Proof for Twin Prime Conjecture

Mesut Kavak[*a*]

The question about Twin Primes is pretty clear:

"Twin primes are prime numbers that differ by 2. Are there infinitely many twin primes?"

[a]kavakmesut@outlook.com.tr

I. Introduction

tween 2 prime numbers according to this condi- such as p_1 and p_2 .

If any number group containing "n" consecu- tion. For n=4, choose a group of numbers as foltive and odd non-prime numbers is selected among lows, consisting of 4 consecutive odd numbers, n_1 , the infinite number groups, this group must be be- n_2 , n_3 and n_4 , which are between 2 prime numbers

$$\mathbf{p_1}$$
 $\mathbf{n_1}$ $\mathbf{n_2}$ $\mathbf{n_3}$ $\mathbf{n_4}$ $\mathbf{p_2}$

II. Solution

Theorem At least one of these non-prime consecutive odd numbers of "n" must be an odd multiple of 3; because the distribution of odd multiples of 3 in the set of odd numbers depends on the function f(x)=6x+3, and therefore in the set of odd numbers there are always 2 consecutive odd numbers between every two consecutive odd multiples of 3.

> n_x p_1 n_1 n_2 n_3 n_4 p_2 n_y n₅ n_0

• If the odd number n_2 is considered an odd multiple of 3, the prime number p_2 must be the next consecutive odd multiple of 3.

Since p_2 is a prime number, this is only possible if it falls on a non-prime number in a group such as n=5.

For n=4, different groups must be formed.

• If the odd number n₃ is considered an odd multiple of 3, then the prime number p_1 must be the previous consecutive odd multiple of 3.

Since p_1 is a prime number, this is only possible if it falls on a non-prime number in a group such as n=5.

For n=4, different groups must be formed.

• If the odd number n₁ is considered an odd multiple of 3, the odd number n_4 must be the next consecutive odd multiple of 3.

Also, the odd number n5 must be the second consecutive odd multiple of 3 immediately after the odd number n_4 , and the odd number n_0 must be the previous odd multiple of 3 before the odd number n_1 .

• If the odd number n₄ is considered an odd multiple of 3, the odd number n_5 must be the next consecutive odd multiple of 3.

Also, for this acceptance, the odd numbers n_0 and n_1 must be previous consecutive odd multiples of 3; so "The odd numbers n_1 and n_4 are the best choice to be odd multiples of 3."

III. Result

The odd number n_5 can be followed by an infinite number of consecutive odd numbers "n"; therefore, for any value of "n" after the group n = 4, the number of elements of an odd set of numbers "n" is unimportant; but the odd number n_y is always prime or not, which is important. With this information, the $n_y = n_5 - 2 = (6x + 3) - 2$ equation forms the (1) equation.

$$n_{\rm V} = 6x + 1 \tag{1}$$

So it can be said for n_y ;

- I. n_y out of (1) with the condition $x \in \mathbb{Z}^+ \land x > 0$ can never be just a prime or a non-prime number.
- II. It is not prime over (1) for an "x" value that does this; but it is prime for odd numbers formed between two numbers n_y and n_{y+1} which are the result of two consecutive numbers x and x + 1.
- **III.** After all, when $n_y = p_3$ it is a group of twin primes between odd numbers n_4 and n_5 ; therefore twin primes are "infinite" even for the groups which have the same number of elements and different numbers that these groups can be written even for only a single value "n".
- **Result** *"Twin primes are prime numbers that differ by 2, and there are an infinite number of twin primes."*

12.06.2023