Proof for Twin Prime Conjecture

Mesut Kavak[a]

The question about Twin Primes is pretty clear:
"Twin primes are prime numbers that differ by 2. Are there infinitely many twin primes?"
[a]kavakmesut@outlook.com.tr

I. Introduction

If any number group containing " n " consecu-tiveandoddnon-prime numbersis selected among the infinite number groups, this group must be between 2 prime numbers according to this condi-
tion. For $\mathrm{n}=4$, choose a group of numbers as follows, consisting of 4 consecutive oddnumbers, n_{1}, $\mathrm{n}_{2}, \mathrm{n}_{3}$ and n_{4}, which are between 2 prime numbers such as p_{1} and p_{2}.

$$
\begin{array}{llllll}
\mathbf{p}_{\mathbf{1}} & \mathrm{n}_{1} & \mathrm{n}_{2} & \mathrm{n}_{3} & \mathrm{n}_{4} & \mathbf{p}_{\mathbf{2}}
\end{array}
$$

II. Solution

Theorem At least one of these non-prime consecutive odd numbers of " n " must be an odd multiple of 3; because the distribution of odd multiples of 3 in the set of odd numbers depends on the function $f(x)=6 x+3$, and therefore in the set of odd numbers there are always 2 consecutive odd numbers between every two consecutive odd multiples of 3 .

$$
\begin{array}{llllllllll}
\mathrm{n}_{0} & \mathrm{n}_{\mathrm{x}} & \mathbf{p}_{1} & \mathrm{n}_{1} & \mathrm{n}_{2} & \mathrm{n}_{3} & \mathrm{n}_{4} & \mathbf{p}_{2} & \mathrm{n}_{\mathrm{y}} & \mathrm{n}_{5}
\end{array}
$$

- If the odd number n_{2} is considered an odd multiple of 3 , the prime number p_{2} must be the next consecutive odd multiple of 3 .
Since p_{2} is a prime number, this is only possible if it falls on a non-prime number in a group such as $\mathrm{n}=5$.
For $\mathrm{n}=4$, different groups must be formed.
- If the odd number n_{3} is considered an odd multiple of 3 , then the prime number p_{1} must be the previous consecutive odd multiple of 3 .
Since p_{1} is a prime number, this is only possible if it falls on a non-prime number in a group such as $\mathrm{n}=5$.
For $\mathrm{n}=4$, different groups must be formed.
- If the odd number n_{1} is considered an odd multiple of 3 , the odd number n_{4} must be the next consecutive odd multiple of 3 .
Also, the odd numbern ${ }_{5}$ must be the second consecutive odd multiple of 3 immediately after the odd number n_{4}, and the odd number n_{0} must be the previous odd multiple of 3 before the odd number n_{1}.
- If the odd number n_{4} is considered an odd multiple of 3 , the odd number n_{5} must be the next consecutive odd multiple of 3 .
Also, for this acceptance, the odd numbers n_{0} and n_{1} must be previous consecutive odd multiples of 3; so "The odd numbers n_{1} and n_{4} are the best choice to be odd multiples of 3."

III. Result

The odd number n_{5} can be followed by an in- " n " is unimportant; but the odd number n_{y} is alfinite number of consecutive odd numbers "n"; ways prime or not, which is important. With this therefore, for any value of " n " after the groupn $=4$, information, the $\mathrm{n}_{\mathrm{y}}=\mathrm{n}_{5}-2=(6 \mathrm{x}+3)-2$ equation the number of elements of an odd set of numbers forms the (1) equation.

$$
\begin{equation*}
n_{y}=6 x+1 \tag{1}
\end{equation*}
$$

So it can be said for n_{y};
I. $\quad n_{y}$ out of (1) with the condition $x \in \mathbb{Z}^{+} \wedge x>0$ can never be just a prime or a non-prime number.
II. It is not prime over (1) for an "x" value that does this; but it is prime for odd numbers formed between two numbers n_{y} and $\mathrm{n}_{\mathrm{y}+1}$ which are the result of two consecutive numbers x and $\mathrm{x}+1$.
III. After all, when $\mathrm{n}_{\mathrm{y}}=\mathrm{p}_{3}$ it is a group of twin primes between odd numbers n_{4} and n_{5}; therefore twin primes are "infinite" even for the groups which have the same number of elements and different numbers that these groups can be written even for only a single value " n ".

Result "Twin primes are prime numbers that differ by 2, and there are an infinite number of twin primes."

