For calculating Nontrivial Zeros of Riemann Zeta function- ζ , the definition

$$\xi(s) = \frac{s}{2}(s-1)\pi^{-s/2}\Gamma\bigg(\frac{s}{2}\bigg)\zeta(s) \ \ \text{of Riemann Xi function-} \xi \ \ \text{is not appropriate.}$$

Author

Ashok Kumar (Kashyap)

ORCID: https://orcid.org/0000-0002-6345-7249

Former, Assistant Professor of Physics

Department of Applied Sciences and Humanities

DEC-Faridabad, INDIA-121004

E-mail- ak.research.ph@gmail.com

Contact: +91-7557498649

MSC-2020 Codes: 11M06, 11M26

ABSTRACT

We show that for calculating nontrivial zeros of the Riemann Zeta function ζ , the form of the definition $\xi(s) = (s/2)(s-1)\pi^{s/2}\Gamma(s/2)\zeta(s)$, $s \in \mathbb{C}$ of the function ξ and the followed deduction that nontrivial zeros of functions $\zeta(s)$ and $\xi(s)$ are identical is not appropriate. The definition of function ξ in which both functions ξ and ζ are functions of same complex variable s and the assumption of identicalness of nontrivial zeros of ξ and ζ is ambiguous, so may be the deep reason, the Riemann hypothesis could not be resolved yet. However, the definition $\xi(t) = (s/2)(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s)$, $t = \alpha + i\beta$ and s = 1/2 + it introduced by s. Riemann (1859) leads the results: (i) when s = 0 and s = 0, corresponding nontrivial zero of function s = 0 are of the form $s = 1/2 + i\alpha$ and (ii) when s = 0, nontrivial zeros of the function s = 0 are of the form $s = 1/2 + i\alpha$ and (ii) when s = 0 and s = 0 and

Keywords: Zeta function, Riemann's Xi Function, nontrivial zeros, critical strip, critical line.

MSC-2020 Codes: 11M06, 11M26

1 INTRODUCTION

In 1859, B. Riemann [1] in his research paper introduced a function ζ s $s = \sigma + it$, σ , $t \in \mathbb{R}$ known as the Riemann's zeta function ζ s with the definition,

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{1}$$

Riemann further created another function known as the Xi-function ξt , $t = \alpha + i\beta$ defined as:

$$\xi t = s/2 \ s-1 \ \pi^{-s/2} \zeta \ s \ , s = 1/2 + it$$
 ... (2)

The definition (2) is the **original definition** of the function ξ . But in Mathematics literature present day authors e.g. [2], [3], [4] and other use an alternative following definition,

$$\xi s = s/2 \ s-1 \ \pi^{-s/2} \zeta s$$
 ... (3)

With the definition (3) authors claim that nontrivial zeros of the functions ξ s and ζ s are identical.

In this research article, we show that the use of the definition (3) of the function- ξ cannot be justified as it creates some mathematical ambiguities. However, the original definition (2) of the function ξ and corroborated with Riemann's statement: "it is clear that ξ to can vanish only if the imaginary part of this between 1/2 and 1/2" which indicates that this a complex variable, produces the results: (i) Corresponding to each complex zero $t=\alpha+i\beta$ of the function ξ to there exists a complex zero $t=1/2-\beta+i\alpha$ of the function ξ to the function

2 RESULTS

Recall the definition (3) connecting functions ξ and ζ both of same complex variable s,

$$\xi s = s/2 \quad s-1 \quad \pi^{-s/2} \quad \zeta s , \quad s = \mu + i\lambda$$
 ... (4)

Clearly, ξ 0 = 0 and ξ 1 = 0, i.e., s = 0, s = 1 are real zeros of ξ s. Suppose zeros functions ξ s and ζ s are identical then s = 0, s = 1 must also be zeros of ζ s but according to definition (1) of ζ s , ζ 0 = ∞ and ζ 1 = ∞ , therefore s = 0, s = 1 are not zeros of ζ s , so not of the function ξ s . That is ambiguity in definition (4). Actually, when s is a real number, all zeros of ζ s necessarily are zeros of the function ξ s but when s is a complex number zeros of functions ξ s and ζ s may be different that is shown here: Suppose ξ = G+iH, s/2 s-1 π -s/2 = C+iD and ζ s = A+iB, then from result (4), G+iH = CA-DB +i AD+BC ... (5)

Zeros of ξ s can be obtained choosing G=0 and H=0 which means CA-DB=0 and AD+BC=0. This system of equations produces A=0, B=0, A=iB, C=iD, C=0, and D=0. Moreover, the function ζ s can be written as ζ s $=\sqrt{A^2+B^2}$ $\cos\varphi+i\sin\varphi$ with $\varphi=\tan^{-1}\left(\frac{B}{A}\right)$. Now, if ξ s =0, s/2 s-1 $\pi^{-s/2}\neq 0$, then $\sqrt{A^2+B^2}$ $\cos\varphi+i\sin\varphi=0$

which implies the equation ζ s = 0 is unsolvable.

Further, suppose that $s=a_i, a_i\in\mathbb{R}$ or \mathbb{C} , i=1,2,3,...,n are zeros of the function ξ s and $s=b_j, b_j\in\mathbb{R}$ or \mathbb{C} , j=1,2,3,...,m are zeros of the function ζ s , i.e., ξ s = $\prod_{i=1}^n$ s- a_i and ζ s = $\prod_{i=1}^m$ s- b_j . Therefore, the result (4) can be expressed as,

$$\prod_{i=1}^{n} s - a_{i} = s/2 \quad s - 1 \quad \pi^{-s/2} \Gamma \quad s/2 \quad \prod_{i=1}^{m} s - b_{j} \qquad \dots (6)$$

There are two cases:

Case I: At least one zero s = a (say) is common to both functions ξ and ζ then,

$$\xi s = s - a \prod_{i=1}^{n-1} s - a_i$$
 and $\zeta s = s - a \prod_{i=1}^{m-1} s - b_i$, therefore,

$$s - a \prod_{i=1}^{n-1} s - a_i = s/2 \quad s - 1 \pi^{-s/2} \Gamma \ s/2 \quad s - a \prod_{i=1}^{m-1} s - b_i \ .$$

Further, write $\prod_{i=1}^{n-1}\ s$ - $a_i^{}=\xi_i^{}\ s^-$ and $\prod_{i=1}^{m-1}\ s$ - $b_i^{}=\zeta_i^{}\ s^-$, then

$$\begin{aligned}
s - a & \left[\xi_{1} \ s - s/2 \ s - 1 \ \pi^{-s/2} \Gamma \ s/2 \ \zeta_{1} \ s \ \right] = 0 \\
& \left[\xi_{1} \ s - s/2 \ s - 1 \ \pi^{-s/2} \Gamma \ s/2 \ \zeta_{1} \ s \ \right]_{s=a} = 0 / \ s - a \\
& \left[\xi_{1} \ a - a/2 \ a - 1 \ \pi^{-\alpha/2} \Gamma \ a/2 \ \zeta_{1} \ a \ \right] = 0 / 0
\end{aligned} \right] ... (7)$$

Thus there exists at least one case that when s = a the quantity

 $\left[\xi_1 \ a - a/2 \ a-1 \ \pi^{-\alpha/2} \Gamma \ a/2 \ \zeta_1 \ a \ \right] \ is \ not \ non-zero \ but \ indeterminate. \ However, \ in \ general$ the quantity $\left[\xi_1 \ a - a/2 \ a-1 \ \pi^{-\alpha/2} \Gamma \ a/2 \ \zeta_1 \ a \ \right] \ is \ considered \ non-zero.$

Case II: Functions ξ s and ζ s have same number of identical zeros. Let γ be one of such zeros, then

$$\prod_{\gamma} s - \gamma \left[1 - 1/2 \ s \ s - 1 \ \pi^{-s/2} \Gamma \ s/2 \right] = 0$$

1-
$$1/2 \gamma \gamma$$
-1 $\pi^{-\gamma/2}\Gamma \gamma = 0/0$... (8)

If 1- 1/2 γ γ -1 $\pi^{-\gamma/2}\Gamma$ γ is nonzero then from result (8), either 0=0 or 1- 1/2 γ γ -1 $\pi^{-\gamma/2}\Gamma$ γ is indeterminate. Also, if γ equals 1, then 1=0/0 and if 1- 1/2 γ γ -1 $\pi^{-\gamma/2}\Gamma$ γ equals zero then 0=0/0, i.e. 0 is itself indeterminate.

Whatever be the case I or II discussed above but even one common zero $s=\alpha$ results $\left[\xi_{1} \ \alpha-1/2 \ \alpha \ \alpha-1 \ \pi^{-\alpha/2}\Gamma \ \alpha/2 \ \zeta_{1} \ \alpha \ \right]=0/0 \ \text{which shows 0 is not a free number, its use is conditional. Thus, from the above discussion it can be concluded that (i) the definition (4) of the function <math>\xi$ is not a proper definition for calculating nontrivial zeros of the function ζ s and (ii) to solve an equation like $f(x) \cdot g(x) = 0$, $f(x) \cdot g(x) = 0$, the definition of zero requires investigation because the conclusion from the equation $f(x) \cdot g(x) = 0$ and $f(x) \cdot g(x) \cdot g(x) = 0$ is not always true. The consideration $f(x) \cdot g(x) \cdot g(x) = 0$ implies $f(x) \cdot g(x) \cdot g(x) \cdot g(x) = 0$ in the function $f(x) \cdot g(x) \cdot g(x) \cdot g(x) = 0$ in the Riemann hypothesis could not have been resolved yet, also the claimed nontrivial zeros $f(x) \cdot g(x) \cdot g(x) \cdot g(x) = 0$ and $f(x) \cdot g(x) \cdot g(x) \cdot g(x) \cdot g(x) = 0$ for the function $f(x) \cdot g(x) \cdot g(x) \cdot g(x) = 0$ and $f(x) \cdot g(x) \cdot g(x) \cdot g(x) = 0$ is the foremost reason; the Riemann hypothesis could not have been resolved yet, also the claimed nontrivial zeros of the function $f(x) \cdot g(x) \cdot g(x) = 0$ and $f(x) \cdot g(x) \cdot g(x) \cdot g(x) = 0$ for the function $f(x) \cdot g(x) \cdot g(x) = 0$ for the function $f(x) \cdot g(x) \cdot g(x) = 0$ in the proper definition of zero requires investigation because the conclusion from the equation $f(x) \cdot g(x) = 0$ in the proper definition of zero requires investigation because the conclusion from the equation $f(x) \cdot g(x) = 0$ for the function $f(x) \cdot g(x) = 0$ for th

Now, using the definition, ξ t = s/2 s-1 $\pi^{-s/2}$ ζ s we establish a relation between nontrivial zeros of function ξ t and ζ s ,s = 1/2+it.

Riemann states: "It is clear that ξ t can vanish only if the imaginary part of t lies between i/2 and -i/2." That suggests t is a complex variable. Suppose $t = \mu + i\lambda$ (say) and ζ s s = 1/2 + it. Therefore, from the definition (3),

 $\xi \ \mu + i\lambda = 1/2 \ \underline{1/2} - \lambda + \mu i \ \underline{1/2} - \lambda + \mu i - 1 \ \pi^{-\underline{1/2} - \lambda + \mu i} / 2 \Gamma \Big[\ 1/2 \ \underline{1/2} - \lambda + \mu i \ \Big] \zeta \ \underline{1/2} - \lambda + \mu i \Big] \zeta \ \underline{1/2} - \lambda + \mu i$ Substitute, 0 for μ and 1/2 for λ (or t = i/2)

$$\xi i/2 = 1/2 \ 0 \ -1 + 0i \ \pi^0 \Gamma \ 0 \ \zeta \ 0 = 0$$
 ... (9)

Substitute, 0 for μ and -1/2 for λ (or t = -i/2)

$$\xi - i/2 = 1/2 + 1 + 0 \pi^{-1/2} \Gamma[1/2 + 1] \zeta + 1 = 0$$
 ... (10)

That shows t=-i/2 and t=i/2 are nontrivial zeros of the function ξ t but corresponding to ξ -i/2 and ξ i/2 the values ζ 0 and are ζ 1 undefined. To avoid this ambiguity Riemann states: " ξ t can vanish only if the imaginary part of t lies between i/2 and -i/2". The results (9) and (10) show if nontrivial zeros of function ξ t lie between t=-i/2 to t=i/2, then corresponding zeros of the function ζ s lie between s=1 to s=0. Thus, the range of nontrivial zeros of the function ζ s is $s\in 0,1$ which is the critical strip for nontrivial zeros of function ζ s. The critical strip for nontrivial zeros of ζ s can also be determined as:

Suppose $t = \alpha \pm i\beta$ are zeros of the function ξ t, then according to Riemann's statement,

$$-i/2 \le t \le i/2$$

$$\Rightarrow i^2 1/2 \le -it \le -i^2 1/2$$

$$\Rightarrow -1/2 \le -i \alpha \pm i\beta \le 1/2$$

$$\Rightarrow -1/2 \le -i\alpha \mp \beta \le 1/2$$

$$\Rightarrow 1/2 \ge i\alpha \pm \beta \ge -1/2$$

$$\Rightarrow 1 \ge 1/2 \pm \beta + i\alpha \ge 0$$

$$\Rightarrow 0 \le 1/2 \pm \beta + i\alpha \le 1$$

But $1/2\pm\beta+i\alpha$ is variable of the function ζ s corresponding to $t=\alpha\pm i\beta$. Therefore, if zeros of function ξ t lie between t=-i/2 to t=i/2, then zeros of the function ζ s lie between s=0 to s=1.

Thus, nontrivial zeros of the function ζ s are of the form $1/2 \mp \beta + i\alpha$ that lie in the region $0 \le 1/2 \mp \beta \le 1$ that verbalize the Riemann hypothesis. Further, if β equals zero, i.e. all zeros of function ξ t = $\alpha \pm i\beta$ are real then zeros of ζ s = 1/2 + it are of the form $1/2 + i\alpha$ that lie in the region $0 \le 1/2 \le 1$ on the line a = 1/2. Clearly, the functions ξ t = $\alpha \pm i\beta$ and ζ s = 1/2 + it have same number of zeros and there is one-to-one correspondence between real zeros of the function ξ and nontrivial complex zeros of the function ζ s.

Nontrivial zeros of functions ξ t and ζ s when (i) t is a complex number, and (ii), when t is real number are in Fig, 1(a) and Fig. 1(b) respectively. Here, for to show the relative locations of zeros of the function ζ s, zeros of the function ξ t are arbitrary.

Thus, if $t=\alpha\pm i\beta$ is zero of the function ξ t, then corresponding zero of the function ζ s is $s=\left(\frac{1}{2}\mp\beta\right)\pm i\alpha$. That show zeros of functions ξ and ζ cannot have same form and same variable and in the context of the Riemann hypothesis the form of definition of function ξ ξ s=s/2 s-1 $\pi^{-s/2}$ ζ s, $s=\mu+i\lambda$ is ambiguous.

Acknowledgement

The author is grateful to M. Srinivasan Ramanujan (Mathematician 1887-1920), Albert Einstein (Physicist 1879-1955) whose early life struggle and odds skilled him how to remain academically steady in odd livelihood conditions.

References

- [1] Riemann, B. (1859), Über die Anzbahl der Primzahlen unter einer gegebenen Grösse Monatsberichte der Berliner Akademie, November 1859, pp. 671-680. English translation "on the number of Primes Less Than a Given Magnitude," in the Appendix of [3], pp. 299-305.
- [2] Bombieri E (2000). The Riemann Hypothesis- official problem description, Clay Mathematics Institute.
- [3] Titchmarsh, E.C. (1974). The Theory of the Riemann Zeta-Function. OUP.
- [4] Edwards, Harold M. (2001), Riemann's Zeta Function, Dover ed. (2001).
- [5] Apostol T.M. Introduction to Analytical Number Theory, Springer, 5th Printing 1998, Edition (1976).
- [6] H. Davenport. Multiplicative Number Theory, Volume 74, Springer-Verlag, Second Edition (1980).

Declaration

The Author does not have any compelling interest writing this research article. The Author communicates this research article through this pre-print repository to share the knowledge to the interested audience.

Additional Information:

Corresponding to non-trivial zero $\alpha+i\beta$ of the function ξ , non-trivial zero of the function ζ is $\left(\frac{1}{2}-\beta\right)+i\alpha$.

Fig. 1(a): Zeros of functions $\xi(t)$ and $\zeta(s)$ when t is a complex variable

Fig. 1(b): Zeros of functions $\xi(t)$ and $\zeta(s)$ when t is a real variable