$\xi(s)=\frac{s}{2}(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$ of Riemann Xi function $-\xi$ is not appropriate.

Author
Ashok Kumar (Kashyap)
ORCID: https://orcid.org/0000-0002-6345-7249
Former, Assistant Professor of Physics
Department of Applied Sciences and Humanities
DEC- Faridabad, INDIA-121004
E-mail- ak.research.ph@gmail.com
Contact: +91-7557498649

MSC-2020 Codes: 11M06, 11M26

Abstract

We show that for calculating nontrivial zeros of the Riemann Zeta function ζ, the form of the definition $\xi(\mathrm{s})=(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s}), \mathrm{s} \in \mathbb{C}$ of the function ξ and the followed deduction that nontrivial zeros of functions $\zeta(\mathrm{s})$ and $\xi(\mathrm{s})$ are identical is not appropriate. The definition of function ξ in which both functions ξ and ζ are functions of same complex variable s and the assumption of identicalness of nontrivial zeros of ξ and ζ is ambiguous, so may be the deep reason, the Riemann hypothesis could not be resolved yet. However, the definition $\xi(\mathrm{t})=(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s}), \mathrm{t}=\alpha+\mathrm{i} \beta$ and $\mathrm{s}=\underline{1 / 2}+\mathrm{it}$ introduced by B. Riemann (1859) leads the results: (i) when $\beta=0$ and $\xi(\alpha)=0$, corresponding nontrivial zero of function $\zeta(\mathrm{s})$ are of the form $\mathrm{s}=\underline{1 / 2}+\mathrm{i} \alpha$ and (ii) when $\mathrm{t}=\alpha+\mathrm{i} \beta$ and $\xi \alpha+\mathrm{i} \beta=0$, nontrivial zeros of the function $\zeta(\mathrm{s})$ are of the form $\mathrm{s}=(\underline{1 / 2-\beta)}+\mathrm{i} \alpha$ which lie on both sides of the line $\alpha=1 / 2$. Here, we sketch the zeros of the function $\zeta(\mathrm{s})$ those correspond to real zeros of the function $\xi(\mathrm{s})$ that shows the Riemann hypothesis is true only when nontrivial zeros of functions $\xi(\mathrm{s})$ and $\zeta(\mathrm{s})$ lie on the lines perpendicular to each other.

Keywords: Zeta function, Riemann's Xi Function, nontrivial zeros, critical strip, critical line.

 MSC-2020 Codes: 11M06, 11M26
1 INTRODUCTION

In 1859, B. Riemann [1] in his research paper introduced a function $\zeta \mathrm{s} \mathrm{s}=\sigma+\mathrm{it}, \sigma, \mathrm{t} \in \mathbb{R}$ known as the Riemann's zeta function $\zeta \mathrm{s}$ with the definition,

$$
\begin{equation*}
\zeta(\mathrm{s})=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

Riemann further created another function known as the Xi-function $\xi \mathrm{t}, \mathrm{t}=\alpha+\mathrm{i} \beta$ defined as:
$\xi \mathrm{t}=\mathrm{s} / 2 \mathrm{~s}-1 \pi^{-\mathrm{s} / 2} \zeta \mathrm{~s}, \mathrm{~s}=\underline{1 / 2}+\mathrm{it}$

The definition (2) is the original definition of the function ξ. But in Mathematics literature present day authors e.g. [2], [3], [4] and other use an alternative following definition,

$$
\begin{equation*}
\xi \mathrm{s}=\mathrm{s} / 2 \mathrm{~s}-1 \pi^{-\mathrm{s} / 2} \zeta \mathrm{~s} \tag{3}
\end{equation*}
$$

With the definition (3) authors claim that nontrivial zeros of the functions $\xi \mathrm{s}$ and $\zeta \mathrm{s}$ are identical.

In this research article, we show that the use of the definition (3) of the function- ξ cannot be justified as it creates some mathematical ambiguities. However, the original definition (2) of the function ξ and corroborated with Riemann's statement: " it is clear that $\xi \mathrm{t}$ can vanish only if the imaginary part of t lies between $\mathrm{i} / 2$ and $-\mathrm{i} / 2$." which indicates that t is a complex variable, produces the results: (i) Corresponding to each complex zero $t=\alpha+i \beta$ of the function $\xi \mathrm{t}$, there exists a complex zero $\mathrm{s}=1 / 2-\beta+\mathrm{i} \alpha$ of the function $\zeta \mathrm{s}$, i.e., zeros of functions $\xi \mathrm{t}$ and $\zeta \mathrm{s}$ are at a distance apart. (ii) Corresponding to each real zero $\mathrm{t}=\alpha, \alpha \in \mathbb{R}$ of the function $\xi \mathrm{t}$, there exists a complex zero $\mathrm{s}=\underline{1 / 2}+\mathrm{it}$ of function $\zeta \mathrm{s}$. Trial zeros obtained in results (i) and (ii), are sketched in Fig. 1(a) and 1(b).

2 RESULTS

Recall the definition (3) connecting functions ξ and ζ both of same complex variable s,
$\xi \mathrm{s}=\mathrm{s} / 2 \mathrm{~s}-1 \pi^{-\mathrm{s} / 2} \zeta \mathrm{~s}, \mathrm{~s}=\mu+\mathrm{i} \lambda$

Clearly, $\xi 0=0$ and $\xi 1=0$, i.e., $\mathrm{s}=0, \mathrm{~s}=1$ are real zeros of $\xi \mathrm{s}$. Suppose zeros
functions $\xi \mathrm{s}$ and $\zeta \mathrm{s}$ are identical then $\mathrm{s}=0, \mathrm{~s}=1$ must also be zeros of $\zeta \mathrm{s}$ but
according to definition (1) of $\zeta \mathrm{s}, \zeta 0=\infty$ and $\zeta 1=\infty$, therefore $s=0, \mathrm{~s}=1$ are not zeros of $\zeta \mathrm{s}$, so not of the function $\xi \mathrm{s}$. That is ambiguity in definition (4). Actually, when s is a real number, all zeros of $\zeta \mathrm{s}$ necessarily are zeros of the function $\xi \mathrm{s}$ but when s is a complex number zeros of functions $\xi \mathrm{s}$ and $\zeta \mathrm{s}$ may be different that is shown here:

Suppose $\xi=\mathrm{G}+\mathrm{iH}$, s/2 s-1 $\pi^{-\mathrm{s} / 2}=\mathrm{C}+\mathrm{iD}$ and $\zeta \mathrm{s}=\mathrm{A}+\mathrm{iB}$, then from result (4),
$\mathrm{G}+\mathrm{iH}=\mathrm{CA}-\mathrm{DB}+\mathrm{i} \mathrm{AD}+\mathrm{BC}$

Zeros of ξ s can be obtained choosing $\mathrm{G}=0$ and $\mathrm{H}=0$ which means $\mathrm{CA}-\mathrm{DB}=0$ and
$A D+B C=0$. This system of equations produces $A=0, B=0, A=i B, C=i D, C=0$, and $\mathrm{D}=0$. Moreover, the function $\zeta \mathrm{s}$ can be written as $\zeta \mathrm{s}=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}} \cos \phi+\mathrm{i} \sin \phi$ with

$$
\phi=\tan ^{-1}\left(\frac{\mathrm{~B}}{\mathrm{~A}}\right) . \text { Now, if } \xi \mathrm{s}=0, \mathrm{~s} / 2 \text { s }-1 \quad \pi^{-\mathrm{s} / 2} \neq 0 \text {, then } \sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}} \cos \phi+\mathrm{i} \sin \phi=0
$$

which implies the equation $\zeta \mathrm{s}=0$ is unsolvable.

Further, suppose that $s=a_{i}, a_{i} \in \mathbb{R}$ or $\mathbb{C}, i=1,2,3, \ldots, n$ are zeros of the function ξs and $s=b_{j}, b_{j} \in \mathbb{R}$ or $\mathbb{C}, j=1,2,3, \ldots, m$ are zeros of the function ζs, i.e., $\xi s=\prod_{i=1}^{n} s-a_{i}$ and $\zeta \mathrm{s}=\prod_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{s}-\mathrm{b}_{\mathrm{j}}$. Therefore, the result (4) can be expressed as,

$$
\begin{equation*}
\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~s}-\mathrm{a}_{\mathrm{i}}=\mathrm{s} / 2 \mathrm{~s}-1 \pi^{-\mathrm{s} / 2} \Gamma \mathrm{~s} / 2 \prod_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{~s}-\mathrm{b}_{\mathrm{j}} \tag{6}
\end{equation*}
$$

There are two cases:

Case I: At least one zero $\mathrm{s}=\mathrm{a}$ (say) is common to both functions ξ and ζ then,

$$
\begin{aligned}
& \xi s=s-a \prod_{i=1}^{n-1} s-a_{i} \text { and } \zeta s=s-a \prod_{i=1}^{m-1} s-b_{i}, \text { therefore, } \\
& s-a \prod_{i=1}^{n-1} s-a_{i}=s / 2 \quad s-1 \pi^{-s / 2} \Gamma s / 2 s-a \prod_{i=1}^{m-1} s-b_{i}
\end{aligned}
$$

Further, write $\prod_{i=1}^{n-1} s-a_{i}=\xi_{1} s$ and $\prod_{i=1}^{m-1} s-b_{i}=\zeta_{1} s$, then

$$
\left.\begin{array}{rlll}
\mathrm{s}-\mathrm{a}\left[\begin{array}{llll}
\xi_{1} & \mathrm{~s}-\mathrm{s} / 2 & \mathrm{~s}-1 \pi^{-\mathrm{s} / 2} \Gamma \mathrm{~s} / 2 \zeta_{1} \mathrm{~s}
\end{array}\right] & =0 & \tag{7}\\
{\left[\begin{array}{lllll}
\xi_{1} \mathrm{~s}-\mathrm{s} / 2 & \mathrm{~s}-1 \pi^{-\mathrm{s} / 2} \Gamma \mathrm{~s} / 2 \zeta_{1} \mathrm{~s}
\end{array}\right]_{\mathrm{s}=\mathrm{a}}} & =0 / \mathrm{s}-\mathrm{a} & \\
& {\left[\begin{array}{llll}
\xi_{1} & \mathrm{a} & -\mathrm{a} / 2 & \mathrm{a}-1 \pi^{-\alpha / 2} \Gamma \mathrm{a} / 2 \zeta_{1} \mathrm{a}
\end{array}\right]=0 / 0}
\end{array}\right\}
$$

Thus there exists at least one case that when $\mathrm{s}=$ a the quantity $\left[\xi_{1} a-a / 2 a-1 \pi^{-\alpha / 2} \Gamma a / 2 \zeta_{1} a\right]$ is not non-zero but indeterminate. However, in general the quantity $\left[\xi_{1} a-a / 2 a-1 \pi^{-\alpha / 2} \Gamma a / 2 \zeta_{1} a\right]$ is considered non-zero.

Case II: Functions $\xi \mathrm{s}$ and $\zeta \mathrm{s}$ have same number of identical zeros. Let γ be one of such zeros, then

$$
\begin{align*}
& \prod_{\gamma} \mathrm{s}-\gamma\left[1-1 / 2 \mathrm{~s} \mathrm{~s}-1 \pi^{-s / 2} \Gamma \mathrm{~s} / 2\right]=0 \\
& 1-1 / 2 \gamma \gamma-1 \pi^{-\gamma / 2} \Gamma \gamma=0 / 0 \tag{8}
\end{align*}
$$

If 1-1/2 $\gamma \gamma-1 \pi^{-\gamma / 2} \Gamma \gamma$ is nonzero then from result (8), either $0=0$ or 1-1/2 $\gamma \gamma-1 \pi^{-\gamma / 2} \Gamma \gamma$ is indeterminate. Also, if γ equals 1 , then $1=0 / 0$ and if 1-1/2 $\gamma \gamma-1 \pi^{-\gamma / 2} \Gamma \gamma$ equals zero then $0=0 / 0$, i.e. 0 is itself indeterminate.

Whatever be the case I or II discussed above but even one common zero $\mathrm{s}=\alpha$ results $\left[\xi_{1} \alpha-1 / 2 \alpha \alpha-1 \pi^{-\alpha / 2} \Gamma \alpha / 2 \zeta_{1} \alpha\right]=0 / 0$ which shows 0 is not a free number, its use is conditional. Thus, from the above discussion it can be concluded that (i) the definition (4) of the function ξ is not a proper definition for calculating nontrivial zeros of the function $\zeta \mathrm{s}$ and (ii) to solve an equation like $\mathrm{f} \cdot g \mathrm{x}=0, \mathrm{f} \mathrm{x}$ or $g \mathrm{x} \in \mathbb{C}$, the definition of zero requires investigation because the conclusion from the equation $X+i Y=0, X, Y \in \mathbb{C}$ implies $\mathrm{X}=0$ and $\mathrm{Y}=0$ is not always true. The consideration $\zeta \mathrm{s}=\mathrm{X}+\mathrm{i} \mathrm{Y}=0$ implies $\mathrm{X}=0$ and $\mathrm{Y}=0$ for the function $\zeta \mathrm{s}$ is the foremost reason; the Riemann hypothesis could not have been resolved yet, also the claimed nontrivial zeros 14.134725142 , 21.022039639, 25.010857580, and so on are not nontrivial zeros of the function ζ s that we will show elsewhere.

Now, using the definition, $\xi \mathrm{t}=\mathrm{s} / 2 \mathrm{~s}-1 \quad \pi^{-\mathrm{s} / 2} \zeta \mathrm{~s}$ we establish a relation between nontrivial zeros of function $\xi \mathrm{t}$ and $\zeta \mathrm{s}, \mathrm{s}=\underline{1 / 2}+\mathrm{it}$.

Riemann states: "It is clear that $\xi \mathrm{t}$ can vanish only if the imaginary part of t lies between $i / 2$ and - $\mathrm{i} / 2$." That suggests t is a complex variable. Suppose $\mathrm{t}=\mu+\mathrm{i} \lambda$ (say) and $\zeta \mathrm{s}, \mathrm{s}=\underline{1 / 2}+\mathrm{it}$. Therefore, from the definition (3),
$\xi \mu+\mathrm{i} \lambda=1 / 2 \underline{1 / 2}-\lambda+\mu \mathrm{i} \underline{1 / 2}-\lambda+\mu \mathrm{i}-1 \pi^{-\underline{112}-\lambda+\mu \mathrm{i} / 2} \Gamma[1 / 2 \underline{1 / 2}-\lambda+\mu \mathrm{i}] \zeta \underline{1 / 2}-\lambda+\mu \mathrm{i}$
Substitute, 0 for μ and $1 / 2$ for $\lambda($ or $t=i / 2)$
$\xi \mathrm{i} / 2=1 / 2 \quad 0 \quad-1+0 \mathrm{i} \pi^{0} \Gamma 0 \zeta 0=0$

Substitute, 0 for μ and $-1 / 2$ for $\lambda($ or $t=-\mathrm{i} / 2)$
$\xi-\mathrm{i} / 2=1 / 2 \quad 1 \quad 0 \pi^{-1 / 2} \Gamma\left[\begin{array}{ll}1 / 2 & 1\end{array}\right] \zeta 1=0$

That shows $t=-i / 2$ and $t=i / 2$ are nontrivial zeros of the function ξt but corresponding to $\xi-\mathrm{i} / 2$ and $\xi \mathrm{i} / 2$ the values $\zeta 0$ and are $\zeta 1$ undefined. To avoid this ambiguity Riemann states: " $\xi \mathrm{t}$ can vanish only if the imaginary part of t lies between $\mathrm{i} / 2$ and $-\mathrm{i} / 2$ ". The results (9) and (10) show if nontrivial zeros of function $\xi \mathrm{t}$ lie between $\mathrm{t}=-\mathrm{i} / 2$ to $\mathrm{t}=\mathrm{i} / 2$, then corresponding zeros of the function $\zeta \mathrm{s}$ lie between $\mathrm{s}=1$ to $\mathrm{s}=0$.Thus, the range of nontrivial zeros of the function $\zeta \mathrm{s}$ is $\mathrm{s} \in 0,1$ which is the critical strip for nontrivial zeros of function $\zeta \mathrm{s}$. The critical strip for nontrivial zeros of $\zeta \mathrm{s}$ can also be determined as:

Suppose $t=\alpha \pm i \beta$ are zeros of the function $\xi \mathrm{t}$, then according to Riemann's statement,

$$
\begin{aligned}
-\mathrm{i} / 2 & \leq \mathrm{t} \leq \mathrm{i} / 2 \\
& \Rightarrow \mathrm{i}^{2} 1 / 2 \leq-\mathrm{it} \leq-\mathrm{i}^{2} 1 / 2 \\
& \Rightarrow-1 / 2 \leq-\mathrm{i} \alpha \pm \mathrm{i} \beta \leq 1 / 2 \\
& \Rightarrow-1 / 2 \leq-\mathrm{i} \alpha \mp \beta \leq 1 / 2 \\
& \Rightarrow 1 / 2 \geq \mathrm{i} \alpha \pm \beta \geq-1 / 2 \\
& \Rightarrow 1 \geq 1 / 2 \pm \beta+\mathrm{i} \alpha \geq 0 \\
& \Rightarrow 0 \leq 1 / 2 \pm \beta+\mathrm{i} \alpha \leq 1
\end{aligned}
$$

But $1 / 2 \pm \beta+\mathrm{i} \alpha$ is variable of the function $\zeta \mathrm{s}$ corresponding to $\mathrm{t}=\alpha \pm \mathrm{i} \beta$. Therefore, if zeros of function $\xi \mathrm{t}$ lie between $\mathrm{t}=-\mathrm{i} / 2$ to $\mathrm{t}=\mathrm{i} / 2$, then zeros of the function $\zeta \mathrm{s}$ lie between $\mathrm{s}=0$ to $\mathrm{s}=1$.

Thus, nontrivial zeros of the function $\zeta \mathrm{s}$ are of the form $\underline{1 / 2} \mp \beta+\mathrm{i} \alpha$ that lie in the region $0 \leq \underline{1 / 2} \mp \beta \leq 1$ that verbalize the Riemann hypothesis. Further, if β equals zero, i.e. all zeros of function $\xi \mathrm{t}=\alpha \pm \mathrm{i} \beta$ are real then zeros of $\zeta \mathrm{s}=\underline{1 / 2}+\mathrm{it}$ are of the form $\underline{1 / 2}+\mathrm{i} \alpha$ that lie in the region $0 \leq 1 / 2 \leq 1$ on the line $\mathrm{a}=1 / 2$. Clearly, the functions $\xi \mathrm{t}=\alpha \pm \mathrm{i} \beta$ and $\zeta \mathrm{s}=\underline{1 / 2}+$ it have same number of zeros and there is one-to-one correspondence between real zeros of the function ξ and nontrivial complex zeros of the function $\zeta \mathrm{s}$.

Nontrivial zeros of functions $\xi \mathrm{t}$ and $\zeta \mathrm{s}$ when (i) t is a complex number, and (ii), when t is real number are in Fig, 1(a) and Fig. 1(b) respectively. Here, for to show the relative locations of zeros of the function $\zeta \mathrm{s}$, zeros of the function $\xi \mathrm{t}$ are arbitrary.

Fig. 1(a): Zeros of functions $\xi(\mathrm{t})$ and $\zeta(\mathrm{s})$ when t is a complex variable

Fig. 1(b): Zeros of functions $\check{\xi}(\mathrm{t})$ and $\zeta(\mathrm{s})$ when t is a real variable

Thus, if $t=\alpha \pm i \beta$ is zero of the function $\xi \mathrm{t}$, then corresponding zero of the function $\zeta \mathrm{s}$ is s $=\left(\frac{1}{2} \mp \beta\right) \pm i \alpha$. That show zeros of functions ξ and ζ cannot have same form and same variable and in the context of the Riemann hypothesis the form of definition of function ξ $\xi \mathrm{s}=\mathrm{s} / 2 \mathrm{~s}-1 \pi^{-\mathrm{s} / 2} \zeta \mathrm{~s}, \mathrm{~s}=\mu+\mathrm{i} \lambda$ is ambiguous.

Acknowledgement

The author is grateful to M. Srinivasan Ramanujan (Mathematician 1887-1920), Albert Einstein (Physicist 1879-1955) whose early life struggle and odds skilled him how to remain academically steady in odd livelihood conditions.

References

[1] Riemann, B. (1859), Über die Anzbahl der Primzahlen unter einer gegebenen Grösse Monatsberichte der Berliner Akademie, November 1859, pp. 671-680. English translation "on the number of Primes Less Than a Given Magnitude," in the Appendix of [3], pp. 299-305.
[2] Bombieri E (2000). The Riemann Hypothesis- official problem description, Clay Mathematics Institute.
[3] Titchmarsh, E.C. (1974). The Theory of the Riemann Zeta-Function. OUP.
[4] Edwards, Harold M. (2001), Riemann's Zeta Function, Dover ed. (2001).
[5] Apostol T.M. Introduction to Analytical Number Theory, Springer, $5^{\text {th }}$ Printing 1998, Edition (1976).
[6] H. Davenport. Multiplicative Number Theory, Volume 74, Springer-Verlag, Second Edition (1980).

Declaration

The Author does not have any compelling interest writing this research article. The Author communicates this research article through this pre-print repository to share the knowledge to the interested audience.

Additional Information:

Corresponding to non-trivial zero $\alpha+\mathrm{i} \beta$ of the function ξ, non-trivial zero of the function ζ is $\left(\frac{1}{2}-\beta\right)+\mathrm{i} \alpha$.

Fig. 1(a): Zeros of functions $\xi(\mathrm{t})$ and $\zeta(\mathrm{s})$ when t is a complex variable

Fig. 1(b): Zeros of functions $\xi(\mathrm{t})$ and $\zeta(\mathrm{s})$ when t is a real variable

