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Abstract 

 

This article covers a number of forms for elliptic equations that were derived from the simultaneous 

equations describing a rational cuboid. The analysis of these elliptic equations shows that some rational 

points on the elliptic curves exist, but they are not the points of infinite order, accordingly they do not 

belong to any of the right triangles. 
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Fist elliptic equation 

Introductory remarks: 

A rectangular parallelepiped can be described by the following three square equations:  

a2 +b2 = c2 (x1, y1), (x11,y11) (1) 

a2 +d2 = e2 (x2, y2), (x21,y21) (2) 

b2 +d2 = f2 (x3 ,y3), (x31,y31) (3) 

– triangle-forming numbers (may be irrational or rational) 

where a, b, d are the edges (assuming a and b to be “even”), then the space diagonal equals  

g2=a2+b2+d2,  (4) 

and c, e, f are face diagonals.  

Let us assume that the edge а can be derived from the first and the second equation as 

a=2x1y1=2x2y2=(x2
11– y2

11)=(x2
21 –y2

21), (5) 

where x11=(x1+y1)/√2, y11=(x1-y1)/√2, and x21,y21 are found in a similar way.  

Then Eq. (4) can be rewritten as follows: 

4x1
2y1

2=4x2
2y2

2+ x1
4-2x1

2y1
2+y1

4 +x2
4 -2x2

2y2
2 +y2

4=x1
4+y1

4+x2
4+y2

4=g2 (6) 

or 

(x1
2+ y1

2)2+(x2
2- y2

2)2= (x1
2- y1

2)2+(x2
2+ y2

2)2 = g2=с2+ d2= b2+ e2 (7) 

Eq. (5) yields the following relationships:  
(x2/x1=y1/y2=t→  x2k/x1k= t→ y1=x2k=x1tk, and x1k = y2) → 

x2=x1t, y2=x1k  y1=y2t=x2k=x1kt.  (8) 

Then substitution of y1
4= x2

4y2
4/x1

4 into Eq. (6) gives:  

(x1
4+x2

4)(x1
4+y2

4)= g2x1
4 (9) 

and substitution of y2
4= x1

4y1
4/x2

4 into Eq. (6) gives:  

(x1
4+x2

4)(x2
4+y1

4)= g2x2
4  (10) 

The equations (9) and (10) are equivalent to each other, therefore any of them may be used.  

Taking into account that according to Eq. (8) x2
4=x4

1t
4, Eq. (10) (x1

4+x2
4)(x2

4+y1
4) = g2x2

4 gives  

x1
4t4+y1

4+x1
4t8+y1

4t4=g2t4.  

Dividing it by t2 and considering that (y1
4/t2=y1

2y2
2) results in  

t2(x1
4+y1

4) +x1
4t6+y1

2y2
2=g2t2.  

Translation of the first two terms to the right-hand side, considering that (g2-x1
4-y1

4=x2
4+y2

4), x2=x1t, 

y2=x1k, results in:  

y1
2y2

2= t2(g2- x1
4-y1

4) - x1
4t6,  

and multiplying this expression by x2
1→ 

x2
1y1

2y2
2= x2

1t
2(x2

4+y2
4) - x1

6 t6.  

Then y2=x2
1y1

2y2
2 and x= x2

1t2, consequently 
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y2 = x (x2
4+y2

4) – x3. (11) 
When divided by x6

1 this equation gives the identity: 
k4t2 = t2(k4+t4) - t6,  (12) 

that is true for all k and t values. Then y2= k4t2, t2=x, so:  

y2 = x(k4+t4) – x3.  (13) 

 

Second elliptic equation 

Introductory remarks: 

The idea of the second elliptic equation lies in the fact that, similar to previous expression of the edge a, 

the edge d can also be expressed in two ways as d=(x2
3–y2

3)=(x2
2-y

2
2) based on Eqs. (2) and (3), and after 

appropriate transformations we can obtain a new elliptic equation. 

If the hyperbola a=2x1y1 is rotated by 90 degrees, it will intersect the hyperbola b= 2x3 y3 at the point 

(x11,y11), then m=x3/x11=y11/y3 is the hyperbolic rotation factor,→   

x3= x11∙m= (x1+ y1)∙m/√2, y3= y11/m=(x1- y1)/√2∙m.  

Also suppose chα=x3/y3→(( x1+y1)m/√2)/(x1-y1)/√2m)), because  y1= x1kt, where a1=(x1- y1)/(x1+ y1) may 

be reduced by  x1 →(1-kt)/(1+kt)=a1 →  

m2=a1∙chα. (14) 

Let us consider the expression d=(x2
3-y

2
3)=(x2

2-y
2

2) taking into account that x2=x1t, y2=x1k and y1=x2k=x1tk. 

Substituting the values of x2, y2, X3, y3 into the expression of d we obtain:  

(x1+ y1)
2∙m2/2 - (x1- y1)

2/2∙m2=(x2
1t

2- x2
1k

2),  

reducing it by x2
1 and multiplying both sides by m2 we obtain: 

m4(1+kt)2 – (1-kt)2=2m2(t2- k2).  

Next we divide this expression by (1+kt)2 and translate the second summand to the right-hand side to 

give:  

m4=2∙m2∙(t2- k2)/ (1+kt)2 + (1-kt)2/(1+kt)2. (15) 

Multiplying this by m2 results in 

m6 =2∙m4∙(t2- k2)/ (1+kt)2 + m2(1-kt)2/(1+kt)2.  (16) 

Let us consider the expression 2∙m4∙(t2- k2)/(1+kt)2.  

Multiply the numerator and the denominator by x2
1∙m

2 →  

2x2
1∙m

6∙(t2- k2)/ (1+kt)2∙ x2
1∙m

2.  

Since 2/(1+kt)2∙ x2
1∙m

2=1/x2
3, this expression may be rewritten as  

m6∙(x2
3–y2

3)/ x2
3 but x2

3/y2
3 = ch2α, or → m6∙(1- 1/ch2α).  

Further notice that a2
1=(1-kt)2/(1+kt)2, then the expression (16) may be rewritten as  

m6= m6∙(1- 1/ch2α) + a2
1∙m

2. → 

m6= (m6∙sh2α)/ch2α +  a2
1∙m

2.→  

m6- m2 ∙sh2α(m4/ch2α)= a2
1∙m

2→  

but m4/ ch2α = a2
1 (acc. to Eq.(14)) 

→ m6 - a2
1∙m

2∙ sh2α= a2
1∙m

2. (m6= a3
1ch3α, m2= a1chα)→  

a2
1∙m

2= a3
1ch3α - a2

1∙ sh2α∙ a1chα (17) 

→ (a2
1∙m

2=y2, a2
1∙ sh2α=n2, a1chα=x),  

and finally we obtain  

y2=x3- n2x.  (18)  

From this Eq. (17) we can obtain the basic trigonometric identity for hyperbolic functions:  

a2
1∙m

2= a2
1∙a1 ∙chα= a3

1ch3α - a2
1∙ sh2α∙ a1chα,  

reducing both sides by a3
1∙chα gives the identity  

ch2α - sh2α=1. 

Now let us show that there is a one-to-one correspondence between Eq. (18) and the identity  

ch2α - sh2α=1. We have proved the first part by deriving the identity from Eq. (18). Now let us obtain 

Eq. (18) from the identity ch2α - sh2α=1.  

Since  ch2α= m4/a2
1→ m4/a2

1-1=sh2α 

Multiply both sides by m2→ (m6/a2
1 -m

2)=m2∙ sh2α→ 
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a2
1∙m

2=m6- a2
1m

2∙ sh2α=a3
1ch3α - a2

1∙ sh2α∙a1chα→ 

y2=x3- n2x  

where (a2
1∙m

2=y2, a2
1∙ sh2α=n2, a1chα=x). 

 

Proving the equivalency of the equations y2=x(k4+t4) – x3 and y2=x3- n2x. 

Previously we have already proved that the equation y2=x3- n2x was equivalent to the basic hyperbolic 

identity ch2α - sh2α=1. 

Now let us show that the equation y2=x(k4+t4) – x3 is equivalent to it as well.  

Preliminaries:  

1) a2+b2=c2 (x1, y1),  let y1/x1 = chβ then → 4x1
4 ch2β +x1

4sh4β=x1
4(1+ch2β)2 

2) a2+d2=e2 (x2, y2),  let x2/y2 = chγ then → 4y2
4 ch2γ +y2

4sh4 γ=y2
4(1+ch2 γ)2  

3) b2+d2=f2 (x3 ,y3),  let x3/y3 = chα then → 4y3 
4ch2α +y3

4sh4α= y3
4(1+ch2α)2  (19) 

Proof: 
Let us divide the equation k4t2=t2(k4+t4)-t6 by k4t2 →  
1=(k4/k4+t4/k4) – t4/k4 →  
(chγ= x2/y2=x1t/x1k→ch2γ=t2/k2). 
Then 1=(1+t4/k4) - t4/k4,  
but since ch4γ=t4/k4). →  
1 – ch4γ + ch4γ=1, and 1 – ch4γ=(1+ch2γ)(1-ch2γ)+ch4γ=1. 
1-ch2γ= - sh2γ→   
- sh2γ - sh2γ ch2γ+ ch4γ=1→ 
- sh2γ ch2γ+ ch4γ=1+ sh2γ= ch2γ, 
reducing this by ch2γ results in ch2γ- sh2γ=1= ch2α- sh2α.  
The proof is finished. 
The reverse proof:  

ch2γ- sh2γ=1→  

ch2γ=sh2γ+1(ch2γ = x2
2/y2

2→ x2
1t

2/ x2
1k

2)→  

ch2γ= t2/k2→ t2/k2-1= t2/k2-1→ 

t2 k6/k2- k6=t2 k6/k2-k6→  

t2 k4= t2 k4+t6-t6→  

t2 k4= t2(t4+k4)-t6. 

 

Discussion of results 

Let us take a look at the first elliptic equation y2= x (x2
4+y2

4) – x3, or, in more common form:  

y2=x3 - x (x2
4-y2

4), where y2=x2
1y1

2y2
2, x= x2

1t
2=x2

2, n
2= x2

4±y2
4. 

This equation was made up based on two square equations с2+ d2= b2+ e2=g2 

These two equations should be solvable by definition. If their solutions (x1, y1, x2, y2) are rational 

numbers, the elliptic equation cannot possess a rational point of infinite order, as far as x2
4±y2

4≠n2, 

where n is considered to be a congruent number, and it should be rational. Still there is a rational point 

on this curve. If the edges of an Euler brick are known, the problem of finding a rational point becomes 

quite simple, for example, for the edges (104,153,672) the coordinates of this point will be 

x=169, y=208. (20) 

Apparently we can find a rational point for any Euler brick (an Euler brick is considered here to be a 

cuboid that possesses one non-integer element which could be an edge or any of diagonals). 

Constructing a brick based on this equation is in theory possible by matching (x1, y1, x2, y2), but the time 

to obtain such a brick is indefinite. 

It should be noted that sometimes the numbers (x1, y1, x2, y2) may be irrational, that is when a pair of 

numbers forms a rational Pythagorean triangle. 

All of the aforesaid is also applicable to the numbers in form of (x11,y11, x21,y21, x31,y31). 
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In our judgment the first elliptic equation is suitable for description of Euler bricks, but it gives no 

understanding as to existence of a perfect rational cuboid. Therefore let us run through the second 

elliptic equation. 

It may seem that the second elliptic equation was derived somewhat unnaturally, as relations to the 

basic equation a2+b2+d2=g2 are not apparent. So let me schematically (without detailed manipulations) 

show the way to obtain the second elliptic equation from the basic Eq. (4). 

Let us introduce the following parametrization for Pythagorean triangles:  

a1= (x- y)/(x+ y). 

Accordingly any Pythagorean triangle may be represented as follows:  

4(1+ a1)
2/ (1- a1)

2 + 16a2
1/(1- a1)

4=4((1+ a2
1)

2/(1- a1)
4.  

Multiplying this equation by a specially matched number we can obtain a particular Pythagorean 

triangle. In this case the first line of the simultaneous equations a2 +b2=c2 may be rewritten as 

4(1+ a1)
2/ (1- a1)

2 ++16a2
1/(1- a1)

4=4((1+ a2
1)

2/(1- a1)
4, 

where a1=(x1- y1)/(x1+ y1),  

and x4
1 is a factor to be used with this equation to give a2 +b2=c2, which is implied by relationships (8). 

According to Eq. (19) the edge d2 equals 

y3
4sh4α= x4

1(1-kt)4∙sh4α/4m4. 

Taking into account that a1=(1-kt)/(1+kt)→ 

(1-kt)4=16a4
1/(1- a1)

4→  

d2 =16 x4
1∙a

4
1∙sh4α/4m4(1- a1)

4. 

The space diagonal g2 can also be derived from Eq. (19). For this purpose first we express the edge а 

through x3,y3. 

Since x3 =(x1 +y1)m/√2, y3=( x1-y1)/√2m.→ 

(x1,+y1)=2x3/√2m, (x1,-y1)=2y3m/√2.  

Addition and deduction of these expressions yield:  

x1=(x3-y3m
2)/√2m, y1=(x3+y3m

2)/√2m, 

therefore а=2x1y1=2x2y2=(x3
2-y3

2m4)/m2. 

Now the space diagonal can be described as 

g2=a2+f2=(x3
2+ y3

2)2+(x3
2-y3

2m4)2/m4,  

Expanding the parentheses and reducing to a common denominator result in 

g2=(m4+1)∙(x3
4-y3

4m4)/m4= g2/x4
1=4(m4+1)(m4+ a1

4)/m4∙(1- a1)
4. 

Accordingly the equation a2+b2+d2= g2 may be rewritten as 

4 x4
1∙(1+ a1)

2/ (1- a1)
2 + x4

1 ∙16a2
1/(1-a1)

4+16 x4
1∙a

4
1∙sh4α/4m4(1- a1)

4=4x4
1∙(m

4+1)(m4+a1
4)/m4∙(1-a1)

4.  

Reducing it by x4
1 и solving it relative to sh4α we obtain 

sh4α= (( m4- a1
2)/ a1

2)2.→  

sh2α=±( m4- a1
2)/ a1

2)→ 

in our case m4-a1
2>0, ch2α=m4/a1

2>1, 

and if ch2α=1, there is no solution, since x3
2=y3

2. Therefore  

sh2α=+( m4- a1
2)/ a1

2 →  

a1
2∙ sh2α=(m4- a1

2)= m4- m4/ ch2α→  

a1
2∙ sh2α∙ ch2α= m4∙ ch2α -m4. (m4= a1

2∙ ch2α) →  

a1
2∙ sh2α∙ ch2α= m4∙ ch2α - a1

2∙ ch2α= a1
2∙ ch4α - a1

2∙ ch2α,  

reducing it by chα and multiplying by a1→ 

a1
2∙ sh2α∙ a1∙chα= a3

1∙ch3α- a3
1∙chα →  

(a3
1∙chα=a1

2∙ a1chα=a1
2∙m2) → 

a1
2∙ a1chα=a1

2∙m2= a3
1∙ch3α - a1

2∙ sh2α∙ a1∙chα. (17) 

(a2
1∙m

2=y2, a2
1∙ sh2α=n2, a1chα=x) or (y=m∙a1∙ shα, x=m2,n=a1) →  

y2=x3- n2x.  (18) 

Next, setting the equation a1
2∙ a1chα= a3

1∙ch3α- a1
2∙ sh2α∙ a1∙chα equal to zero gives  →  

a3
1∙chα(ch2α- sh2α-1)=0.  
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The first multiplier is equal to zero provided a3
1=0,→ 

(x1- y1)
3/( x1+ y1)

3=0. 

Accordingly x1=y1,→ the edge b should be zero, but in such case chα=m2/a1 doesn’t apply, therefore the 
equation has no solutions.  
The second multiplier (ch2α- sh2α-1) is always equal to zero at any possible values of chα(x1≠y1)→  
ch2α- sh2α=1. 
The latter is a hyperbolic equation permitting rational parametrization (in the right-hand side). 
Consequently there are infinitely many rational points. But on the other hand, according to the proved 
statement No.2 in ref. [1], to obtain a coordinate x from a right triangle it shall satisfy three conditions, 
one of those is that numerator of value x should have no common divisor with n.  
Here n is considered to be a congruent number. So we’ve got x=a1chα, n=a1∙ shα, and a common divisor 
a1.  
It could be deduced that Eq. (17)-(18) yield no rational point describing a right triangle, still at least one 
rational point can be found for every n (20). Also it is apparent that if we construct a right triangle from 
the points x=a1chα, y=a1∙m, n= a1∙ shα we will obtain ch2α= sh2α+1. There is an infinite number of Euler 
bricks, but no perfect cuboid in the field of rational numbers. 
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