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Abstract. "The octets of the odd numbers" theory categorizes the odd numbers into four 
categories D1, Q1, D2, Q2. From this categorization we get an algorithm for finding the set of 
prime numbers of the form D2 and Q2. The algorithm sequentially finds all prime numbers of the 
form D2 and Q2 in ascending order.  
 
1.  Introduction  
 
"The octets of the odd numbers" theory categorizes odd numbers based on the form of the octet 
they belong to or produce (see [8], equations (5.7), (5.8)):  

1
11 8 3 8 ,D m m m                                                                                                                            (1) 

1
13 8 5 8 ,Q m m m                                                                                                                            (2) 

2
7 8 ,D m m                                                                                                                                           (3) 

2
9 8 1 8 ,Q m m m     .                                                                                                                        (4) 

    Numbers of the form (1) produce the octets to which the numbers of the form (3) belong (see 

[8], section 5). Numbers of the form (2) produce the octets to which the numbers of the form (4) 

belong. Specific subsets of (1), (2), found in a very simple way, produce the set of prime numbers 

of the form (3) and (4). This algorithm does not have the limitations of the so far known formulas 

for calculating prime numbers (see [1-7] and [9-16]).  

 

2. The algorithm  

 

As a consequence of the properties of symmetric octets (see [8], section 5), the algorithm derives 

either from numbers of the form (1) or from numbers of the form (2).  

A. The algorithm via equation (1)  

Step 1. We choose a power of 2 , *
2 ,

n
n .  

Step 2. We choose the numbers 
1

D  of the set S ,  


2

1

2
5 8 / , 2 8 2

ln 2

n

n n
S D m m m

n



      




.                                                                                   (5) 

The upper limit of the value of the number m  results from the Prime Number Theorem assuming 

that 
1

4
 of them are of the form (1) (see [3], [5], [10]). This value may not be exact, either because 

of the error of the Prime Number Theorem or because the forms (1), (2), (3), (4) do not give the 

same percentage of prime numbers.  

Step 3. We find the symmetric octets (or quadruple, or pair, see [8], section 6) produced by the 

numbers 
1

D  of the set S .  
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Step 4. From the numbers of the octets we found we ask which are prime numbers P  (or powers 

of prime numbers) or of the form 3 ,
k

P k  , 5 ,P


  . The prime numbers we find are the 

set of primes of the form (3) and (4) that are less than 2
n .  

 

B. The algorithm via equation (2)  

Step 1. We choose a power of 2 , *
2 ,

n
n .  

Step 2. We choose the numbers 
1

Q  of the set S ,  


2

1

2
5 8 / , 2 8 2

ln 2

n

n n
S Q m m m

n



      




.                                                                                       (6) 

The upper limit of the value of the number m  results from the Prime Number Theorem assuming 

that 
1

4
 of them are of the form (2).  

Step 3. We find the symmetric octets / quadruple / pair produced by the numbers 
1

Q  of the set 

S .  

Step 4. From the numbers of the octets we found we ask which are prime numbers P  (or powers 

of prime numbers) or of the form 3 ,
k

P k  , 5 ,P


  . The prime numbers we find are the 

set of primes of the form (3) and (4) that are less than 2
n .  

The two algorithms give exactly the same set of prime numbers.  

 

3. The application of the algorithm  
 
We present the application of the algorithm. We apply algorithm A.  

Step 1. We choose the power 7
2 .  

Step 2. The set S  is:  

 
5

7 7

1

2
3 8 / , 2 8 2 131,139,147,155,163,171,179

7 ln 2
S D m m m       





.  

Step 3. We find the symmetric octets / quadruple / pair produced by the numbers 
1

D  of the set 

S :   

 

 

 

 

 

 

 

131 5,1,1,1, 7, 7, 5,1

139 65,121, 71,127

147 33,57, 39, 63

155 73,89,103, 79,119,95, 97,113

163 17, 25, 23, 31

171 81,105,87,111

179 41,55, 47, 49















.  

Step 4. From the numbers of the octets we found we ask which are prime numbers P  (or powers 

of prime numbers) or of the form 3 ,
k

P k  , 5 ,P


  :  
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2

2

4

2

131 5,1,1,1, 7, 7, 5,1

139 65 5 13,11 , 71,127

147 33 3 11,57 3 19,39 3 13, 63 3 7

155 73,89,103, 79,95 5 19,97,113

163 17, 25 5 5, 23, 31

171 81 3 ,105 3 5 7,87 3 29,111 3 37

179 41,55 5 11, 47, 49 7



  

        

  

  

        

   

.  

Thus we get the sets of prime numbers  















131 5,1, 7

139 13,11, 71,127

147 11,19,13, 7

155 73,89,103,19, 97,113

163 17, 5, 23, 31

171 3, 5, 7, 29, 37

179 41,11, 47, 7















  

and finally the set of prime numbers  
7

P
S  {(1), 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 47, 71, 73, 79, 89, 97, 103, 107, 113, 139, 127}.  

The set 7

P
S  contains all prime numbers of the form (2) and (4) from 3 to 127.  

    The prime numbers 43, 59, 67, 83 which are of the form (1) and 53, 61, 101, 109 which are of 

the form (2) are absent from the set 7

P
S . If we include these numbers we get the set of all primes 

that are smaller than 7
2 .  

Running the algorithm for 8
2  we get the set of prime numbers 8

P
S ,  

8

P
S  {(1), 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 83, 89, 97, 103, 

113, 127, 137, 151, 167, 191, 193, 199, 223, 233, 239, 241} .  

Prime numbers 59, 107, 131, 139, 163, 179, 211, 227, 251 (are of form (1)) and 101, 109, 149, 157, 

173, 181, 197, 229 (are of form (2)) are absent from the set 8

P
S . However, the set 8

P
S  contains the 

numbers 43, 61, 67, 83, 53 which are absent from the set 7

P
S . As the value of the n  increases, 

prime numbers of the form (1), (2) appear in the products 3 P and 5 P  (see [8], Corollary 3.1). 

The algorithm can give all forms of prime numbers.  
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