PROOFS OF ABC CONJECTURE

DMITRI MARTILA INDEPENDENT RESEARCHER J. V. JANNSENI 6–7, PÄRNU 80032, ESTONIA

Abstract

Several crucial properties of ABC conjecture are presented and proven. Therefore, the ABC conjecture is proven.

MSC Class: 11D75

1

2

3

4

The abc conjecture says the following. For every positive real number ϵ , and triplet (a, b, c) of pairwise coprime positive integers, with a+b = ϵ , holds $k < K(\epsilon) < \infty$, with $k = c/r^{1+\epsilon}$, where $r = \operatorname{rad}(a b c)$. The ϵ conjecture is regarded as unproven [1].

9 1. TERNARY GOLDBACH CONJECTURE IMPLIES ABC CONJECTURE

The ternary Goldbach Conjecture was proven in Ref. [3]. Why? Even if the paper is not published in a journal, the consensus of experts says that the article is accurate. So, any number c (odd or even) can be presented as a sum of four primes a + q + p + r = c. Hereby, even primes are allowed.

15 Let me arrange the prime numbers $a \ge q \ge p \ge r$. Then $c \le 4a$, 16 and

(1)
$$k = \frac{c}{r^{1+\epsilon}} \le \frac{4a}{a^{1+\epsilon} \left(\operatorname{rad}((q+p+r)c) \right)^{1+\epsilon}} < \frac{4a}{(4a)^{1+\epsilon}} < 1.$$

17 Because $\operatorname{rad}((q+p+r)c) = \operatorname{rad}(q+p+r)\operatorname{rad}(c) > 4$. The $q+p+r \neq 1$, 18 because prime $r \geq 2$. So, for any value of c, there is a triplet (a, b, c =19 a+b) with k < 1. Hereby k = 0 as $c \to \infty$. Why? Because $a \to \infty$ 20 implies $c \to \infty$, and $\epsilon \neq 0$.

Notably, the *a* cannot be a prime factor of *c*. Why? Because the abc conjecture is formulated for co-primes. But does it mean that my idea is not applicable in some cases? In such cases would be c = a n, $c \le 4 a$, so, $n \le 4$. Therefore, n = 2, n = 3, or n = 4. But then I can

eestidima@gmail.com.

DMITRI MARTILA

1 write 1 + u = a n, where a, n = 2 or n = 3 are primes with

(2)
$$k = \frac{a n}{(a n)^{1+\epsilon} (\operatorname{rad}(u))^{1+\epsilon}} < 1.$$

2 Case n = 4 means

(3)
$$k = \frac{4a}{(2a)^{1+\epsilon} (\operatorname{rad}(u))^{1+\epsilon}} < \frac{4a}{(4a)^{1+\epsilon}} < 1.$$

So, there are no counter-examples to the conclusion: "for any c, there is a triplet with k < 1."

The problem with the above proof is that a and b are special numbers, 5 not a general integers. Namely, the a is a prime, and the b = q + p + pr < 3 a represents an arbitrary odd number (due to validity of ternary) 7 Goldbach Conjecture). In the following, I am dealing with this issue. If a + b = c implies finitness of $k < \infty$, then a + b + 0 = c, where 9 0 = x - x, implies finitness of k as well. This means, e.g., $a^* + b^* = c$, 10 where $a^* = a - x$, $b^* = b + x$, or $a + b^* = c^*$, where $b^* = b + b$, $c^* = c + b$. 11 Why? Because if abc conjecture is true, it cannot become untrue by 12 replacing $a + b \rightarrow a + b + 0$. The $b^* = b + b$ is even, and $a^* = a - x$ can 13

14 become any integer, not only a prime.

2. The signature of ABC conjecture

16 The abc conjecture implies that in the limit $c \to \infty$, one has $r = \infty$. 17 Otherwise, for every single $\epsilon > 0$ one has $K(\epsilon) = \infty$. For arbitrary 18 m > 0 one has

$$(4) c/r^{1+m} = UW,$$

19 where

15

(5)
$$U = c/r^{1+\epsilon}, \quad W = r^{\epsilon}/r^m,$$

and $\epsilon > 0$ is arbitrary. For $\epsilon > m$, in the limit $r \to \infty$ the abc conjecture 20 implies U = 0, as $W = \infty$; because the abc conjecture implies finiteness 21 of $c/r^{1+m} < \infty$ as well. One concludes that in the limit $r \to \infty$, the 22 abc conjecture implies $k = c/r^{1+\epsilon} = 0$. If, for some triplet, the $U \neq 0$ 23 happens in the limit $r \to \infty$, the abc conjecture is wrong because then 24 $c/r^{1+m} = \infty$. Therefore, the limit exists. Accordingly, in this limit 25 there is an infinite number of triplets (a, b, c) with k arbitrarily close to 26 zero. In other words, the abc conjecture implies that for an arbitrary 27 constant $\delta > 0$ there is an infinite number of triplets (a, b, c) satisfying 28 $c/r^{1+\epsilon} < \delta, \ c < \delta r^{1+\epsilon}.$ 29

2

1 2.1. Realization of the signature. Because a, b, c have no common 2 factors, one has r = rad(a b) rad(c).

Accordingly, $c < \delta (\operatorname{rad}(ab))^{1+\epsilon} (\operatorname{rad}(c))^{1+\epsilon}$. Here and in the follow-3 ing, δ is a fixed parameter. Let us study such numbers c which are 4 prime numbers, namely $c = 2, 3, 5, \ldots, \infty$. Then $c = \operatorname{rad}(c)$. There-5 fore, $1 < \delta(\operatorname{rad}(ab))^{1+\epsilon}(\operatorname{rad}(c))^{\epsilon}$. By increasing c, $\operatorname{rad}(c)$ tends to 6 infinity, $(rad(ab))^{1+\epsilon} \geq 1$, and there is an infinite amount of differ-7 ent primes. Therefore, the infinite amount of triplets satisfies 1 < 18 $\delta (\operatorname{rad}(ab))^{1+\epsilon} (\operatorname{rad}(c))^{\epsilon}$. This holds for any combination of a and b for 9 a given c = a + b. 10

In the following, c is again an arbitrary integer. Because there are several ways to put c = a + b, k can take several values for a given c. The maximum value $S(c) = \max k(c)$ saturates at zero. This means the limit $k(c) \leq S(c) = 0, c \to \infty$.

3. No transitions between k = 0 and $k = \infty$

The first part of the paper has shown that there are infinitely many 16 triplets at k < 1. Therefore, if the abc conjecture fails, the k starts 17 endless bouncing (while the increase of c) between near zero and large 18 values $(k \gg 1)$. There are an infinite number of forth (in values of k) 19 and back trans-passings; each one leaves behind a trace of the triplets. 20 Hence, an infinite number of triplets would be expected within a gap 21 $k_1 < k < k_2$, where $k_1 \neq 0$. An alternative formulation of the abc 22 conjecture is that for $k \geq 1$, there is a finite number of triplets [2]. 23 Hence, the number of triplets within $1 < k < k_2$ has to be finite. 24 Otherwise, even if $k < K(\epsilon)$ the conjecture fails because there is an 25 infinite amount of triplets with $k \ge 1$. But if $k < K(\epsilon)$, the conjecture 26 cannot fail. We came to a disagreement. Hence, the number of triplets 27 within $1 < k < k_2$ is finite. 28

4. The boundary of limit

30 Let us define

15

29

(6)
$$Z = \frac{r(c+Y)}{r(c)} \frac{r(c)}{r(c-1)} = \frac{r(c-1+1+Y)}{r(c-1)}.$$

31 Such an integer Y exists within $2 - c \le Y < \infty$ so that (7) Z > G

32 together with

(8)
$$\frac{r(c+Y)}{r(c)} < M$$

DMITRI MARTILA

- 1 because non-vanishing G can be arbitrarily small, and the finite M can
- 2 be arbitrarily large. The Y = Y(c).
- 3 Eqs. (6), (7), (8) imply

(9)
$$\frac{r(c)}{r(c-1)} > \frac{G}{M},$$

4 which implies

(10)
$$\frac{r(c+1)}{r(c)} > L \neq 0$$

5 The ratio reads

(11)
$$\frac{c}{c+1} \left(\frac{r(c+1)}{r(c)}\right)^{1+\epsilon} = \frac{k(c)}{k(c+1)} = \beta.$$

6 Let us assume for a moment that the abc conjecture fails. Because 7 there are infinitely many triplets at k = 0 while increasing c, k starts to 8 jump abruptly from nearly zero to unlimitedly large values. Then if abc 9 conjecture fails, β changes repeatedly from zero to infinity and from 10 infinity to zero in the limit $c \to \infty$. Therefore, r(c+1)/r(c) changes 11 repeatedly from zero to infinity and from infinity to zero during the 12 growth of c. But this comes into a disagreement with Eq. (10).

5. Conclusion

Several crucial properties of abc conjecture are presented and proven.Therefore, the abc conjecture is proven.

References

- 17 [1] D. Castelvecchi, "Mathematical proof that rocked number theory will be published," Nature (3 April 2020).
- 19 [2] D. W. Masser, "Open problems", Proceedings of the Symposium on Analytic
 20 Number Theory, W. W. L. Chen., London: Imperial College, 1985, Vol. 25.
- [3] H. A. Helfgott, The ternary Goldbach conjecture is true, arXiv:1312.7748
 [math.NT]
- 23 https://doi.org/10.48550/arXiv.1312.7748

4

13

16