A simple Markov chain for the Collatz problem

Wiroj Homsup and Nathawut Homsup

May 30, 2023

Abstract

We show that the iteration of the Collatz function is represented by a simple three states Markov chain. This simple model is implemented to show the probabilistic convergence of the algorithm to the equilibrium point set $\{1,2\}$.

\section*{Introduction}

Define the iterating function introduced by R. Terras[1] : $$
\begin{equation*} a_{n+1}=\left(3^{b} a_{n}+b\right) / 2 \tag{1} \end{equation*}
$$ where $b=1$ when a_{n} is odd and $b=0$ when a_{n} is even. The Collatz conjecture asserts that by starting with any positive integer a_{0}, there exists a natural number k such that $\mathrm{a}_{\mathrm{k}}=1$.

\section*{1. The Markov Chain and the transition probability}

The Eq. (1) can be represented by a Markov chain with three states.
Let partition positive natural numbers N in three sets (states):
A : $\{3,5,7,9, \ldots \ldots \ldots \ldots \ldots\}$
B : $\{4,6,8,10, \ldots \ldots \ldots \ldots .$.
C : \{1,2\}
Then, consider the following Markov chain:

$$
\begin{equation*}
X_{i+1}=P X_{i} \tag{2}
\end{equation*}
$$

Where X_{i} is a vector with three components each of which represents the probability of a number to belong to one of the above defined sets, i.e. $X_{i}(1,1)=$ Prob. $\{$ a number is in A$\}, X_{i}(2,1)=$ Prob. $\{$ a number is in B$\}$ and $X_{i}(3,1)=$ Prob. $\{$ a number is in C$\} . \mathrm{P}$ is a 3×3 real transition matrix whose element, i.e. $p_{i j}$ is the probability of transition from state j to state i . The Markov chain of the Collatz problem is shown in Figure 1.

Figure 1. Markov chain of the Collatz problem.

$$
P=\left[\begin{array}{ccc}
1 / 2 & p & 0 \\
1 / 2 & p & 0 \\
0 & 1-2 p & 1
\end{array}\right] ; \mathrm{p}<1 / 2
$$

2. The probabilistic convergence of the dynamic system

The limiting of X_{i} can be defined as

$$
\begin{equation*}
X_{\infty}=\lim _{n \rightarrow \infty} P^{n} X_{0} \tag{3}
\end{equation*}
$$

Let

$$
\begin{equation*}
P=S V S^{-1} \tag{4}
\end{equation*}
$$

where S and V are a 3×3 eigen vector and eigen value matrix, respectively.

$$
V=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & p+1 / 2
\end{array}\right]
$$

$$
S=\left[\begin{array}{ccc}
0 & 2 / c & \frac{-1}{d} \\
0 & \frac{-1}{c p} & \frac{-1}{d} \\
1 & \frac{(1-2 p)}{c p} & \frac{(2-4 p)}{d(1-2 p)}
\end{array}\right]
$$

where

$$
\begin{aligned}
& c^{2}=\frac{\left(8 p^{2}-4 p+2\right)}{p^{2}} \\
& d^{2}=\frac{\left(6 p^{2}-6 p+1.5\right)}{(0.5-p)^{2}}
\end{aligned}
$$

and S^{-1} is shown to represent in a matrix form as

$$
S^{-1}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
{[M]_{2 \times 3}}
\end{array}\right]
$$

where $[M]_{2 \times 3}$ is a real 2×3 matrix.
As $\mathrm{n} \rightarrow \infty$,
$\lim _{n \rightarrow \infty} P^{n}=S\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] S^{-1}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$
Then a convergence of eq. (3) follows as

$$
X_{\infty}=\left[\begin{array}{lll}
0 & 0 & 0 \tag{5}\\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right] X_{0}
$$

The matrix structure which yields the above condition, show that the Markov chain has an absorbing state which is a state C . Once entered in state C it remains in state C , i.e. a number will alternate between 1 and 2 .

3. Conclusions

In the paper, it has been shown that using a simple structured Markov chain, eq. (1) representing the Collatz iteration, converges to 1 with probability 1.

References

[1] R . Terras, (1976). " A stopping time problem on the positive integers". Acta Arithmetica, 30(3), 241-252.

