑟𝑎𝑣≈ d(𝑀𝐻c2) to (25), we obtain  

𝑇𝑔𝑟𝑎𝑣～ 𝑀𝐻c2/k                     (35) 

So the effective temperature is direct proportion to SBH mass 

for Coulomb-like gravitational fields. Because 𝑀𝐻 > 𝑀P, we 

get 𝑇𝑔𝑟𝑎𝑣 >𝑇P, that is the temperature near SBH center being 

higher than Planck one. 

Similarity  

𝑇𝑔𝑟𝑎𝑣～3√3ħ2G𝑎3/16√6βπ2kc8        (36) 

The effective temperature is direct proportion to cube 

gravitational acceleration for wave-like gravitational fields 

near SBH center. 

And  
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𝑇𝑔𝑟𝑎𝑣～ 2√3𝑀𝐻c2/3k               (37)  

Thus the effective temperature is direct proportion to SBH 

mass for wave-like gravitational fields. Also the temperature 

near SBH center is higher than Planck one. 

 

3.6 Proving Big Bang UR 

For a spatially flat Robertson–Walker geometry with scalar 

perturbations in a longitudinal gauge, such that the 

line-element can be written [22] 

d𝑠2= 𝑎2(𝜏)[−c2(1＋2Φ)d𝜏2＋(1−2Φ)(d𝑥2＋d𝑦2＋d𝑧2)] (39) 

𝑢𝑎= [(1−Φ)/a; 𝑢𝑖], 𝑧𝑎 = (0; ∇𝑖Φ)/a∣∇Φ∣(40) 

𝑆𝑔𝑟𝑎𝑣 ～ k𝑡5/3                      (41) 

where a is the scale factor, 𝑢𝑎 the timelike unit vector, 𝑧𝑎 a 

spacelike unit vector, and t =∫ 𝑎(𝜏)𝑑𝜏  the proper time of 

comoving observers. 

When t → 0, 𝑆𝑔𝑟𝑎𝑣→ 0, so R. Penrose considered the Big 

Bang being in the minimum entropy equal to zero [20]. But we 

propose    

𝑆𝑔𝑟𝑎𝑣～ k𝑡5/3＋𝑆𝑔𝑟𝑎𝑣0                (42) 

where 𝑆𝑔𝑟𝑎𝑣0 ≥ 0 is the minimum entropy. When t → 0, 

𝑆𝑔𝑟𝑎𝑣→ 𝑆𝑔𝑟𝑎𝑣0, V → 𝑉𝐵, and 𝑇𝑔𝑟𝑎𝑣→ 𝑇𝐵, Substituting them, 

d𝑈𝑔𝑟𝑎𝑣= d(𝜌𝑔𝑟𝑎𝑣𝑉), and p = ω𝜌𝑔𝑟𝑎𝑣 into (25), we obtain 

𝑇𝐵d𝑆𝑔𝑟𝑎𝑣0～ 𝑉𝐵d𝜌𝑔𝑟𝑎𝑣＋(1＋ω)𝜌𝑔𝑟𝑎𝑣d𝑉𝐵 (43) 

where ω is the coefficient of state.  

From [22] 

8πG𝜌𝑔𝑟𝑎𝑣= α∣(𝑎4𝑢<𝑖,𝑗>
̇ )𝑧𝑖𝑧𝑗∣/𝑎3      (44) 

𝑇𝑔𝑟𝑎𝑣= ћ∣H∣/2πkc                  (45) 

where i, j are spatial indices, we gain 

𝜌𝑔𝑟𝑎𝑣 ～ κ2c2𝑇𝑔𝑟𝑎𝑣
2 /ħ

2
G              (46) 

Taking it to (43), we give 

d𝑆𝑔𝑟𝑎𝑣0 ～ κ2c2[2𝑉𝐵d𝑇𝐵＋(1＋ω)𝑇𝐵d𝑉𝐵]/ħ
2
G (47) 

Ordering ω = － 1, integrating, afterwards assuming 

𝑆𝑔𝑟𝑎𝑣0 ～ κ, that is Big Bang being in the minimum entropy 

equal to Boltzmann constant also, we find 

𝑇𝐵𝑉𝐵 ～ ħ
2
G/2κc2                   (48) 

Hence we prove (18). Note (24) and (48), they are analogous, 

but their physical meaning aren’t same. 

 

4. Conclusion 

In this paper, we found the equation concerning the 

gravitational energy density and effective temperature in the 

region r < 2m [22] inside SBH; derived that the gravitational 

energy density is proportional to the square effective 

temperature far from the horizon in SBH interior, whether the 

gravitational fields of SBH are Coulomb-like or wave-like; 

obtained that their entropic density are direct proportion with 

the effective one. These equations are true in the singularity 

and near the one of SBH also; proposed the SBH UR and Big 

Bang UR by the GRE which suggests no singularity in them; 

assumed the center of SBH being in the minimum entropy 

equal to the Boltzmann constant κ, found the temperature of 

center and its volume having the inversely-proportional 

relationship; proved the SBH UR; derived energy density is 

inversely proportional to sextic radius and direct proportion 

sextic gravitational acceleration; got effective temperature is 

direct proportion to cube gravitational acceleration, like Unruh 

formula [32]; obtained effective temperature is direct 

proportion to SBH mass and higher than Planck temperature; 

proposed the Big Bang being in the minimum entropy equal to 

κ also, and proved the Big Bang UR. 

From the original definition of entropy S = Q/T, for the 

Big Bang, the heat quantity Q is tremendous but finite, if S → 

0, the temperature T → ∞, that is infinite. Above is the 

classical solution. Considering the quantum effect, T is 

impossibly infinite, so S ≠ 0. Then we proposed the Big Bang 

being in the minimum entropy equal to κ. Similarity for the 

center of SBH, Q ≈ 𝑀𝐻c2, the temperature of center isn’t 

infinite with quantum effect. Note here we only consider the 

center of SBH, not the total SBH, it isn’t against principle of 

entropy increase of black holes. 
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