
 Author: Herman Schoenfeld

 Version: 1.1

 Date: 2020-01-01 - 2020-10-23

 Copyright: (c) Sphere 10 Software Pty Ltd. All Rights Reserved.

Dynamic Merkle-Trees

Abstract

This paper presents a formal construction of dynamic merkle-trees and a deep-dive into their
mathematical structure. In doing so, new and interesting artefacts are presented as well as novel security
proof constructions that enable proofs for a full range of tree transformations including append, update
and deletion of leaf nodes (without requiring knowledge of those nodes). Novel concepts are explored
including "perfect trees", "sub-trees", "sub-roots" and "flat coordinates" through various lemmas,
theorems and algorithms. In particular, a "flat-tree" implementation of merkle-trees is presented suitable
for storing trees as a contiguous block of memory that can grow and shrink from the right-side. Of note,
a "long-tree" implementation is presented which permits arbitrarily large tree construction in

 space and time complexity using a novel algorithm. Finally, a reference implementation
accompanies this paper which contains a fully implemented and thoroughly tested implementation of
dynamic merkle-trees.

1. Introduction
Merkle-trees are a cryptographic construction that enable a collection of objects to be hashed together in
a way that preserves information about their individual membership within the collection. Merkle-trees
permit statements about the collection, and their objects, to be verified without knowledge of the entire
set of objects but only of the objects in question. This is achieved through formally constructed security
proofs. The ability to verify statements about the tree without needing to store (or have knowledge of)
the tree is the primary innovation and essential purpose of merkle-trees. For example, proving that a
leaf-node exists within a merkle-tree requires knowing only the root, the leaf and the path from that leaf
to the root. The path here comprises an "existence-proof" of the leaf in the tree. The verifier can
cryptographically prove the existence of the leaf in the tree by evaluating the hash-path and comparing
the end result with the known root. If it matches, the object is a leaf of the tree.

This initial idea was originally proposed 1 by Ralph Merkle for the specific purposes of overcoming the
limitations of "one-time keys" in the Lamport/Winternitz digital signature schemes. He found he was able
to transform a "one-time" scheme into a "many-time" scheme by encoding multiple one-time keys as
leaves in a merkle-tree. The root of the tree served as the many-time key which represented a
cryptographic commitment to all the one-time keys (the leaf nodes). Each signature chose a one-time key
and provided an existence-proof of that key along with the digital signature signed by that key. By
choosing different one-time keys for each signature, the one-time signature scheme thus transformed
into an equivalent many-time scheme.

Since that time, merkle-trees have found a wide domain of applicability. Whilst primarily used in
cryptography, many areas of computer science utilize merkle-trees including database management
systems, certificate management, peer-to-peer file streaming, blockchains, distributed ledger technology
many other established and emerging fields.

https://sphere10.com/
af://n0
af://n5

This paper extends the primary utility of merkle-trees not just with new proofs for membership and
consistency but with general purpose leaf-set transformations including update, delete, append, insert,
to name a few. These proofs are sufficient to compose all general leaf-set transformations. Also, a "flat
coordinate scheme" for merkle-trees is provided that allows addressing of nodes in a 1-dimensional
contiguous block of memory suitable for unbounded trees. Of particular achievement is a tree
implementation with space and time complexity suitable for building arbitrarily large
merkle-trees efficiently.

One of the issues with merkle-trees are their lack of formalization in the literature. In the opinion of the
author, this arises from a certain complexity associated with an obscure aspect of the merkle-tree
construction. Specifically, it is in how authors deal with odd numbered leaf sets (or level sets in general).
This seemingly obscure concern turns out to be fundamentally important aspect of merkle-trees, as
shown in this paper. Whereas other treatments ignore this issue, by-pass the issue entirely by assuming
"perfect trees" or implement ad hoc work-arounds like double-hashing odd-indexed end nodes as
Bitcoin does, this paper tackles the problem and it's transitive complexity head-on. In doing so,
interesting new aspects of merkle-trees are revealed and explored and whose insights are employed in
novel algorithm development.

2. Merkle-Tree Construction
A merkle-tree is a data-structure whose nodes form a graph similar to a binary tree, as depicted by Fig 1.
Level 0 is the bottom level and these nodes comprise the "leaf nodes". Every leaf node is constructed as
a cryptographic hash digest of a corresponding object in a collection (not shown). Level 1 is constructed
by sequentially hashing the concatenation of two "child nodes" from level 0. If no pair can be found for
the last node, it "bubbles up" without hashing as shown for . Each subsequent level builds upon the
previous level until a singular top node is found, called the merkle-root.

Fig 1

af://n11
af://n13

In Fig 1, every node in the merkle-tree can be addressed by a 2D coordinate. The -dimension is
called the "level" and the -dimension the "index" at the level. By convention we use notation. As
can be seen, a merkle-tree contains "perfect sub-trees" which are themselves merkle-trees whose leaves
are subsets with cardinalities equal to powers of 2.

2.1 Formal definition
For any sequence of binary objects where and cryptographic hash
function , the merkle-tree is defined as the
piece-wise chaining-function:

In this definition, a merkle-tree maps a sequence of objects and two positive integers to a
hash digest . The arguments are the "merkle-coordinates" of a node (digest) in the merkle-
tree and are always denoted as super/subscripts of (so as to convey their equivalence relation /
chaining function nature). However, in this treatment they are strictly arguments of .

REMARK In this notation, when the argument of is omitted it shall always be implied. For example
the notation is equivalent to . The term shall be interpreted as "the node at for
the merkle-tree of ".

2.2 Root
The merkle-root is the most fundamentally important node in a merkle-tree and represents a
cryptographic hash commitment to the entire tree. Security proofs that verify statements about trees
almost always verify to the root.

Definition 2.2.1: Root

The root of a merkle-tree with height is the node . QED.

2.3 Descendants
The "descendants" of a node are the set of all transitive child nodes (i.e. child, grand child, great grand-
child, etc) up to an until the leaf nodes.

af://n17
af://n24
af://n28

Fig 2

In Fig 2, the nodes , and are the , and left-most descendants of respectfully. On the
right side, the nodes , and are the , and right-most descendants of respectfully. The
non-existent node is the right-most perfect descendant of . Had it been a node of the tree, it
would also be the right-most descendant (and the tree would be "perfect"). The left-most and right-most
leaf-descendant's of are and respectfully. The leaf-descendants of are neighbourhood of
leaves from to inclusive.

Lemma 2.3.1: Left-most descendant

For any node the left-most descendant is the node .

Proof: Node has left-child , left-most grand-child and left-most great grand-child

. It follows that the left-most child is thus . QED.

Lemma 2.3.2: Right-most perfect descendant

For any node the right-most perfect descendant is the node .

Proof: Node has right-child , right-most grand-child , right-most great

grand-child . Assuming no bubble-up nodes, it

follows the right-most descendant is thus . QED.

Lemma 2.3.3: Right-most descendant

For any node the right-most descendant is the node where is the leaf

count.

Proof: The right-most descendant is either the right-most perfect descendant or the last node at
level . It follows from lemma 2.3.2 that in the absence of bubble-up nodes, the right-most
descendant index is . In the presence of a bubble-up nodes, the index is clipped to the last
node at level which, through definition 2.1, becomes . By taking the

 of both values, the right-most descendant determined. QED.

Remark 2.3.4

The distinction between a "right-most perfect descendant " and a "right-most descendant " is that the
former assumes the descendants are all non-trivial nodes (i.e no bubble-up) whereas the latter does not.
For "perfect trees" discussed below, there is no distinction between the two. However, as trees are
generally imperfect such a distinction is generally needed. Conceptually, a right-most descendant is the
right-most perfect descendant clipped to the end the level (hence the in the equation).

af://n30
af://n34
af://n37
af://n40
af://n43

For example, in Fig 2 the nodes and are the and left-most descendants of respectively. On
the right-side, is the right-most descendant and right-most perfect descendant. However, the

 right-most descendant is and the right-most perfect descendant does not exist (). QED.

Theorem 2.3.5: Descendants

The descendants of node is the set is defined as:

Proof: For every level below , aggregate via set union the neighbourhood from the left-most to right-
most descendent nodes (inclusive) at that level. QED.

Lemma 2.3.6: Leaf descendants

The "leaf-descendants" of is the set where:

Proof: The leaf-descendant equations derive from lemmas 2.3.1 - 2.3.3 setting . The leaf-
descendants are thus the neighbourhood of nodes from the left-most to right-most leaf descendants
(inclusive). QED.

Lemma 2.3.7: Descendant Equality

If a node exists in two trees then so does it's descendants.

Proof: Let and be different nodes in different trees such that . It follows from lemma
2.3.6 that where and are the leaf-descendants of and respectively. QED.

2.4 Powers of 2
Theorem 2.4.1 Powers of 2 Partition

Any number can be written as a unique sum of the powers of 2 such that for a set
of exponents where .

Proof: Let . This sum contains terms. By applying the
reduction once the sum reduces to terms. By applying the reductions

 for all repeatedly, the number of terms in the sum converges to
where . That is bound from follows from the case when , yielding a sum for

 having no terms. That is bound to arises from the fact that iteratively dividing any by
more than times yields no additional terms in the sum. That this is true can be seen from

. Thus the exponents of these terms are the set

af://n46
af://n50
af://n54
af://n58
af://n59

where is the smallest possible number since no further reductions are possible. Uniqueness is proven
by contradiction. Suppose there exists another set of irreducible exponents where

 and . This would imply that and such that
, an impossibility by virtue of exponentiation being bijective over . Thus is unique.

QED.

Definition 2.4.2: Pow-2 Partition

The set from theorem 2.4.1 is herein coined the "powers of 2 partition of " (aka "pow-2 partition")
and chosen in descending order. In natural language, the set are the exponents of the terms of a
partition of whose terms are all powers of 2 and, that out of all such partitions, is the one with the
least cardinality. The set are the exponents of the terms in this partition and chosen by convention in
decreasing order. QED.

See table 2.4.7 for examples of pow-2 partitions.

Lemma 2.4.3: Strictly Decreasing

The powers-of-2 partition of are a strictly decreasing set such that for all .

Proof: By definition is an ordered decreasing set thus . To be strictly decreasing then
. If it is assumed that two adjacent exponents where equal such that then

. As this is itself a power of 2, one could replace both exponents
 , with single exponent in . This would necessarily shorten the cardinality of thus

contradicting the requirement of definition 2.4.2 that it be the partition with least cardinality. Thus since
no adjacent exponents in can ever equal by virtue of being defined as the shortest partition, it
follows is strictly decreasing. QED.

Algorithm 2.4.5 CalcPow2Partition

Calculates the powers of 2 partition of . Returns the set such that where is the
partition of least cardinality in decreasing order. Example, for the result is since

.

 1: algorithm CalcPow2Partition

 2: INPUT:

 3: N : Integer

 5: OUTPUT

 6: c : array of integer ; positive integr (0 <= N <= Max)

 7: PSEUDO-CODE:

 8: let i = 0

 9: while (N >= 1)

10: let x = floor(log_2(N))

11: if x = log_2(N) ; mantissa is zero

12: c[i] = x

13: i = i + 1

14: N = N - 2^x

15: end algorithm

af://n62
af://n65
af://n68

Integers 0 - 16 Integers 244 - 260 Integers 983-999

0:
1: 0
2: 1
3: 1, 0
4: 2
5: 2, 0
6: 2, 1
7: 2, 1, 0
8: 3
9: 3, 0
10: 3, 1
11: 3, 1, 0
12: 3, 2
13: 3, 2, 0
14: 3, 2, 1
15: 3, 2, 1, 0
16: 4

244: 7, 6, 5, 4, 2
245: 7, 6, 5, 4, 2, 0
246: 7, 6, 5, 4, 2, 1
247: 7, 6, 5, 4, 2, 1, 0
248: 7, 6, 5, 4, 3
249: 7, 6, 5, 4, 3, 0
250: 7, 6, 5, 4, 3, 1
251: 7, 6, 5, 4, 3, 1, 0
252: 7, 6, 5, 4, 3, 2
253: 7, 6, 5, 4, 3, 2, 0
254: 7, 6, 5, 4, 3, 2, 1
255: 7, 6, 5, 4, 3, 2, 1, 0
256: 8
257: 8, 0
258: 8, 1
259: 8, 1, 0
260: 8, 2

983: 9, 8, 7, 6, 4, 2, 1, 0
984: 9, 8, 7, 6, 4, 3
985: 9, 8, 7, 6, 4, 3, 0
986: 9, 8, 7, 6, 4, 3, 1
987: 9, 8, 7, 6, 4, 3, 1, 0
988: 9, 8, 7, 6, 4, 3, 2
989: 9, 8, 7, 6, 4, 3, 2, 0
990: 9, 8, 7, 6, 4, 3, 2, 1
991: 9, 8, 7, 6, 4, 3, 2, 1, 0
992: 9, 8, 7, 6, 5
993: 9, 8, 7, 6, 5, 0
994: 9, 8, 7, 6, 5, 1
995: 9, 8, 7, 6, 5, 1, 0
996: 9, 8, 7, 6, 5, 2
997: 9, 8, 7, 6, 5, 2, 0
998: 9, 8, 7, 6, 5, 2, 1
999: 9, 8, 7, 6, 5, 2, 1, 0

Algorithm 2.4.6 Reduce

Reduces an arbitrary sum of powers of 2 to an ordered pow-2 partition of the summation. This is the
process used in theorem 2.4.1.

Integers when represented as powers of 2 partitions follow an interesting pattern.

Table 2.4.7 Pow-2 Partitions of N

 1: algorithm Reduce

 2: INPUT:

 3: N : Array of Integer

 4: OUTPUT:

 5: M : Array of Integer

 6: PSEUDO-CODE:

 7: let finished = false

 8: while NOT finished

 9: for i = Length(N) - 1 to 1

10: if N[i-1] < N[i]

11: SWAP N[i-1], N[i]

12: goto 8

13: if N[i-1] = N[i]

14: INCREMENT N[i-1]

15: N.RemoveAt(i)

16: goto 8

17: finished = true

18: M = N

29: end algorithm

af://n71
af://n75

The algorithm allows integer arithmetic to be expressed purely in terms of increments, bit-shifts,
comparisons and memory read/writes. It is the opinion of the author that this construction is significant
(but unsure if necessarily novel). For one, it greatly simplifies Big Integer implementations by reducing
their representations to pow-2 partition forms. Big Integer arithmetic simplifies to primitive set
transformations and a some iterations of the function. For example, two add two numbers one
need only the concatenation of their pow-2 partitions, as shown by theorem theorem 2.4.8.
Similarly to multiply two integers, one need only the cartesian product of the pow-2 partitions, as
shown by theorem 2.4.9. With these two approaches, a Big Integer implementation (properly
implemented) ought to improve performance significantly compared to existing implementations. This
follows by virtue of not requiring any underlying string manipulations or aggregation of smaller integer
arithmetic. Also, from a fundamental number theory point of view, a description of arithmetic in terms if
more primitive operations illuminates insight into the nature of numbers themselves.

Theorem 2.4.8: Integer Addition in terms of Reduce

For all and , if then where are the pow-2
partitions of respectfully.

Proof: Start with and . It follows that
where . Here represents the concatenation of and and gives a sequence of exponents
such that . To recover , the sequence is reduced to pow-2 partition form through

. QED.

Theorem 2.4.9: Integer Multiplication in terms of Reduce

For all and , if then where are the pow-2
partitions of respectfully and denotes a cartesian product
taking the sum of the pairs.

Proof: Start with and . It follows
. Through distributive and

exponent law, where
 . Here represents the cartesian product taking the sum of the pairs. To recover , the

sequence is reduced to pow-2 partition form through . QED.

2.5 Perfect Trees
A interesting characteristic of merkle-trees is their relationship to what are hereby coined "perfect trees".

Definition 2.5.1: Perfect tree

A perfect-tree is a merkle-tree having leaves and height such that . QED.

Perfect trees have special properties as illustrated by Fig 1. By inspection alone, one can see that a
generally imperfect merkle-trees are composed from perfect sub-trees whose roots can be aggregated
to determine the merkle-root. Also, it's clear that perfect sub-trees remain invariant after leaves are
appended to the tree. That a merkle-tree is in fact such an aggregation of such perfect sub-trees is
shown in theorem 2.6.3.

af://n86
af://n89
af://n92
af://n94

Lemma 2.5.2: Perfect sub-trees

A merkle-tree with contains an ordered set of perfect sub-trees where is the
pow-2 partition of and the height of .

Proof: For every exponent construct a perfect tree having leaves, let this set of perfect trees be
. Choosing the leaves of as where maps all

leaves of via bijection to the union of all the leaves in . Through lemma 2.3.7 it follows that the
antecedents of the union of the leaves in are contained within . Thus all nodes in are fully
contained in , in order, noting that only the imperfect bubble-up nodes of are not in any of . QED.

Lemma 2.5.3: Perfect Nodes

A merkle-tree with leaves has perfect nodes where is the pow-2 partition of .

Proof: A perfect tree of height with leaves has total nodes. This follows from the
relation . The sum on the left is aggregates the level count for each perfect tree. As
per lemma 2.5.2, a merkle-tree is composed of perfect-trees where the height of

. Thus by summing the node count for all we get which are the count of all the
perfect nodes in . QED.

2.6 Sub-Roots
An important aspect of perfect sub-trees is the role their roots play in the larger imperfect parent tree.
The roots of perfect sub-trees are herein called the "sub-roots" of the parent tree and have special
properties that are used in security proofs, particularly in append-proofs which prove a leaves were
appended by transformation of the sub-roots alone.

Lemma 2.6.1: Sub-Roots

The sub-roots of a merkle-tree with leaves are the nodes where

are the perfect sub-trees of and the exponents of the powers-of-2 partition of .

Proof: is the set of merkle-roots for all . The merkle-root of is found at -coordinate and
-coordinate on tree . QED.

The blue nodes in Fig 1 illustrate the sub-roots and how their values directly aggregate to merkle-root.
This aggregation chain is depicted by the orange rectangle and comprised of nodes which are bubbled-
up sub-roots. Since this orange rectangle appears for every imperfect tree, it suggests that the merkle-
root can be calculated directly from the sub-roots. Indeed this is proven in by theorem 2.6.3 and
implemented by algorithm 2.6.4.

Lemma 2.6.2: Sub-Root Invariance

A sub-root of a merkle-tree with leaves remains invariant after a leaf-append transformation to
 leaves.

Proof: This follows from remark 2.3.4 in that since the is a sub-root, it is a perfect node and it's right-
most leaf-descendant must exist in the pre-transformation tree. Since the post-

transformation tree only appends leaves after , it necessarily implies the leaf descendants
of remain unaltered. Thus by lemma 2.3.7, so do all antecedent nodes. QED.

af://n97
af://n100
af://n104
af://n106
af://n110

Remark 2.6.3

Lemma 2.6.2 does not suggest remains a sub-root in the post-transformation tree, only that it's value

remains invariant.

Theorem 2.6.3: Sub-Root Aggregation

If are the sub-roots of a merkle-tree then the merkle-root can be calculated as
 where is a chaining function defined as:

See Algorithm 2.6.4: Aggregate Roots for a simple implementation of .

Proof: First it is shown that the sub-roots alone are sufficient to compute the root. This follows from the
fact that the union of all the leaf descendants of the sub-roots encumber all the non-trivial nodes of the
tree except the sub-roots (and bubble-up's of the sub-roots). Another way is by contradiction, since if
some node not a sub-root were also required to calculate then the hash-chain of would
necessarily include twice violating definition 2.1. This follows since being a descendant of a sub-root

, would appear twice in the hash-chain of first as a part of 's sub-chain and independently.
Therefore, let be mapping from the sub-roots to the root such that

. In the case where only a single sub-root exists and the is , thus
. For the case when , using definition 2.1 of a parent node we derive

 for some ordering . In other
words, it is a hash-chain of the sub-roots in an explicit ordering. To determine this ordering, we observe
that the sub-roots map along coordinates of in a strictly decreasing manner from left to right, top to
down. That this is so follows from the fact that the levels of the sub-roots of are a bijection to the pow-
2 partition of the leaf count of , a strictly decreasing sequence (lemma 2.4.3). Therefore, the right-most
sub-root is the lowest in the tree, the second right-most is the second lowest, et al. Since hash-chains
start from the leaf level, it follows that the lowest sub-root is first in the hash-chain, the second lowest is
second, et al. We thus solve . Plugging back into gives

. Rewriting using transposed node-hasher gives
. Finally, observe that is the

function parameterized by , an index into the hash chain. Thus it follows that the would be the last
index in that chain, hence . QED.

af://n113
af://n115

Algorithm 2.6.4: Aggregate Roots

Calculates the merkle-root from the sub-roots as per theorem 2.6.3.

2.7 Node Traversal
Most merkle-trees are imperfect and will contain at least one bubble-up node. In the Fig 3 below, the leaf
node bubbles up to become the root 's right-child. In proof constructions, these bubble-up paths
are, for the most part, implicitly traversed. In order to distinguish between traversal or not, the following
terminology is employed: "logical left-child", "logical right-child", "logical sibling" and "logical parent". In this
context, "a logical relationship" denotes that the bubble-up path is implicitly traversed until the first non-
bubbled up node is encountered. For example, in Fig 3 the sibling of is but the logical sibling is .
The right-child of is but the logical right-child is . Similarly, the logical left-child of is and
the logical parent of , and is .

Fig 3

 1: algorithm CalcRoot

 2: INPUT:

 3: S : array of digest ; sub-roots

 4: OUTPUT:

 5: Result : digest

 6: PSEUDO-CODE:

 7: Result = S[^1] ; ^1 is last index

 8: for i = Length(s) - 2 to 0 ; start from second last

 9: Result = H(S[i], Result) ; transposed H^T(l,r) = H(r,l)

10: end algorithm

af://n128
af://n131
af://n133

Number Proof Name Description

3.2 Existence Proof a node exists within a tree

3.3 Ranged Existence Proof a subset of leaves* exists within a tree

3.4
Right Delete
(Consistency)

Proof that leaves were deleted from right of a tree

3.5 Append Proof that leaves were appended to the right of a tree

3.6 Remove Proof a count of leaves from removed from the right of a tree

3.7 Update Proof that a single node was updated within a tree

3.8 Ranged Update Proof that a subset of leaves* were updated within a tree

3.9 Insert
Proof that a neighbourhood of leaves were inserted
arbitrarily within a tree

3.10 Delete
Proof that a neighbourhood of leaves were deleted arbitrarily
from a tree

3.11 Subset Proof that a neighbourhood of leaves** exists within a tree

3.12 Substitution
Proof that a neighbourhood of leaves** was substituted 1 - 1,
within a tree

3. Security Proofs
A system of formal security proofs is presented here which permits a verifier, knowing only the merkle-
root, to verify membership of the tree and explicit transformations of the tree to new merkle-roots. This
allows a verifier to track the evolution of a merkle-tree without the burden of storing such tree yet
maintaining a commensurate level of security (bound by underlying cryptographic hash function). In
other words, they can track a dynamic merkle-tree.

Such a proof system is desirable for applications where maintaining merkle-trees is computationally
and/or storage-wise expensive. Such applications include blockchain applications and decentralized
ledger technologies in general. Through these algorithms consensus systems can be made to scale for
real-time, global adoption with near 0 storage and computational complexity.

*: not necessarily contiguous **:without specifying leaves

3.1 Proof Construction
A security proof consists of start digest , a set of digests , a set of direction flags

 and a root-digest . To verify the proof, the verifier must hash of the set of digests
 in a chain using a cryptographic node-hash function and starting with . In each step of the

aggregation, the ordering of the arguments in is determined by the corresponding flag in . See

reference implementation 2 for specification and Fig 4 for an example .

af://n142
af://n195
af://n197

3.2 Existence
An existence proof is a proof that a node exists within a tree. Specifically, it is a proof that the node
has value for a tree with root . Existence proofs are generally used to prove the existence of leaf
nodes. However, in this paper, they are also used to prove the existence of sub-roots which can be
anywhere in the tree. See Algorithms A.9 - A.10 for details. This algorithm is well-known in the literature
as an "audit proof", and provided here for brevity.

Fig 4: Existence proof example

The existence-proof for comprises of the hash-path and the object
and the index of the object. The verifier has the merkle-root and knows the total leaf-count

. Knowing the index , the verifier computes the direction flags which represent
which side of the hash-function a node's digest is an argument of. The verifier then computes the start
digest by hashing . The verifier then performs

 noting that the ordering of the hash arguments is
determined by flag . The verifier knows if then proof is valid and exists at index ,
otherwise it is invalid.

Fig 5: Existence proof example 2

af://n197
af://n199
af://n203

Similarly, the existence-proof for object 8 comprises of start digest , hash-path ,
flags and root . The verifier checks that . Of note in Fig 4 is the
implicit traversal of bubble-nodes by virtue of the logical parent/siblings algorithms found the reference

implementation 2 .

3.3 Ranged Existence
A ranged-existence-proof extends an existence-proof to multiple leaf nodes (not necessarily adjacent).
The purpose is to provide proof that leaves exist rather that relying on proofs that leaf exists.
Since neighbouring leaf nodes tend to share antecedent nodes, by taking the union of all their individual
existence-proof paths a significant saving in space complexity is achieved. See reference

implementation 2 for specification.

3.4 Right Delete (Consistency)
A consistency-proof proves that the first leaves of two trees are equal. In other words, it proves that a
merkle-tree with leaves and root has the same first leaves as tree with leaves
and root . The consistency-proof construction in this paper is unique and differs from commonly
known implementations. In the opinion of the author, the construction here is more elegant and simpler.
It works by proving that the invariant right-most sub-root of the smaller tree exists in the larger tree

. If the trees are consistent to leaves, the existence-proof of in necessarily traverses the
existence-path of in . This allows to be recovered from the existence-proof of in alone. By
verifying indeed derives from the existence-proof of in , and the existence proof itself validates to

, then the verifier shown and are consistent up to and including leaves. See reference

implementation 2 for specification.

REMARK 3.4.1: In other treatments, consistency proofs are proffered as a (weak) proof that a tree was
appended to with new leaves. In the opinion of the author, consistency-proofs are a weak form of
proving an append since they only prove that a count of leaves were appended but say nothing about
the appended leaves themselves. In practice, knowing that items were appended to a list but without
knowing what those items were can lead to insecure assumptions about the system. A consistency-proof
only proves the post-transformation leaf-set of a tree is consistent with the pre-transformation leaf-set
and nothing more. With this in mind, it is the opinion of the author that a "consistency proof" ought to be
correctly interpreted as a "right-delete-proof" in reverse. In other words, a right-delete-proof proves that
a tree with leaves and root becomes a tree with leaves with root . This is
equivalent to a consistency proof in reverse but is "strong" in the sense that it completely proves the
"right-deletion" (rather than "weakly" proves an append). By preference to elegancy, the primary form of
this proof ought be a right-delete-proof and a consistency-proof ought to be considered a delete-proof in
reverse. However, to maintain parity with existing convention, we treat a "right-delete-proof" as a reverse
of a "consistency-proof".

3.5 Append
An append-proof is a new type of security proof that permits a verifier to prove, knowing only the
merkle-root, that a specific subset of leaves were appended to a merkle-tree. In this scenario, the verifier
is assumed to have the appended leaves and the merkle-root of the pre-
appended tree. Given an append-proof , the following construction permits the verifier to compute the
post-append merkle-root using only , and .

af://n207
af://n209
af://n212

The proof is simply the sub-roots of the pre-append tree (a surprisingly small set). For example, if
is the leaf count then . The verifier proceeds by iteratively transforming with
every item in in accordance with append leaf algorithm 3.5.1. The transformed sub-roots are then
aggregated via algorithm 2.6.4 to recover . In this manner, the verifier proves that the only change to
the leaves of was the right-append of , resulting in .

The space and time complexity of this proof is . The term derives as the
average cardinality of the sub-roots of for increasing , and self-evidently denotes the count of
items being appended. When appending small sets of leaves to large trees (i.e.) the space and
time complexity becomes . This is the primary use-case for this proof. In the opinion of
the author, this new security proof construction offers a significant innovation in the area of merkle-
trees. Algorithm 2.6.4 is modelled after a where maps an integer argument to it's
pow-2 partition. Conceptually it is "adding to " but in a "hash-based arithmetic". In other words, the
algorithm transforms the sub-roots as if they were a pow-2 partition being incremented by (replacing
exponentiation with hashing). This algorithm is also the basis for a spatially-optimized merkle-tree
implementation suitable for the efficient construction of practically unbounded trees.

Algorithm 3.5.1 Append Leaf

Transforms a tree's sub-roots by appending to the leaf set of the tree.

3.6 Remove
A remove-proof allows a verifier to prove that specific leaves were removed from the right of a tree. It
achieves this by simply by re-interpreting an append-proof in reverse by virtue of it's symmetry. In more
formal terms, proving that a tree with root and leaf count attained the root and leaf count

 after removing leaves from the right is equivalent to an append-proof that a tree with
root and leaf count attained the root and leaf count after appending to the
right. Thus a remove-proof is an append-proof in reverse.

3.7 Update

 1: algorithm AddLeaf

 2: INPUT:

 3: S : Array of 2-Tuple (Height : Integer, Digest : Integer)

 4: L : Digest

 5: OUTPUT

 6: S : Array of 2-tuple (Height : Integer, Digest : Integer)

 7: PSEUDO-CODE:

 8: let e = 2-Tuple (0, L);

 9: while (true)

10: if (||S|| = 0 || S[^-1].Height > e.Height) ;^-1 is last index

11: S.Add(e)

12: break while;

13: e = (S[^1].Height + 1, H(S[^1].Digest, e.Digest))

14: S.RemoveAt(^1)

15: end algorithm

af://n216
af://n220
af://n223

An update proof is a new type of security proof that permits a verifier to prove, knowing only the merkle-
root , that a single node was updated to resulting in a new root . The update proof comprises
simply of an existence-proof of in denoted , bundled with and . Having the root , the verifier
first confirms exists in by running using the start-digest . Once confirmed, the verifier re-runs
using start-digest to recover the new root .

3.8 Ranged Update
A ranged-update-proof extends an update-proof in much the same way that a ranged-existence-proof
extends an existence-proof. It provides a single proof that leaves were updated which is far more
space and time efficient than proofs of leaf update. This construction comprises of a ranged-
existence-proof of the old leaf values coupled with the old leaf values themselves. The verifier first runs
an existence-proof of the old leaf values to ensure the root old is recovered. The verifier then maps
the digests in the proof to their corresponding nodes in a partial merkle-tree, by calculating the path of
that proof. It then proceeds to iteratively update the tree for every new appended leaf value. It
concludes by verifying that the root of the updated tree matches the expected new root. If it does, it
proves that the only change from to was the update of the leaves. This construction is provided in

the reference implementation 2 .

3.9 Insert
An insert-proof is a general proof of insertion into the tree leaf-set. This is a high-level proof composed of
base proofs 3.2 - 3.5. it proves that the neighbourhood of leaves are inserted after and before .

Fig 6: Insert Proof

Proving that a tree with root had leaves inserted after and before resulting in root is
constructed as follows:

1. A ranged-existence-proof of in .

2. A right-delete proof of leaves from resulting in root .

3. An append-proof of leaves to resulting root .

4. An append-proof of to resulting in .

af://n225
af://n227

In practice, an insert proof would be implemented as an ordered sequence of the sub-proofs. A verifier
would evaluate the proof by evaluating the sub-proofs in order, ensuring each step verifies to the root
that was the output of the preceding step (the first step verifies to to start root).

3.10 Delete
A delete-proof is a general proof of deletion from the tree leaf-set. Specifically, it proves that a
neighbourhood of leaves after and before was removed.

Fig 7: Delete Proof

Proving that a tree with root had leaf neighbourhood removed resulting in the neighbourhood
joined to neighbourhood as follows from:

1. A ranged-existence-proof of in .

2. A right-delete proof of leaves from resulting in root .

3. An append-proof of to resulting root .

3.11 Subset
A subset-proof is a proof that a neighbourhood of leaves in one tree exist in another. Whilst similar in
principle to a ranged-existence proof, a subset proof makes no statement about individual leaves in the
neighbourhood, only about the neighbourhood itself. A trivial example of a subset-proof is a merkle-root
comparison. If two trees share the same root then they share the same leaves (and all other nodes). We
extend this concept for all perfect nodes in a tree. By showing the existence of such a node in both trees,
it necessarily implies the existence of all their leaf descendants in both trees (by virtue of lemma 2.3.6).

Subset proofs only work for leaf-descendants of perfect-nodes which is generally restrictive. As a result, a
subset proof is a special-case security proof with a limited domain of applicability. To construct this
proof, consider two trees and sharing a common leaf subset
. The prover must find the antecedent node such that the left-most and right-most leaf
descendant indices are and respectfully. Similarly for the other tree, the provider finds antecedent

 for left/right leaf descendants and . Use lemma 2.3.6 to get ,
and and . Assuming and can be solved, the prover sends both their
existence-proofs of and coupled with digest of , to the verifier.

af://n248
af://n261

The verifier proceeds to verify the existence of in and in by assuming = . If both both proofs
pass then it has been proven that exists in both trees and their respective offsets.

REMARK 3.11.1: Due to the requirement that be the leaf descendants of a perfect-node, it greatly
restricts the possible sets applicable for this proof due to odd index numbers and neighbourhoods
overlapping subtree leaf-boundaries. Furthermore, when is in a different location in , the restriction
exacerbates by applying twice (once per tree). Any attempt to split the neighbourhood into acceptable
sub-neighbourhoods rapidly converges to splits, one per node. Thus such attempts are equivalent
to a ranged-existence proof.

3.12 Substitution
Following from subset-proof, a substitution proof is a proof that a neighbourhood of leaves was
replaced by another neighbourhood (of equal magnitude) with all other leaf nodes remaining
invariant. This is similar in construction to the subset-proof but simpler in that the prover only solves for
antecedent node of the neighbourhood once, and just sends the existence proof of in to the
verifier (along with the old and new digest values for and). The old value denotes the commitment
to the old neighbourhood whereas a commitment to neighbourhood . The verifier begins by
validating the existence of in and then re-running the proof using . If the result matches the post-
transformation root , the proof has shown that replaces in .

REMARK 3.12.1 Like subset-proof, the substitution-proof suffers from limited domain of applicability.
However, since only one tree is involved it less severe thus could find utility in specialized cryptographic
constructions and consensus workflows.

4. Tree Implementations
This section discusses merkle-tree implementations of relevance. A "flat-tree" is described which permits
efficient storage of a tree as a single contiguous block of memory. Appending or right-deleting leaves
grow and shrink the memory buffer without invalidating other nodes. In addition, a merkle-tree
implementation called "long trees" is discussed which permit unboundedly large tree construction with
negligible storage.

4.1 Flat Coordinates
Fig 8: Float Coordinates

af://n266
af://n269
af://n271

In this section, a system of merkle-coordinates is constructed that flatten the 2-tuple into a single
positive integer value . The purpose of these flat coordinate addressing is to permit storage of a
dynamic merkle-tree in contiguous memory. In other words, as new nodes are appended to the tree the
node buffer can be expanded without affecting prior node values, and similarly when shrinking.

The flat-coordinate line traces out the tree nodes in an interesting diagonal "wave" pattern emanating
from and covering the perfect nodes in ordered sequence. This ordered set of nodes is coined the
"ordinal nodes" of the tree. Imperfect nodes are not traced by flat coordinates as they are transient by
nature and thus subject to change with the tree as it is appended (unlike ordinal nodes) . As a result,
imperfect nodes must be computed on-the-fly. Flat coordinates solve the memory fragmentation
problem when dealing with large trees. Due to their high node count, allocating each node separately
can lead to excessive memory fragmentation which exhausts memory by future preventing allocations.
This can lead to out-of-memory issues despite such memory being available.

The coordinate transformations from merkle-coordinates to flat coordinates is a function
 and described by algorithm 4.1.2. Similarly, the inverse transformation from flat

coordinates to merkle-coordinates is described by algorithm algorithm 4.1.3.

Refer to the following C# algorithms for algorithm implementations:

Algorithm 4.1.2 To Flat Index

public static ulong ToFlatIndex(MerkleCoordinate coordinate) {

 // Step 1: Find the closest perfect root ancestor

 var numNodesBefore = (1UL << coordinate.Level + 1) * ((ulong)coordinate.Index + 1)

- 1;

 var rootLevel = Array.BinarySearch(PerfectLeftMostIndices, numNodesBefore);

 if (rootLevel < 0)

 rootLevel = ~rootLevel;

 var perfectRoot = MerkleCoordinate.From(rootLevel, 0);

 Debug.Assert(perfectRoot.Level >= coordinate.Level);

 // Step 2: calculate the path to root, tracking left/right turns

 var flags = new int[perfectRoot.Level - coordinate.Level];

 for (var i = 0; i < flags.Length; i++) {

 flags[i] = coordinate.Index % 2;

 coordinate = MerkleCoordinate.From(coordinate.Level + 1, coordinate.Index / 2);

 }

 // Step 2: Traverse from root down to the node, adjusting the flat index along the

way

 var flatIX = PerfectLeftMostIndices[rootLevel];

 for (var i = 0; i < flags.Length; i++) {

 if (flags[flags.Length - i - 1] == 0)

 // moving to left child, so flat index decreases by the difference between

the corresponding roots.

 flatIX -= PerfectLeftMostIndices[rootLevel - i] -

PerfectLeftMostIndices[rootLevel - i - 1];

 else

 flatIX--; // moving to right child, so flat index decreases by one

 }

 return flatIX - 1; // decrease by one, since 0-based indexing

}

af://n278

Algorithm 4.1.3 From Flat Index

Noting that,

Definition 4.1.4 Ordinal Nodes

The ordinal nodes of a merkle-tree are the set where is
algorithm 4.3.1 and the cardinality of the ordinal nodes.

Lemma 4.1.5 Cardinality of Ordinal Nodes

For merkle-tree with leaf-count , the cardinality of the ordinal nodes of is
where is the pow-2 partition of .

Proof: This follows directly from Lemma 2.5.3: Perfect Nodes.

MerkleCoordinate FromFlatIndex(ulong flatIndex) {

 flatIndex++; // algorithm below based on 1-based indexing

 var rootLevel = Array.BinarySearch(PerfectLeftMostIndices, flatIndex);

 if (rootLevel < 0)

 rootLevel = ~rootLevel; // didn't find, so take next larger index

 var index = 0;

 var rootFlatIX = PerfectLeftMostIndices[rootLevel];

 while (flatIndex != rootFlatIX) {

 var isRight = flatIndex > rootFlatIX >> 1;

 index = 2 * index + (isRight ? 1 : 0);

 rootFlatIX = PerfectLeftMostIndices[--rootLevel];

 if (isRight)

 flatIndex -= rootFlatIX;

 }

 return MerkleCoordinate.From(rootLevel, index);

}

PerfectLeftMostIndices = new ulong[63];

for (var i = 1; i < 64; i++) {

 PerfectLeftMostIndices[i - 1] = (1UL << i) - 1;

}

af://n280
af://n284
af://n286
af://n297

4.2 Long Trees
A long-tree is a specialized merkle-tree suitable for tracking an unbounded lists of objects in

 space and time complexity. Long merkle-trees are suitable for use-cases where very large
trees need to be constructed rapidly and/or maintained indefinitely. These mutations occur through
append-only operations (although not strictly required). Example use-cases for these trees include
efficient "big block" construction in blockchain consensus systems as well as high-frequency blockchains.

Under the hood, long-trees only maintain the sub-roots of the tree and nothing else. When appending a
leaf node the sub-roots are mutated in accordance with algorithm 3.5.1. Long-trees can only be mutated
intrinsically through leaf append transformations. By this we mean that by knowing only the sub-roots
it's only possible to append to the tree, not delete, insert, etc. However, through the use of security
proofs constructed by fuller tree implementations (such as long-trees), the tree can be mutated
arbitrarily. To achieve this, the security proofs should never refer to merkle-roots directly but always to
their sub-roots. The merkle-root can be easily calculated from the sub-roots when needed, however the
sub-roots can never be recovered from the root. Thus a system of proofs that bundles the sub-roots in
place of roots allows a long-tree to adopt those sub-roots after verifying the proofs. It's important to note
that whilst long-trees can mutate arbitrarily through security proofs, the proofs themselves must be
constructed by trees that maintain fuller node sets. Thus a consensus network could not comprise
exclusively of long-tree nodes. They necessarily require nodes which maintain the full tree (such as flat-
trees) in order to construct the general mutation proofs which can be verified by long-tree peers. The

reader is referred to the reference implementation 3 for specification.

REMARK 4.2.1 A hybrid implementation of long-tree that tracks a neighbourhood of leaves (the last
leaves) would allow all the peers in P2P consensus network to verify and construct a full set of dynamic
merkle-proofs for that neighbourhood. With this approach, peers in P2P consensus network can be
comprised of peers that all use a hybrid long-tree implementation. Use-cases here include "deletable
blockchains" with checkpoints. The the view of author, long-trees are a significant innovation in the field
of merkle-trees.

4.3 Flat Trees
A flat tree is a merkle-tree implemented under the hood using flat coordinates. A flat-tree tracks all it's
ordinal nodes in a contiguous block of memory. If is the leaf-count of a tree, the number of perfect
nodes is where is the pow-2 partition of (lemma 4.1.5). Thus if is the byte-
length of the underlying cryptographic hash function , a flat-tree with leaves consumes a buffer of
size bytes. A flat-tree also maintains a bit vector of length that tracks which ordinal nodes are
"dirty" and require recalculation from their child nodes digests. Flat-trees never store imperfect/bubble-
up nodes due to their transience, and are instead computed on the fly if needed. Thus when fetching a
node at , if the coordinate is imperfect its digest is calculated recursively by fetching it's child-nodes
and node hashing them. When fetching an ordinal (perfect) node, then the flat coordinate is
determined where is given by algorithm 4.1.2. Then the dirty bit for is examined in the bit vector. If
the node value is already calculated and fetched from the buffer at offset with length . If the dirty bit
is then it's child nodes for are recursively fetched (ensuring they too are calculated). The left
child and right child are then node-hashed via and the buffer at is updated with the value.
The dirty bit set to , and the value returned.

af://n297
af://n301

1. Ralph Merkle. "Secrecy, authentication and public key systems / A certified digital signature". Ph.D. dissertation, Dept. of Electrical Engineering,
Stanford University, 1979. Url: http://www.merkle.com/papers/Certified1979.pdf ↩

2. Github. Hydrogen Framework, Dynamic Merkle-Trees implementation. Url: https://github.com/Sphere10/Hydrogen/tree/master/src/Hydrogen/Merk
le ↩ ↩ ↩ ↩ ↩ ↩

3. Github. Hydrogen Framework, Long-Tree implementation. Url: https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/LongMer
kleTree.cs ↩

4. Github. Hydrogen Framework, Flat-Tree implementation. Url: https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/FlatMerkle
Tree.cs ↩

Inserting, updating and deleting from the leaf-sets requires similar maintenance of the dirty bit vector
and manipulating of ordinal nodes. These algorithms are straightforward but cumbersome thus omitted

from this paper. The reader is referred to the reference implementation 4 for specification.

5. Reference Implementation
This section contains an overview of the full reference implementation 2 which accompanies this paper.
The reference implementation is complete and is thoroughly tested.

Of particular relevance are the following source files:

The MerkleMath.cs file which implements most of the algorithms and proofs described in this
paper: https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/MerkleMath.cs

The Pow2.cs file which implements the powers-of-2 algorithms such as reduce : https://github.co
m/Sphere10/Hydrogen/blob/master/src/Hydrogen/Maths/Pow2.cs

The LongMerkleTree.cs file which implements the memory-efficient long-tree implementation of
dynamic merkle-trees:
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/LongMerkleTree.cs

The FlatMerkleTree.cs source file which implements the contiguous-memory flat-tree

implementation of dynamic merkle-trees:
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/FlatMerkleTree.cs

6. References

http://www.merkle.com/papers/Certified1979.pdf
https://github.com/Sphere10/Hydrogen/tree/master/src/Hydrogen/Merkle
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/LongMerkleTree.cs
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/FlatMerkleTree.cs
af://n304
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/MerkleMath.cs
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Maths/Pow2.cs
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/LongMerkleTree.cs
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/FlatMerkleTree.cs
af://n317

	Dynamic Merkle-Trees
	1. Introduction
	2. Merkle-Tree Construction
	Fig 1
	2.1 Formal definition
	2.2 Root
	2.3 Descendants
	Fig 2
	Lemma 2.3.1: Left-most descendant
	Lemma 2.3.2: Right-most perfect descendant
	Lemma 2.3.3: Right-most descendant
	Remark 2.3.4
	Theorem 2.3.5: Descendants
	Lemma 2.3.6: Leaf descendants
	Lemma 2.3.7: Descendant Equality
	2.4 Powers of 2
	Theorem 2.4.1 Powers of 2 Partition
	Definition 2.4.2: Pow-2 Partition
	Lemma 2.4.3: Strictly Decreasing
	Algorithm 2.4.5 CalcPow2Partition
	Algorithm 2.4.6 Reduce
	Table 2.4.7 Pow-2 Partitions of N
	Theorem 2.4.8: Integer Addition in terms of Reduce
	Theorem 2.4.9: Integer Multiplication in terms of Reduce
	2.5 Perfect Trees
	Definition 2.5.1: Perfect tree
	Lemma 2.5.2: Perfect sub-trees
	Lemma 2.5.3: Perfect Nodes
	2.6 Sub-Roots
	Lemma 2.6.1: Sub-Roots
	Lemma 2.6.2: Sub-Root Invariance
	Remark 2.6.3
	Theorem 2.6.3: Sub-Root Aggregation
	Algorithm 2.6.4: Aggregate Roots
	2.7 Node Traversal
	Fig 3

	3. Security Proofs
	3.1 Proof Construction
	3.2 Existence
	Fig 4: Existence proof example
	Fig 5: Existence proof example 2

	3.3 Ranged Existence
	3.4 Right Delete (Consistency)
	3.5 Append
	Algorithm 3.5.1 Append Leaf

	3.6 Remove
	3.7 Update
	3.8 Ranged Update
	3.9 Insert
	3.10 Delete
	3.11 Subset
	3.12 Substitution

	4. Tree Implementations
	4.1 Flat Coordinates
	Algorithm 4.1.2 To Flat Index
	Algorithm 4.1.3 From Flat Index
	Definition 4.1.4 Ordinal Nodes
	Lemma 4.1.5 Cardinality of Ordinal Nodes

	4.2 Long Trees
	4.3 Flat Trees

	5. Reference Implementation
	6. References

