
1 
 

Quantum geometry of a Planck-scale black hole 
 

Christian Lembke 

 

Lüneburg, Germany 

ORCID: 0009-0007-4658-9585 

Published online: May 22, 2023 

 

Abstract 

The size of the Planck area can be determined indirectly via the measured value of the gravitational 

constant. Its size is thus subject to the measurement accuracy of the gravitational constant. In this work, 

the Planck area is derived from the quantum geometry of theoretical black holes in the Planck scale 

range and will be calculated exactly as a physical constant.  

The exact value of the Planck area makes it possible to calculate the gravitational constant with the two 

known natural constants, reduced Planck constant and the speed of light.  

From the quantum geometric description of black holes, the radius to the surface of a black hole can be 

calculated. 
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1. Introduction 

The general theory of relativity describes gravity as a property of curved four-dimensional spacetime. 

Spacetime is described mathematically by Einstein's field equations. Many scientific experiments and 

cosmological investigations have proven the correctness of the general theory of relativity [1]. In some 

areas of cosmology, such as in the case of massive bodies, the black holes, the field equations behind 

the event horizon result in a singularity and thus have no statement about spacetime. Another theory is 

needed to describe these areas. 

To calculate gravity, knowledge of the magnitude of the gravitational constant is required. For over 200 

years [2], about 300 experiments [3] have been carried out to measure the gravitational constant. In the 

process, the methods for measuring the gravitational constant have been further developed and made 

more precise. Nevertheless, the accuracy of the measurements is low compared to the values of most 

other natural constants. The current value of the gravitational constant was determined by the Committee 

on Data for Science and Technology CODATA, 2018 [4]. 

(1) 

 

The Planck units, which depend on the gravitational constant, could also only be determined with the 

accuracy of the measured gravitational constant. Alternative approaches to determine the Planck length 

by measurement were first described by Espen Gaarder Haug [5], [6].  

 

𝐺𝐶𝑂𝐷𝐴𝑇𝐴 = 6,67430(15) ∙ 10−11
𝑚³

𝑘𝑔 𝑠²
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Max Planck (1858-1947) introduced the Planck units named after him [7]. The Planck units show the 

physical laws on minimal space and time quantities (Planck scale) in dependence of the constants, 

reduced Planck constant ħ, gravitational constant 𝐺 and speed of light 𝑐. The essential quantities for 

spacetime are according to CODATA [4]: 

 

 𝑙𝑃 ≈ 1.616 255(18) - 10 −35 m, Planck length                    (2)  

 

   𝑡𝑃 ≈ 5.391 247(60) - 10−44 s, Planck time              (3) 

   

  𝑚𝑃 ≈ 2.176 434(24) - 10−8 kg, Planck mass          (4) 

 

From the square of the Planck length the Planck area is calculated 𝐴𝑃 with 

(5) 

 

In the following, we attempt to derive the Planck units from the quantum geometry of a theoretically 

smallest and simplest black hole. On the one hand, the calculation of this black hole is carried out on a 

relativistic basis with the help of the Schwarzschild metric and on the other hand thermodynamically 

via the state variable of entropy. With the exact knowledge of the Planck units, it is possible to calculate 

the gravitational constant according to equation (5).  

2. Schwarzschild radius in the Planck scale range 

The radius, named after Karl Schwarzschild (1873-1916), is a solution of the Einstein field equation for 

a spherical, symmetrical, and stationary black hole and describes the distance from the centre of a black 

hole, from which no information can penetrate to the outside. This area is also called event horizon 

because events beyond this boundary are no longer visible to an outside observer and no information is 

transmitted. The Schwarzschild radius 𝑟𝑠 of the mass 𝑀 is calculated according to [1] 

            (6) 

The Schwarzschild radius 𝑟𝑠(𝑚𝑃) of a black hole with the theoretically smallest mass, the Planck mass 

𝑚𝑃 is given by 

(7) 

By squaring equation (4) and substituting into the squared Eq. (7) it follows 

(8) 

and after substituting eq. (5) into Eq. (8) follows  

(9) 

The square root of Eq. (9) gives the Schwarzschild radius 

                (10) 

𝑙𝑃 = √
ħ 𝐺

 𝑐3 
  

𝑡𝑃 = √
ħ 𝐺

 𝑐5 
  

𝑚𝑃 = √
ħ 𝑐

 𝐺 
  

𝑟𝑠 =  
2 𝐺 𝑀

 𝑐2 
 

𝑟𝑠(𝑚𝑃) =  
2 𝐺 𝑚𝑃

 𝑐2 
 

𝑟𝑠(𝑚𝑃)
2 =  

4 ħ 𝐺

 𝑐3 
 

𝑟𝑠(𝑚𝑃)
2 = 4 𝐴𝑃 = 4 𝑙𝑃

2 

𝑟𝑠(𝑚𝑃) = 2 𝑙𝑃 

𝐴𝑃 = 𝑙𝑃
2 =

ħ 𝐺

𝑐3
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3. Entropy of black holes in the Planck scale range  

Black holes are described with the solutions of the Einstein field equations. The Schwarzschild metric 

is one of these descriptions. However, a black hole can also be described thermodynamically via the 

state variable of entropy [8]. There are various descriptive interpretations for the entropy of a system. 

Entropy can be understood as a measure of the disorder of a system [9]. In statistical physics, entropy is 

a measure of the different microstates of a system [10]. A system with a large number of microstates is 

thus more disorderly and has a higher entropy than an ordered system with few microstates. 

The calculation of the microstates 𝛺 is carried out according to the calculation rules of combinatorics 

for the permutations of 𝑛 elements [11]. 

(11) 

The thermodynamic consideration of a theoretically smallest black hole leads to a system with minimal 

entropy. This means that the number of equally probable microstates 𝛺 is minimal. The smallest number 

of different states is two. For two different states the number of equally probable microstates is 

calculated with 

    (12) 

An example of a three-dimensional geometric body that has only two different microstates is a 

tetrahedron. Of all the space-enclosing polygons, the tetrahedron is the simplest body [11]. It consists 

of four equilateral triangles and can be depicted in two different two-dimensional developments (Figure 

1). This development is also called a net. 

The number 𝑛 of nets into which a body can be 

decomposed is equivalent to the number of different 

microstates. For the tetrahedron with two nets is 𝛺 = 2!  

Ludwig Bolzmann (1844-1906) described the 

relationship between entropy and the number of possible 

microstates as early as 1877 [12] and Max Planck elaborated on this approach a few years later [9].  

    (13) 

For a black hole with two possible microstates, the following applies 

       (14) 

A black hole according to the Schwarzschild metric is defined only by its mass. With an increase in 

mass, the surface of the event horizon increases proportionally [1]. Jacob D. Bekenstein (1947-2015) 

published his theory "Black Holes and Entropy" [8] in 1973, in which he established the connection 

between the entropy of a black hole and its surface. Based on the work of Stephen Hawking (1942-2018) 

on black hole entropy [13], the theory is referred to as the Bekenstein-Hawking entropy.  

According to the Bekenstein-Hawking entropy, the entropy 𝑆𝑏ℎ of a black hole depends only on the 

surface 𝐴𝑏ℎ of a black hole [10].  

 

   (15) 

All other quantities, such as the Boltzmann constant 𝑘𝐵, the reduced Planck constant ħ, the gravitational 

constant 𝐺 and the speed of light 𝑐 are natural constants. 

  

𝑆𝑏ℎ =  
𝑘𝐵 𝑐3𝐴𝑏ℎ

4 ħ 𝐺
 

𝑆 = 𝑙𝑛 𝛺 ∙ 𝑘𝐵 

𝛺 = 2! 

𝑆𝑏ℎ(2!) = 𝑙𝑛 2!  ∙ 𝑘𝐵 

Figure 1 

𝛺 = 𝑛! 
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For the entropy of a theoretically smallest black hole, thus applies 

 

(16) 

By equating Eq. (14) and Eq. (16), it follows that, 

(17) 

and for a spherical surface 

(18) 

After rearranging Eq. (18), we get for the square radius  𝑟𝑏ℎ(2!)
2 of a black hole  

         (19) 

and after inserting Eq. (5) it follows 

          (20) 

 

4. The Planck area and gravitational constant in quantum gravity 

If one compares the square of the area 𝑟𝑠(𝑚𝑃)
2 of a theoretically smallest black hole that was 

relativistically calculated on the basis of the Schwarzschild metric with mass 𝑚𝑃, with the square of the 

area of a black hole  𝑟𝑏ℎ(2!)
2 of a black hole that thermodynamically has the entropy 𝑆𝑏ℎ(2!) = 𝑙𝑛 2! ∙ 𝑘𝐵 

i.e. has the smallest number of different microstates, it becomes clear that the surface areas are not equal. 

The Bekenstein-Hawking entropy assumes that the entropy of a black hole calculated according to 

equation (15) is equal to the surface of the event horizon [10]. However, in the microscopic description 

of a black hole, surface differences become apparent which are considered below. 

The difference ∆𝐴 of the areas 𝑟𝑠(𝑚𝑃)
2 and  𝑟𝑏ℎ(2!)

2 results from  

           (21) 

and with Eq. (9) and Eq. (20) follows 

         (22) 

with the numerical value for 𝑙𝑃 according to Eq. (2) results in ∆𝐴 according to CODATA   

∆𝐴 = 9,872075 … ∙ 10−70𝑚2 

The above-mentioned sequence of numbers is very similar to the result from 𝜋2. Therefore, the heuristic 

assumption is made that 

(23) 

corresponds. With this presumption the connection follows 

            (24) 

  

𝑙𝑛 2!  ∙ 𝑘𝐵 =  
𝑘𝐵 𝑐3𝐴𝑏ℎ(2!)

4 ħ 𝐺
 

𝑙𝑛 2 =  
𝑐3 𝜋 𝑟𝑏ℎ(2!)

2

 ħ 𝐺
 

∆𝐴 = 𝑟𝑠(𝑚𝑃)
2 −  𝑟𝑏ℎ(2!)

2 

∆𝐴 = 4 𝑙𝑃
2 − 𝑙𝑃

2 ln 2

𝜋 
 

𝜋2 ∙ 10−70𝑚2 = 4 𝑙𝑃
2 − 𝑙𝑃

2 ln 2

𝜋 
 

 𝑟𝑏ℎ(2!)
2  =

ħ 𝐺 ln 2

𝑐3 𝜋
 

 𝑟𝑏ℎ(2!)
2 = 𝑙𝑃

2 ln 2

𝜋
 

𝑆𝑏ℎ(2!) =  
𝑘𝐵 𝑐3𝐴𝑏ℎ(2!)

4 ħ 𝐺
 

∆𝐴 = 𝜋2 ∙ 10−70𝑚2 
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and after transformation one obtains 

            (25) 

 

Knowing the Planck area according to equation (25), the Planck length can be calculated from the root 

of the area. The Planck length is calculated with 

            (26) 

 

            (27) 

 

The gravitational constant can be calculated from the Planck area and the known natural constants, 

reduced Planck constant ħ and the speed of light c, without a measurement method, only on a numerical 

basis. After transforming equation (5), one obtains for the gravitational constant 

(28) 

After inserting Eq. (25) it follows 

(29) 

 

(30) 

 

The calculated magnitude of the gravitational constant is about 320 ppm lower than the official value 

according to CODATA, 2018 [4]. Current measurements by means of atomic interferometry yield a 

value of 𝐺 = 6,67191(77)(65) ∙ 10−11 𝑚3 𝑘𝑔−1 𝑠−2 [3]. The difference between the measured value 

and the calculated gravitational constant is about 40 ppm. Future measurements of the gravitational 

constant should the calculated value and thus also the quantum geometry of black holes described above. 

5. The surface of a black hole 

By observing a simple and theoretically smallest black hole, geometric relationships between the surface 

of a black hole and its event horizon become clear. From the connection of equation (24) it follows, that 

the surface areas of  𝑟𝑏ℎ(2!)
2 and 𝜋2 ∙ 10−70 according to the Pythagorean theorem, are equal to the area 

of the Schwarzschild radius squared 𝑟𝑠(𝑚𝑃)
2. 

           (31) 

The angle between π ∙ 10−35 and 𝑟𝑠(𝑚𝑃) is 𝛼, therefore  

           (32) 

 

      (33) 

  

𝑙𝑃
2 = 𝐴𝑃 =

𝜋2 ∙ 10−70

4 −
ln 2

𝜋

 

𝐺 =
 𝑐3𝑙𝑃

2

ħ
  

𝐺 =
𝑐3 𝜋2 ∙ 10−70

ħ (4 −
𝑙𝑛 2

𝜋 )
  

𝐺 = 6,672167267 … ∙ 10−11
𝑚³

𝑘𝑔 𝑠²
 

𝑟𝑠(𝑚𝑃)
2 =  𝑟𝑏ℎ(2!)

2 + 𝜋2 ∙ 10−70 

𝑠𝑖𝑛 𝛼 =
𝑙𝑃√ln 2

𝜋

2 𝑙𝑃
 

𝑠𝑖𝑛 𝛼 =
 𝑟𝑏ℎ(2!)

𝑟𝑠(𝑚𝑃)
 

𝑙𝑃 =
𝜋 ∙ 10−35

√4 −
ln 2

𝜋

 

𝑙𝑃 = 1,615996771 … ∙ 10−35 m 
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          (34) 

 

From this it follows from Eq. (32) and Eq. (34) 

 

       (35) 

Assuming that the angle 𝛼 is a constant quantity, Eq. (6) gives for the radius 𝑟𝑏ℎ to the two-dimensional 

surface of a black hole 

     (36) 

 

This geometric relationship is assumed for all black holes. 

6. Summary and Discussion 

In this work, the Planck area and Planck length were derived from the entropy of a theoretically smallest 

black hole. With knowledge of the Planck area, the gravitational constant can be calculated exactly. 

Thus, the accuracy of the gravitational constant is only dependent on the constants, reduced Planck 

constant ħ and the speed of light 𝑐. From the quantum geometric description of a theoretically smallest 

black hole, the radius to the two-dimensional surface of a black hole can be calculated as a further result. 

The possibility of deriving the gravitational constant from the geometry of black holes points to a 

quantum gravity that is discrete at Planck level. 

According to the Bekenstein-Hawking entropy, the space structure of black holes is two-dimensional 

and spherical. In the general theory of relativity, the space is three-dimensional and connected with time 

to a four-dimensional space-time. It seems that black holes can be understood as two-dimensional 

spheres whose surfaces increase by the input of mass and energy in discrete steps. Between the event 

horizon according to the Schwarzschild metric and the two-dimensional spherical surface of a black 

hole, transformation and symmetry enhancement from a three-dimensional to a two-dimensional space 

probably occurs. This transformation process points to a quantum structure of the space. 

The input of mass and energy into a black hole increases its surface area, and thus the entropy of the 

black hole. This entropy causes an entropic force which can be understood as a measure of gravity [14]. 
According to this description, a black hole is a gravitational sphere, or Gravisphere for short, with a 

defined radius that is hidden from outside observers behind its event horizon. 

  

𝑠𝑖𝑛 𝛼 = √
ln 2

4 𝜋
 

 𝑟𝑏ℎ(2!) = 𝑟𝑠(𝑚𝑃)  ∙ √
ln 2

4 𝜋
 

𝑟𝑏ℎ =  
2 𝐺 𝑀

 𝑐2 
√

ln 2

4 𝜋
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