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Abstract

A non-trivial interpretation of Fourier integral theorem in the framework of measure spaces.

Let f ∈ L1 (−∞,+∞) have constant sign and no zeros. By the Fourier integral theorem:

f (t) =
1

2π

∫ +∞

−∞

f̂ (ω) eiωtdω (1)

f̂ (ω) =

∫ +∞

−∞

f (t) e−iωtdt

We define:

µ : R −→ (0,+∞) (2)

µ (t) =

∫ t

−∞

|f (τ)| dτ > 0, ∀t ∈ R

Σ := {A = [t0, t] | t0, t1 ∈ R} (3)

Σ is manifestly a σ-algebra on R. (2) defines a countably additive and positive set function on Σ

µ : Σ −→ (0,+∞) (4)

µ : A −→ µ (A) =

∫

A

f (t) dt, ∀A ∈ Σ

and is complete on Σ [1]. So (R,Σ, µ) is a measurement space. The second of (1) becomes:

f̂ (ω) =

∫

R

e−iωtdµ (5)

We define:

νω (A) :=

∫

A

e−iωtdµ, ∀A ∈ Σ, ω ∈ R (6)

which is broken down into a real part and an imaginary part:

νω (A) = Re νω (A)
︸ ︷︷ ︸

ξω(A)

+ iIm νω (A)
︸ ︷︷ ︸

ηω(A)

(7)

where

ξω (A) =

∫

A

cos (ωt) dµ, ηω (A) =

∫

A

[− sin (ωt)] dµ, ∀A ∈ Σ (8)

are countably additive set functions.

Lemma 1 The set functions ξω (A) , ηω (A) are absolutely continuous with respect to µ.

Proof.

µ (A) ≡ 0 ⇐⇒ f (t) ≡ 0) =⇒ (ξω (A) ≡ 0 ⇐⇒ µ (A) ≡ 0

Likewise for ηω (A).
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Lemma 2
dξω

dµ
= cos (ωt) ,

dηω

dµ
= sin (ωt) (9)

where d
dµ

is the Radon-Nikodym derivation operator.

Proof. The statement follows immediately from the Radon-Nikodym theorem [1].

Definition 3 The νω (A) defined by (6) is called set complex function .

From this it follows that the function:

ρω (t) = e−iωt (10)

is the Radon-Nikodym derivative of the set function νω (A) with respect to the measure µ:

dνω

dµ
= ρω (t) (11)

Notation 4 νω (R) is the Fourier transforma of f (t).

From the absolute continuity of νω (A) with respect to µ, it follows that νω (R) can vanish only
with respect to ω:

∃ω0 ∈ R | νω0
(R) = 0

We will therefore say that ω0 is a zero of νω (R). It follows

Lemma 5 If f (t) has definite parity νω (R) is devoid of zeros.

For example for the Gaussian

f (t) = e−
t
2

2α (α > 0) (12)

we have νω (R) = e−
αω

2

2 which is devoid of zeros.

Notation 6 If f (t) has parity (+1), νω (R) has zero imaginary part. If f (t) has parity (−1), νω (R)
has zero real part. In both cases, the function f̂ (ω) preserves parity. Furthermore

∣
∣
∣f̂ (ω)

∣
∣
∣ has definite parity ; f (t) has definite parity

The introduction of a parameter α in f (eq. (12)) suggests extending the previous arguments to
a real function of the two real variables (a, t) defined on the strip

S = [a, b]× (−∞,+∞) (13)

for a given interval [a, b] of R, limited or unlimited. We keep the previous hypothesis, i.e. f (α, t)
of class L1 (−∞,+∞) with respect to t and of constant sign. Fourier’s integral theorem returns the
function of the complex variable α + iω

f̂ (α + iω) =

∫ +∞

−∞

f (α, t) e−iωtdt

which for a given f (α, t) can be holomorphic on the strip (13).
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The function

µα (t) :=

∫ t

−∞

|f (α, t′)| dt′, ∀α ∈ [a, b] (14)

defines a one-parameter measure:

µα : Σ −→ (0,+∞) (15)

µα : A −→ µα (A) =

∫

A

f (α, t) dt, ∀A ∈ Σ

The generalization of the previous definition follows

να,ω (A) :=

∫

A

e−iωtdµα, ∀A ∈ Σ, (α, ω) ∈ S (16)

If f̂ (α + iω) is holomorphic on S, any accumulation points of the set of zeros of να,ω (R) belong to
∂S.
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