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There is perhaps no part of mathematics that is more intimately connected with everyday 

experiences than probability theory and statistics. The element of chance dominates the physical 

world. Probability is the heart of physics, in particular – quantum physics. At the probability 

theory lies combinatorics. We make an observation in the combination of n objects taken r 

objects at a time. We find a sort of combinatorial gauge invariance hidden there in that the 

combination of 𝑛 objects taken 𝑟 at a time or 𝑛 − 𝑟 at a time is the same. It has been argued that 

the Pauli Exclusion Principle is not a principle or cause at all; rather it is an effect of the 

combinatorics which essentially delivers the Fermi Dirac Statistics. We explore the consequent 

applications in quantum mechanics and field theory with particle statistics. 
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Consider 𝑛 objects and translate it to 𝑛 − 𝑟 objects for some 𝑟 < 𝑛. Then the combination 

combinatorial coefficients 𝐶𝑟
𝑛 = 𝐶𝑛−𝑟

𝑛  imply a kind of combinatorial gauge invariance; 𝑛 → 𝑛 −

𝑟 is a combinatorial gauge transformation. This will be argued below in a more proper context 

and ramified. 

𝑄𝑢antum Mechanics is the theory that successfully describes small systems like fundamental 

particles, atoms and molecules.  

In quantum theory, the fundamental mathematical object describing the quantum systems is the 

wavefunction Ψ. This Ψ is a function of coordinates and time, and is a complex quantity. 

It figures in the Schrödinger equation which describes the evolution of a quantum system. 

𝑖
∂Ψ

𝜕𝑡
= −

ℏ
2

2𝑚
∇2Ψ + 𝑉(𝑥, 𝑦, 𝑧)Ψ          (1) 

Max Born came up with the statistical interpretation of the wave function Ψ. According to the 

Born rule, the squared absolute value of the wavefunction |Ψ|2𝑑𝑉 is the probability density of 

finding the quantum system in some small volume 𝑑𝑉. 

Now, we know that the process of measurement entails counting which in turn leads to 

probabilistic and statistical laws. Consider the combination of 𝑛 objects taken 𝑟 objects at a 

time. This is given by 

𝐶𝑟
𝑛 =

𝑛!

𝑟!(𝑛−𝑟)!
           (2) 

If instead we replace 𝑟 objects by "𝑛 − 𝑟" objects, we notice that the combination is still the 

same as above, thus, 𝐶𝑟
𝑛 = 𝐶𝑛−𝑟

𝑛 .  



Thus, we can interpret this invariance as a combinatorial invariance: a combinatorial redundancy. 

We propose this as a gauge invariance, inherent in the counting principles. 

Now, the expectation value under the Born rule is actually invariant under the Combinatorial 

Gauge transformation: 𝐶𝑟
𝑛 → 𝐶𝑛−𝑟

𝑛 , hence the symmetric probability distribution curve. The fact 

of the matter is that the probability distribution of 𝜓 is gauge invariant under the above gauge 

transformation, for a symmetric distribution and mirror image of the distribution before the 

gauge transformation for a asymmetric distribution. Nevertheless, we may assert that the Born 

interpretation is invariant under the combinatorial gauge transformation. We adopt Pascal’s 

identity, viz., 𝐶𝑟
𝑛 + 𝐶𝑟−1

𝑛 = 𝐶𝑟
𝑛+1 as the fundamental result of the combinatorial gauge theory. 

Let us now come to the fundamental statistics in quantum physics, viz.,  

1. The BOSE-EINSTEIN STATISTICS (BES) and 

2. The FERMI-DIRAC STATISTICS (FDS) 

For the BES, the Bose counting problem is posed thus: how many ways can 𝑟 indistinguishable 

particles be put in 𝑛 distinguishable boxes? 

This number is given by 

𝐵𝑟
𝑛 =

(𝑛+𝑟−1)!

𝑟!(𝑛−1)!
           (3) 

Where 𝐵𝑟
𝑛 stands for 𝑛 𝐵𝑜𝑠𝑒 𝑟 analogous to 𝐶𝑟

𝑛 standing for 𝑛 𝐶ℎ𝑜𝑜𝑠𝑒 𝑟. Particles obeying this 

rule are called Bosons and carry integer spin values. They can occupy any state simultaneously. 

For FDS, the Dirac counting problem is posed thus: how many ways can 𝑟 indistinguishable 

particles be put in 𝑛 distinguishable boxes, with at most one in each box? 



This number is given by 

𝐶𝑟
𝑛 =

𝑛!

𝑟!(𝑛−𝑟)!
           (2) 

Particles obeying this combinatorial rule are called Fermions and carry half odd integer spin 

values. They obey the Pauli Exclusion Principle which states that 

No two Fermi particles with identical quantum numbers can occupy the same quantum state. 

Let’s reverse this line of reasoning. Let’s start with the BES and FDS as given; then notice the 

combinatorics of the FDS: FDS is invariant under the combinatorial gauge. The BES is 

NOT!!! 

This tells us something: Particles obeying the combinatorial gauge invariance carry half odd 

integer spins and obey the Pauli Exclusion Principle. The Pauli exclusion principle is thus a 

consequence of classical combinatorics. It is an effect. The FDS that springs from classical 

combinations is the cause. They cannot attain simultaneously the vacuum state. Bosons, on the 

other hand, can simultaneously occupy the vacuum state. In the atoms of elements such as liquid 

Helium, the atoms have net whole integer spin and hence at critical low temperature ~ 0𝐾, jump 

into the lowest energy state and thereby form the BOSE-EINSTEIN CONDENSATE. 

Before we go to QUANTUM FIELD THEORY (QFT), we have a look at the origin of 

combinatorial gauge symmetry.  

The BES is given by (3), viz., 𝐵𝑟
𝑛 =

(𝑛+𝑟−1)!

𝑟!(𝑛−1)!
 and, the FDS is given by (2) viz., 𝐶𝑟

𝑛 =
𝑛!

𝑟!(𝑛−𝑟)!
 

The above two statistics are selection of indistinguishable objects. We know that there are 

arrangement of objects. This is called PERMUTATIONS. These are given for the above case by 



𝑃𝑟
𝑛 =

𝑛!

(𝑛−𝑟)!
           (4) 

There is an easy relation between PERMUTATIONS AND COMBINATIONS, as 

𝑃𝑟
𝑛 = 𝑟! 𝐶𝑟

𝑛           (5) 

But for BES, we have for the combinatorial gauge transformation 𝐵𝑟
𝑛 → 𝐵𝑛−𝑟

𝑛 , and only for this 

transformation, a relationship with 𝑃𝑟
𝑛 and that too is a monstrosity 

𝑃𝑟
𝑛 =

(𝑛!)2

𝑛(2𝑛−𝑟−1)!
𝐵𝑛−𝑟

𝑛           (6) 

So that, 

𝑃𝑟
𝑛 =

1

2
[

(𝑛!)2

𝑛(2𝑛−𝑟−1)!
𝐵𝑛−𝑟

𝑛 + 𝑟! 𝐶𝑟
𝑛]        (7) 

Which can also be rewritten as 

𝑃𝑟
𝑛 =

1

2
[

(𝑛!)2

𝑛(2𝑛−𝑟−1)!
𝐵𝑛−𝑟

𝑛 + 𝑟! 𝐶𝑛−𝑟
𝑛 ]        (8) 

Thus, mathematically, the permutation is the super structure from which stem the BES and the 

FDS. Finally, the 𝑃𝑟
𝑛 and 𝐶𝑟

𝑛 are combinatorially gauge related. 

This can be seen from 𝑃𝑟
𝑛 = 𝑟! 𝐶𝑟

𝑛; 

Which is the same as 

 𝑃𝑛−𝑟
𝑛 = (𝑛 − 𝑟)! 𝐶𝑛−𝑟

𝑛 .         (9) 

Now we come to QFT. For a world coordinate translation 𝑥𝜇 → 𝑥𝜇′, the Poincaré group is given 

by  



𝑥𝜇′ = Λ𝜈
𝜇𝑥𝜈 + 𝑎𝜇          (10) 

Where Λ𝜈
𝜇

 is the Lorentz tensor and 𝑎𝜇 is an arbitrary translation in Minkowskiian spacetime. 

Now in QFT, for the double cover of the Poincaré group we have irreps as follows: 

1. (0,0): 𝑠𝑝𝑖𝑛 0 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 which acts on scalars. The constraint that the Lagrangian 

is invariant yields free spin 0 Lagrangian and the Euler-Lagrange equations lead to the 

Klein-Gordon Equation. 

2. (
1

2
, 0) ⊕ (0,

1

2
) : 𝑠𝑝𝑖𝑛 

1

2
 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 which acts on spinors. The constraint that the 

Lagrangian is invariant yields free spin 
1

2
 Lagrangian and the Euler-Lagrange equations 

lead to the Dirac Equation. 

3. (
1

2
,

1

2
) : 𝑠𝑝𝑖𝑛 1 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 which acts on vectors. The constraint that the Lagrangian 

is invariant yields free spin 1 Lagrangian and the Euler-Lagrange equations lead to the 

Proca Equation. 

Now in the above three irreps, only no. 2 will be combinatorial gauge invariant because it is a 

Fermionic Field. Fermions are described by spinors. The BES conserves the property of 

positive definiteness of the time-time component of the energymomentum tensor. Applying, 

the BES to fermions violates this. The FDS preserves causality. Thus, applying this to the 

bosons violates causality. Hence the combinatorial gauge invariance lies at the heart of this 

matter. So, FDS in essence is classical combinatorics. This is very easy to see. The Pauli 

exclusion puts forth a scheme that only one piece fits into a given square. This a classical 

combinatoric result. Thus, causality is a classical result. The BES on the other hand does not 

figure explicitly in the classical combinatorial scheme. Thus, the positive definiteness of the 



time-time component of the energymomentum tensor is a truly quantum fact. It is deeply 

rooted in the quantum domain. The future applications of this gauge invariance is still to be 

foreseen. 

This, paper is the typed version of the talk given at the International Webinar on Quantum 

Physics and Nuclear Technology – 2021, held on July 26-27 by the Coalesce Research 

Group. 

 


