$$
\begin{equation*}
k=\frac{c}{r^{1+\epsilon}} \leq \frac{4 a}{a^{1+\epsilon}(\operatorname{rad}((q+p+r) c))^{1+\epsilon}}<\frac{4 a}{(4 a)^{1+\epsilon}}<1 . \tag{1}
\end{equation*}
$$

Because $\operatorname{rad}((q+p+r) c)=\operatorname{rad}(q+p+r) \operatorname{rad}(c)>4$. The $q+p+r \neq 1$, because prime $r \geq 2$. So, for any value of c, there is a triplet $(a, b, c=$ $a+b$) with $k<1$. Hereby $k=0$ as $c \rightarrow \infty$. Why? Because $a \rightarrow \infty$ implies $c \rightarrow \infty$, and $\epsilon \neq 0$.

Notably, the a cannot be a prime factor of c. Why? Because the abc conjecture is formulated for co-primes. But does it mean that my idea is not applicable in some cases? In such cases would be $c=a n$, $c \leq 4 a$, so, $n \leq 4$. Therefore, $n=2, n=3$, or $n=4$. But then I can
eestidima@gmail.com.

1 write $1+u=a n$, where $a, n=2$ or $n=3$ are primes with

$$
\begin{equation*}
k=\frac{a n}{(a n)^{1+\epsilon}(\operatorname{rad}(u))^{1+\epsilon}}<1 . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
k=\frac{4 a}{(2 a)^{1+\epsilon}(\operatorname{rad}(u))^{1+\epsilon}}<\frac{4 a}{(4 a)^{1+\epsilon}}<1 \tag{3}
\end{equation*}
$$

So, there are no counter-examples to the conclusion: "for any c, there is a triplet with $k<1$."

The problem with the above proof is that a and b are special numbers, not a general integers. Namely, the a is a prime, and the $b=q+p+$ $r<3 a$ represents an arbitrary odd number (due to validity of ternary Goldbach Conjecture). In the following, I am dealing with this issue.

If $a+b=c$ implies finitness of $k<\infty$, then $a+b+0=c$, where $0=x-x$, implies finitness of k as well. This means, e.g., $a^{*}+b^{*}=c$, where $a^{*}=a-x, b^{*}=b+x$, or $a+b^{*}=c^{*}$, where $b^{*}=b+b, c^{*}=c+b$. Why? Because if abc conjecture is true, it cannot become untrue by replacing $a+b \rightarrow a+b+0$. The $b^{*}=b+b$ is even, and $a^{*}=a-x$ can become any integer, not only a prime.

2. The signature of abc conjecture

The abc conjecture implies that in the limit $c \rightarrow \infty$, one has $r=\infty$. Otherwise, for every single $\epsilon>0$ one has $K(\epsilon)=\infty$. For arbitrary $m>0$ one has

$$
\begin{equation*}
c / r^{1+m}=U W \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
U=c / r^{1+\epsilon}, \quad W=r^{\epsilon} / r^{m} \tag{5}
\end{equation*}
$$

and $\epsilon>0$ is arbitrary. For $\epsilon>m$, in the limit $r \rightarrow \infty$ the abc conjecture implies $U=0$, as $W=\infty$; because the abc conjecture implies finiteness of $c / r^{1+m}<\infty$ as well. One concludes that in the limit $r \rightarrow \infty$, the abc conjecture implies $k=c / r^{1+\epsilon}=0$. If, for some triplet, the $U \neq 0$ happens in the limit $r \rightarrow \infty$, the abc conjecture is wrong because then $c / r^{1+m}=\infty$. Therefore, the limit exists. Accordingly, in this limit there is an infinite number of triplets (a, b, c) with k arbitrarily close to zero. In other words, the abc conjecture implies that for an arbitrary constant $\delta>0$ there is an infinite number of triplets (a, b, c) satisfying $c / r^{1+\epsilon}<\delta, c<\delta r^{1+\epsilon}$.
2.1. Realization of the signature. Because a, b, c have no common factors, one has $r=\operatorname{rad}(a b) \operatorname{rad}(c)$.

Accordingly, $c<\delta(\operatorname{rad}(a b))^{1+\epsilon}(\operatorname{rad}(c))^{1+\epsilon}$. Here and in the following, δ is a fixed parameter. Let us study such numbers c which are prime numbers, namely $c=2,3,5, \ldots, \infty$. Then $c=\operatorname{rad}(c)$. Therefore, $1<\delta(\operatorname{rad}(a b))^{1+\epsilon}(\operatorname{rad}(c))^{\epsilon}$. By increasing $c, \operatorname{rad}(c)$ tends to infinity, $(\operatorname{rad}(a b))^{1+\epsilon} \geq 1$, and there is an infinite amount of different primes. Therefore, the infinite amount of triplets satisfies $1<$ $\delta(\operatorname{rad}(a b))^{1+\epsilon}(\operatorname{rad}(c))^{\epsilon}$. This holds for any combination of a and b for a given $c=a+b$.

In the following, c is again an arbitrary integer. Because there are several ways to put $c=a+b, k$ can take several values for a given c. The maximum value $S(c)=\max k(c)$ saturates at zero. This means the limit $k(c) \leq S(c)=0, c \rightarrow \infty$.

3. No transitions between $k=0$ and $k=\infty$

The first part of the paper has shown that there are infinitely many triplets at $k<1$. Therefore, if the abc conjecture fails, the k starts endless bouncing (while the increase of c) between near zero and large values $(k \gg 1)$. There are an infinite number of forth (in values of k) and back trans-passings; each one leaves behind a trace of the triplets. Hence, an infinite number of triplets would be expected within a gap $k_{1}<k<k_{2}$, where $k_{1} \neq 0$. An alternative formulation of the abc conjecture is that for $k \geq 1$, there is a finite number of triplets [2]. Hence, the number of triplets within $1<k<k_{2}$ has to be finite. Otherwise, even if $k<K(\epsilon)$ the conjecture fails because there is an infinite amount of triplets with $k \geq 1$. But if $k<K(\epsilon)$, the conjecture cannot fail. We came to a disagreement. Hence, the number of triplets within $1<k<k_{2}$ is finite.

4. The boundary of limit

Let us define

$$
\begin{equation*}
Z=\frac{r(c+Y)}{r(c)} \frac{r(c)}{r(c-1)}=\frac{r(c-1+1+Y)}{r(c-1)} . \tag{6}
\end{equation*}
$$

Such an integer Y exists within $2-c \leq Y<\infty$ so that

$$
\begin{equation*}
Z>G \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{r(c+Y)}{r(c)}<M \tag{8}
\end{equation*}
$$

because non-vanishing G can be arbitrarily small, and the finite M can be arbitrarily large. The $Y=Y(c)$.

Eqs. (6), (7), (8) imply

$$
\begin{equation*}
\frac{r(c)}{r(c-1)}>\frac{G}{M} \tag{9}
\end{equation*}
$$

4 which implies

$$
\begin{equation*}
\frac{r(c+1)}{r(c)}>L \neq 0 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{c}{c+1}\left(\frac{r(c+1)}{r(c)}\right)^{1+\epsilon}=\frac{k(c)}{k(c+1)}=\beta \tag{11}
\end{equation*}
$$

Let us assume for a moment that the abc conjecture fails. Because there are infinitely many triplets at $k=0$ while increasing c, k starts to jump abruptly from nearly zero to unlimitedly large values. Then if abc conjecture fails, β changes repeatedly from zero to infinity and from infinity to zero in the limit $c \rightarrow \infty$. Therefore, $r(c+1) / r(c)$ changes repeatedly from zero to infinity and from infinity to zero during the growth of c. But this comes into a disagreement with Eq. (10).

5. Conclusion

Several crucial properties of abc conjecture are presented and proven. Therefore, the abc conjecture is proven.

References

[1] D. Castelvecchi, "Mathematical proof that rocked number theory will be published," Nature (3 April 2020).
[2] D. W. Masser, "Open problems", Proceedings of the Symposium on Analytic Number Theory, W. W. L. Chen., London: Imperial College, 1985, Vol. 25.
[3] H. A. Helfgott, The ternary Goldbach conjecture is true, arXiv:1312.7748 [math.NT]
https://doi.org/10.48550/arXiv.1312.7748

