Stanislav Dolgopolov e-mail address: <u>dolgopolov-s@list.ru</u>

Experimental Tuning of Lifetime of Cooper pairs in Aluminum

Abstract: Here we propose an experiment, which shows that the lifetime of Cooper pairs and associated supercurrents in a conventional superconductor (aluminum) is tunable in a range from picoseconds up to some seconds. The long-lived Cooper pairs indicate that in aluminum can flow a persistent supercurrent. The short-lived pairs cause a dissipative (non-superconducting) state.

An experiment may show that a main difference between superconducting (SC) and non-superconducting aluminum is the lifetime of Cooper pairs. In other words, permanent pairs provide permanent (non-dissipative) supercurrents, while the pair breaking leads to supercurrent dissipation.

1. Experiment description.

Briefly, the experiment can be described as follows. We produce layered flat rings (washers with a hole in the middle), layer planes coincide with the plane of the flat rings. Every flat ring consists of 4 layers in sequence:

Layer 1. Bulk silicon, more than 30 monolayers (MLs)

Layer 2. Aluminum thin film (2D-Al), 4 MLs

Layer 3. Silicon or another insulator/semiconductor with variable thickness, number of MLs is 0, 1, 2 ... 15 Layer 4. Bulk aluminum (3D-Al), more than 40 MLs

We use a result that T_c of 2D-Al is larger than T_c of bulk Al [1]. We induce in every of 16 flat rings an identical supercurrent at temperature just above T_c of bulk Al (above 1.18 K) and below T_c of 2D-Al. We measure the supercurrent lifetime in every ring by observing the induced magnetic field.

2. Expected results.

The lifetime of supercurrents and corresponding electron pairs increases with increasing thickness of insulating layer (layer 3) between 2D-Al and 3D-Al. The range of the supercurrent lifetime is from picoseconds up to a few seconds (and, probably, longer). One can smoothly tune the supercurrent lifetime by varying the thickness and material of insulator (layer 3).

3. Explanation of the expected results.

As shown experimentally in [1] the SC gap on the interface Si/Al in 2D-Al is larger than in 3D-Al. Hence at T above T_c of 3D-Al and below T_c of 2D-Al, electron pairs in 3D-Al break and recombine, while in 2D-Al all pairs remain stable. If 3D-Al and 2D-Al areas are electrically connected, then pairs from 2D area can drift into 3D area and, thus, take part in the breaking/recombining process. So every pair in the system is **non-permanent**; broken pairs lose their ordered momenta, so the supercurrent lifetime is very short. If 3D-Al and 2D-Al areas are electrically disconnected by a thick insulator, then pairs from 2D-Al area cannot drift into 3D-Al area and, thus, do not break/recombine. Then the pairs in 2D-Al are **permanent**. So the disconnected 2D-Al area remains superconducting and the supercurrent may be long-lived. The pair drift density is tuned by the thickness of the separating layer 3, hence the average lifetime of the SC state in 2D-Al is also tuned.

The role of permanent electronic states for superconductivity is described in [2].

The experiment can show that the permanent (non-breaking) electron pairs are a necessary condition for permanent (non-dissipative) supercurrents and, thus, generally for SC. The experiment principle is applicable for other SC metals. We hope that the community will be interested to perform the experiment proposed.

References.

Werner M. J. van Weerdenburg et al, Extreme enhancement of superconductivity in epitaxial aluminum near the monolayer limit, SCIENCE ADVANCES, 1 Mar 2023, Vol 9, Issue 9, <u>https://doi.org/10.1126/sciadv.adf5500</u> (2023)

^[2] Stanislav Dolgopolov, Experimental Verification of the BCS Theory of Superconductivity by Using Persistent Supercurrents, https://vixra.org/abs/2209.0127 (2022)