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Dynamic Merkle-Trees  

Abstract

This paper presents a formal construction of dynamic merkle-trees and a deep-dive into their 
mathematical structure. In doing so, new and interesting artefacts are presented as well as novel security 
proof constructions that enable proofs for a full range of tree transformations including append, update 
and deletion of leaf nodes (without requiring knowledge of those nodes). Novel concepts are explored 
including "perfect trees",  "sub-trees", "sub-roots" and "flat coordinates" through various lemmas, 
theorems and algorithms. In particular, a "flat-tree" implementation of merkle-trees is presented suitable 
for storing trees as a contiguous block of memory that can grow and shrink from the right-side. Of note, 
a "long-tree" implementation is presented which permits arbitrarily large tree construction in 

 space and time complexity using a novel algorithm. Finally, a reference implementation 
accompanies this paper which contains a fully implemented and thoroughly tested implementation of 
dynamic merkle-trees.

1. Introduction  
Merkle-trees are a cryptographic construction that enable a collection of objects to be hashed together in 
a way that preserves information about their individual membership within the collection.  Merkle-trees 
permit statements about the collection, and their objects, to be verified without knowledge of the entire 
set of objects but only of the objects in question. This is achieved through formally constructed security 
proofs. The ability to verify statements about the tree without needing to store (or have knowledge of) 
the tree is the primary innovation and essential purpose of merkle-trees. For example, proving that a 
leaf-node exists within a merkle-tree requires knowing only the root, the leaf and the path from that leaf 
to the root. The path here comprises an "existence-proof" of the leaf in the tree. The verifier can 
cryptographically prove the existence of the leaf in the tree by evaluating the hash-path and comparing 
the end result with the known root. If it matches, the object is a leaf of the tree. 

This initial idea was originally proposed 1  by Ralph Merkle for the specific purposes of overcoming the 
limitations of "one-time keys" in the Lamport/Winternitz digital signature schemes. He found he was able 
to transform a "one-time" scheme into a "many-time" scheme by encoding multiple one-time keys as 
leaves in a merkle-tree. The root of the tree served as the many-time key which represented a 
cryptographic commitment to all the one-time keys (the leaf nodes). Each signature chose a one-time key 
and provided an existence-proof of that key along with the digital signature signed by that key. By 
choosing different one-time keys for each signature, the one-time signature scheme thus transformed 
into an equivalent many-time scheme.

Since that time, merkle-trees have found a wide domain of applicability. Whilst primarily used in 
cryptography, many areas of computer science utilize merkle-trees including database management 
systems, certificate management, peer-to-peer file streaming, blockchains, distributed ledger technology 
many other established and emerging fields.
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This paper extends the primary utility of merkle-trees not just with new proofs for membership and 
consistency but with general purpose leaf-set transformations including update, delete, append, insert, 
to name a few. These proofs are sufficient to compose all general leaf-set transformations. Also, a  "flat 
coordinate scheme" for merkle-trees is provided that allows addressing of nodes in a 1-dimensional 
contiguous block of memory suitable for unbounded trees. Of particular achievement is a  tree 
implementation with  space and time complexity suitable for building arbitrarily large 
merkle-trees efficiently.

One of the issues with merkle-trees are their lack of formalization in the literature. In the opinion of the 
author, this arises from a certain complexity associated with an obscure aspect of the merkle-tree 
construction. Specifically, it is in how authors deal with odd numbered leaf sets (or level sets in general). 
This seemingly obscure concern turns out to be fundamentally important aspect of merkle-trees, as 
shown in this paper. Whereas other treatments ignore this issue, by-pass the issue entirely by assuming 
"perfect trees" or implement ad hoc work-arounds like double-hashing odd-indexed end nodes as 
Bitcoin does, this paper tackles the problem and it's transitive complexity head-on. In doing so, 
interesting new aspects of merkle-trees are revealed and explored and whose insights are employed in 
novel algorithm development.

2. Merkle-Tree Construction  
A merkle-tree is a data-structure whose nodes form a graph similar to a binary tree, as depicted by Fig 1. 
Level 0 is the bottom level and these nodes comprise the "leaf nodes". Every leaf node is constructed as 
a cryptographic hash digest of a corresponding object in a collection (not shown). Level 1 is constructed 
by sequentially hashing the concatenation of two "child nodes" from level 0. If no pair can be found for 
the last node, it "bubbles up" without hashing as shown for . Each subsequent level builds upon the 
previous level until a singular top node is found, called the merkle-root.  

Fig 1  
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In Fig 1, every node in the merkle-tree can be addressed by a 2D  coordinate. The -dimension is 
called the "level" and the -dimension the "index" at the level. By convention we use  notation. As 
can be seen, a merkle-tree contains "perfect sub-trees" which are themselves merkle-trees whose leaves 
are subsets with cardinalities equal to powers of 2.

 

2.1 Formal definition  
For any sequence of  binary objects  where  and cryptographic hash 
function , the merkle-tree  is defined as the 
piece-wise chaining-function:

 

In this definition, a merkle-tree  maps a sequence of objects  and two positive integers  to a 
hash digest . The arguments  are the "merkle-coordinates" of a node (digest) in the merkle-
tree and are always denoted as super/subscripts of  (so as to convey their equivalence relation / 
chaining function nature). However, in this treatment they are strictly arguments of .

REMARK In this notation, when the argument  of  is omitted it shall always be implied. For example 
the notation  is equivalent to  . The term  shall be interpreted as "the node at  for 
the merkle-tree  of ".

2.2 Root  
The merkle-root  is the most fundamentally important node in a merkle-tree and represents a 
cryptographic hash commitment to the entire tree. Security proofs that verify statements about trees 
almost always verify to the root.

Definition 2.2.1: Root

The root of a merkle-tree  with height  is the node . QED.

2.3 Descendants  
The "descendants" of a node are the set of all transitive child nodes (i.e. child, grand child, great grand-
child, etc) up to an until the leaf nodes.
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Fig 2  

 

In Fig 2, the nodes ,  and  are the ,  and  left-most descendants of  respectfully. On the 
right side, the nodes ,  and  are the ,  and  right-most descendants of  respectfully. The 
non-existent node  is the  right-most perfect descendant of . Had it been a node of the tree, it 
would also be the right-most descendant (and the tree would be "perfect"). The left-most and right-most 
leaf-descendant's of  are  and  respectfully. The leaf-descendants of  are neighbourhood of 
leaves from  to  inclusive.

Lemma 2.3.1: Left-most descendant  

For any node  the  left-most descendant is the node  .

Proof: Node  has left-child , left-most grand-child  and left-most great grand-child  

. It follows that the  left-most child is thus   . QED.

Lemma 2.3.2: Right-most perfect descendant  

For any node  the  right-most perfect descendant  is the node  . 

Proof: Node  has right-child , right-most grand-child , right-most great 

grand-child . Assuming no bubble-up nodes, it 

follows the  right-most descendant  is thus . QED.

Lemma 2.3.3: Right-most descendant  

For any node  the  right-most descendant  is the node   where  is the leaf 

count. 

Proof: The  right-most descendant is either the  right-most perfect descendant or the last node at 
level .  It follows from lemma 2.3.2 that in the absence of bubble-up nodes, the  right-most 
descendant index is . In the presence of a bubble-up nodes, the index is clipped to the last 
node at level  which, through definition 2.1, becomes  . By taking the 

 of both values, the right-most descendant determined. QED.

Remark 2.3.4  

The distinction between a "right-most perfect descendant " and a "right-most descendant " is that the 
former assumes the descendants are all non-trivial nodes (i.e no bubble-up) whereas the latter does not. 
For "perfect trees" discussed below, there is no distinction between the two. However, as trees are 
generally imperfect such a distinction is generally needed. Conceptually, a right-most descendant is the 
right-most perfect descendant  clipped to the end the level (hence the  in the equation). 
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For example, in Fig 2 the nodes  and  are the  and  left-most descendants of  respectively. On 
the right-side,   is the  right-most descendant and  right-most perfect descendant. However, the 

  right-most descendant is  and the right-most perfect descendant  does not exist ( ). QED.

Theorem 2.3.5: Descendants  

The descendants of node   is the set is  defined as:

Proof: For every level below , aggregate via set union the neighbourhood from the left-most to right-
most descendent nodes (inclusive) at that level.  QED.

Lemma 2.3.6: Leaf descendants  

The "leaf-descendants" of  is the set  where:

Proof: The leaf-descendant equations derive from lemmas 2.3.1 - 2.3.3 setting . The leaf-
descendants  are thus the neighbourhood of nodes from the left-most to right-most leaf descendants 
(inclusive). QED.

Lemma 2.3.7: Descendant Equality  

If a node exists in two trees then so does it's descendants.

Proof: Let   and  be different nodes in different trees such that . It follows from lemma 
2.3.6 that   where  and  are the leaf-descendants of  and  respectively. QED.

 

2.4 Powers of 2  
Theorem 2.4.1 Powers of 2 Partition  

Any number  can be written as a unique sum of the powers of 2 such that  for a set 
of exponents  where .

Proof: Let . This sum contains  terms. By applying the 
reduction  once the sum reduces to  terms. By applying the reductions 

  for all  repeatedly,  the number of terms in the sum converges to  
where  . That  is bound from  follows from the case when , yielding a sum for 

 having no terms. That  is bound to  arises from the fact that iteratively dividing any  by  
more than  times yields no additional terms in the sum. That this is true can be seen from 

.  Thus the exponents of these  terms are the set  
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where  is the smallest possible number since no further reductions are possible. Uniqueness is proven 
by contradiction. Suppose there exists another set of  irreducible exponents  where  

 and .  This would imply that  and  such that 
, an impossibility by virtue of exponentiation being bijective over .  Thus  is unique. 

QED.

Definition 2.4.2: Pow-2 Partition  

The set  from theorem 2.4.1 is herein coined the "powers of 2 partition of " (aka "pow-2 partition") 
and chosen in descending order. In natural language, the set  are the exponents of the terms of a 
partition of  whose terms are all powers of 2 and, that out of all such partitions, is the one with the 
least cardinality. The set  are the exponents of the terms in this partition and chosen by convention in 
decreasing order. QED.

See table 2.4.7 for examples of pow-2 partitions.

Lemma 2.4.3: Strictly Decreasing  

The powers-of-2 partition of  are a strictly decreasing set  such that  for all . 

Proof: By definition  is an ordered decreasing set thus . To be strictly decreasing then 
. If it is assumed that two adjacent exponents where equal such that   then   

. As this is itself a power of 2, one could replace both exponents 
 ,   with single exponent  in . This would necessarily shorten the cardinality of  thus 

contradicting the requirement of definition 2.4.2 that it be the partition with least cardinality. Thus since 
no adjacent exponents in  can ever equal by virtue of  being defined as the shortest partition, it 
follows  is strictly decreasing. QED.

Algorithm 2.4.5 CalcPow2Partition  

Calculates the powers of 2 partition of . Returns the set  such that   where  is the 
partition of least cardinality in decreasing order. Example, for  the result is  since 

. 

 1: algorithm CalcPow2Partition

 2:   INPUT:

 3:      N : Integer              

 5:   OUTPUT

 6:      c : array of integer       ; positive integr (0 <= N <= Max)

 7:   PSEUDO-CODE:

 8:      let i = 0   

 9:      while ( N >= 1 )

10:         let x = floor(log_2(N))

11:         if x = log_2(N)         ; mantissa is zero 

12:            c[i] = x

13:            i = i + 1

14:            N = N - 2^x

15: end algorithm
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Integers 0 - 16 Integers 244 - 260 Integers 983-999

0:  
1: 0 
2: 1 
3: 1, 0 
4: 2 
5: 2, 0 
6: 2, 1 
7: 2, 1, 0 
8: 3 
9: 3, 0 
10: 3, 1 
11: 3, 1, 0 
12: 3, 2 
13: 3, 2, 0 
14: 3, 2, 1 
15: 3, 2, 1, 0 
16: 4

244: 7, 6, 5, 4, 2 
245: 7, 6, 5, 4, 2, 0 
246: 7, 6, 5, 4, 2, 1 
247: 7, 6, 5, 4, 2, 1, 0 
248: 7, 6, 5, 4, 3 
249: 7, 6, 5, 4, 3, 0 
250: 7, 6, 5, 4, 3, 1 
251: 7, 6, 5, 4, 3, 1, 0 
252: 7, 6, 5, 4, 3, 2 
253: 7, 6, 5, 4, 3, 2, 0 
254: 7, 6, 5, 4, 3, 2, 1 
255: 7, 6, 5, 4, 3, 2, 1, 0 
256: 8 
257: 8, 0 
258: 8, 1 
259: 8, 1, 0 
260: 8, 2

983: 9, 8, 7, 6, 4, 2, 1, 0 
984: 9, 8, 7, 6, 4, 3 
985: 9, 8, 7, 6, 4, 3, 0 
986: 9, 8, 7, 6, 4, 3, 1 
987: 9, 8, 7, 6, 4, 3, 1, 0 
988: 9, 8, 7, 6, 4, 3, 2 
989: 9, 8, 7, 6, 4, 3, 2, 0 
990: 9, 8, 7, 6, 4, 3, 2, 1 
991: 9, 8, 7, 6, 4, 3, 2, 1, 0 
992: 9, 8, 7, 6, 5 
993: 9, 8, 7, 6, 5, 0 
994: 9, 8, 7, 6, 5, 1 
995: 9, 8, 7, 6, 5, 1, 0 
996: 9, 8, 7, 6, 5, 2 
997: 9, 8, 7, 6, 5, 2, 0 
998: 9, 8, 7, 6, 5, 2, 1 
999: 9, 8, 7, 6, 5, 2, 1, 0

Algorithm 2.4.6 Reduce  

Reduces an arbitrary sum of powers of 2 to an ordered pow-2 partition of the summation. This is the 
process used in theorem 2.4.1.

Integers when represented as powers of 2 partitions follow an interesting pattern.

Table 2.4.7 Pow-2 Partitions of N  

 1: algorithm Reduce

 2:   INPUT:

 3:      N : Array of Integer 

 4:   OUTPUT:

 5:      M : Array of Integer

 6:   PSEUDO-CODE:

 7:      let finished = false

 8:      while NOT finished

 9:         for i = Length(N) - 1 to 1

10:            if N[i-1] < N[i]

11:               SWAP N[i-1], N[i]

12:               goto 8

13:            if N[i-1] = N[i]

14:               INCREMENT N[i-1]

15:               N.RemoveAt(i)

16:               goto 8

17:         finished = true

18:      M = N

29: end algorithm
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The  algorithm allows integer arithmetic to be expressed purely in terms of increments, bit-shifts, 
comparisons and memory read/writes. It is the opinion of the author that this construction is significant 
(but unsure if necessarily novel). For one, it greatly simplifies Big Integer implementations by reducing 
their representations to pow-2 partition forms. Big Integer arithmetic simplifies to primitive set 
transformations and a some iterations of the  function. For example, two add two numbers one 
need only  the concatenation of their pow-2 partitions, as shown by theorem theorem 2.4.8. 
Similarly to multiply two integers, one need only  the cartesian product of the pow-2 partitions, as 
shown by theorem 2.4.9. With these two approaches, a Big Integer implementation (properly 
implemented) ought to improve performance significantly compared to existing implementations. This 
follows by virtue of not requiring any underlying string manipulations or aggregation of smaller integer 
arithmetic. Also, from a fundamental number theory point of view, a description of arithmetic in terms if 
more primitive operations illuminates insight into the nature of numbers themselves.

Theorem 2.4.8: Integer Addition in terms of Reduce  

For all  and , if   then  where  are the pow-2 
partitions of  respectfully.

Proof: Start with  and  . It follows that  
where  . Here  represents the concatenation of  and  and gives a sequence of exponents 
such that . To recover , the sequence  is reduced to pow-2 partition form through 

. QED.

Theorem 2.4.9: Integer Multiplication in terms of Reduce  

For all  and  , if   then  where   are the pow-2 
partitions of  respectfully and   denotes a cartesian product 
taking the sum of the pairs.

Proof: Start with  and  . It follows 
. Through distributive and 

exponent law,  where 
  . Here  represents the cartesian product taking the sum of the pairs. To recover , the 

sequence  is reduced to pow-2 partition form through . QED.

2.5 Perfect Trees  
A interesting characteristic of merkle-trees is their relationship to what are hereby coined "perfect trees".

Definition 2.5.1: Perfect tree  

A perfect-tree is a merkle-tree having  leaves and height  such that . QED.

Perfect trees have special properties as illustrated by Fig 1. By inspection alone, one can see that a 
generally imperfect merkle-trees are composed from perfect sub-trees whose roots can be aggregated 
to determine the merkle-root. Also, it's clear that perfect sub-trees remain invariant after leaves are 
appended to the tree.  That a merkle-tree is in fact such an aggregation of such perfect sub-trees is 
shown in theorem 2.6.3. 
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Lemma 2.5.2: Perfect sub-trees  

A merkle-tree  with  contains an ordered set of perfect sub-trees  where  is the 
pow-2 partition of  and the height of .

Proof: For every exponent  construct a perfect tree  having  leaves, let this set of perfect trees be 
. Choosing the leaves of  as  where  maps all 

leaves of  via bijection to the union of all the leaves in . Through lemma 2.3.7 it follows that the 
antecedents of the union of the leaves in  are contained within .  Thus all nodes in  are fully 
contained in , in order, noting that only the imperfect bubble-up nodes of  are not in any of . QED.

Lemma 2.5.3: Perfect Nodes  

A merkle-tree  with  leaves has  perfect nodes where  is the pow-2 partition of .

Proof: A perfect tree  of height  with  leaves has total  nodes. This follows from the 
relation . The sum on the left is aggregates the level count for each perfect tree. As 
per lemma 2.5.2, a merkle-tree is composed of perfect-trees  where the height of 

.  Thus by summing the node count for all  we get  which are the count of all the 
perfect nodes in . QED.

 

2.6 Sub-Roots  
An important aspect of perfect sub-trees is the role their roots play in the larger imperfect parent tree.  
The roots of perfect sub-trees are herein called the "sub-roots" of the parent tree and have special 
properties that are used in security proofs, particularly in append-proofs which prove a leaves were 
appended by transformation of the sub-roots alone.

Lemma 2.6.1: Sub-Roots  

The sub-roots  of a merkle-tree  with  leaves are the nodes  where  

are the perfect sub-trees of  and  the exponents of the powers-of-2 partition of .

Proof:  is the set of merkle-roots for all . The merkle-root of  is found at -coordinate  and 
-coordinate  on tree . QED.

The blue nodes in Fig 1 illustrate the sub-roots and how their values directly aggregate to merkle-root. 
This aggregation chain is depicted by the orange rectangle and comprised of nodes which are bubbled-
up sub-roots. Since this orange rectangle appears for every imperfect tree, it suggests that the merkle-
root can be calculated directly from the sub-roots. Indeed this is proven in by theorem 2.6.3 and 
implemented by algorithm 2.6.4.

Lemma 2.6.2: Sub-Root Invariance  

A sub-root   of a merkle-tree  with  leaves remains invariant after a leaf-append transformation to 
 leaves.

Proof: This follows from remark 2.3.4 in that since the  is a sub-root, it is a perfect node and it's right-
most leaf-descendant  must exist in the pre-transformation tree. Since the post-

transformation tree only appends  leaves after , it necessarily implies the leaf descendants 
of  remain unaltered. Thus by lemma 2.3.7, so do all antecedent nodes. QED.
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Remark 2.6.3  

Lemma 2.6.2 does not suggest  remains a sub-root in the post-transformation tree, only that it's value 

remains invariant.

Theorem 2.6.3: Sub-Root Aggregation  

If  are the sub-roots of a merkle-tree  then the merkle-root  can be calculated as 
 where  is a chaining function defined as:

See Algorithm 2.6.4: Aggregate Roots for a simple implementation of .

Proof:  First it is shown that the sub-roots alone are sufficient to compute the root. This follows from the 
fact that the union of all the leaf descendants of the sub-roots encumber all the non-trivial nodes of the 
tree except the sub-roots (and bubble-up's of the sub-roots). Another way is by contradiction, since if 
some node  not a sub-root were also required to calculate  then the hash-chain of  would 
necessarily include  twice violating definition 2.1. This follows since  being a descendant of a sub-root 

, would appear twice in the hash-chain of  first as a part of 's sub-chain and independently. 
Therefore, let  be mapping from the sub-roots  to the root  such that 

.  In the case where only a single sub-root exists  and the is , thus 
.  For the case when , using definition 2.1 of a parent node we derive 

 for some ordering .  In other 
words, it is a hash-chain of the sub-roots in an explicit ordering. To determine this ordering, we observe 
that the sub-roots  map along coordinates of  in a strictly decreasing manner from left to right, top to 
down. That this is so follows from the fact that the levels of the sub-roots of  are a bijection to the pow-
2 partition of the leaf count of , a strictly decreasing sequence (lemma 2.4.3). Therefore, the right-most 
sub-root is the lowest in the tree, the second right-most is the second lowest, et al.  Since hash-chains 
start from the leaf level, it follows that the lowest sub-root is first in the hash-chain, the second lowest is 
second, et al. We thus solve . Plugging back into  gives 

. Rewriting using transposed node-hasher  gives 
. Finally, observe that  is the 

function  parameterized by , an index into the hash chain.  Thus it follows that the  would be the last 
index in that chain, hence .  QED.
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Algorithm 2.6.4: Aggregate Roots  

Calculates the merkle-root from the sub-roots as per theorem 2.6.3.

2.7 Node Traversal  
Most merkle-trees are imperfect and will contain at least one bubble-up node. In the Fig 3 below, the leaf 
node  bubbles up to become the root 's right-child.  In proof constructions, these bubble-up paths 
are, for the most part, implicitly traversed.  In order to distinguish between traversal or not, the following 
terminology is employed: "logical left-child", "logical right-child", "logical sibling" and "logical parent". In this 
context, "a logical relationship" denotes that the bubble-up path is implicitly traversed until the first non-
bubbled up node is encountered. For example, in Fig 3 the sibling of  is  but the logical sibling is . 
The right-child of  is  but the logical right-child is . Similarly, the logical left-child of  is  and 
the logical parent of ,  and  is .

Fig 3  

 

 

 

 

 

 

 1: algorithm CalcRoot

 2:   INPUT: 

 3:      S : array of digest           ; sub-roots

 4:   OUTPUT:

 5:      Result : digest

 6:   PSEUDO-CODE:

 7:      Result = S[^1]                ; ^1 is last index  

 8:      for i = Length(s) - 2 to 0    ; start from second last

 9:         Result = H(S[i], Result)   ; transposed H^T(l,r) = H(r,l)

10: end algorithm
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Number Proof Name Description

3.2 Existence Proof a node exists within a tree

3.3 Ranged Existence Proof a subset of leaves* exists within a tree

3.4
Right Delete
(Consistency)

Proof that leaves were deleted from right of a tree

3.5 Append Proof that leaves were appended to the right of a tree

3.6 Remove Proof a count of leaves from removed from the right of a tree

3.7 Update Proof that a single node was updated within a tree

3.8 Ranged Update Proof that a subset of leaves* were updated within a tree

3.9 Insert
Proof that a neighbourhood of leaves were inserted
arbitrarily within a tree

3.10 Delete
Proof that a neighbourhood of leaves were deleted arbitrarily
from a tree

3.11 Subset Proof that a neighbourhood of leaves** exists within a tree

3.12 Substitution
Proof that a neighbourhood of leaves** was substituted 1 - 1,
within a tree

 

3. Security Proofs  
A system of formal security proofs is presented here which permits a verifier, knowing only the merkle-
root, to verify membership of the tree and explicit transformations of the tree to new merkle-roots. This 
allows a verifier to track the evolution of a merkle-tree without the burden of storing such tree yet 
maintaining a commensurate level of security (bound by underlying cryptographic hash function). In 
other words, they can track a dynamic merkle-tree.

Such a proof system is desirable for applications where maintaining merkle-trees is computationally 
and/or storage-wise expensive. Such applications include blockchain applications and decentralized 
ledger technologies in general. Through these algorithms consensus systems can be made to scale for 
real-time, global adoption with near 0 storage and computational complexity.

*: not necessarily contiguous     **:without specifying leaves

3.1 Proof Construction  
A security proof consists of start digest , a set of digests , a set of direction flags 

 and a root-digest . To verify the proof, the verifier must hash of the set of digests 
 in a chain using a cryptographic node-hash function  and starting with . In each step of the 

aggregation, the ordering of the arguments in  is determined by the corresponding flag in .  See 

reference implementation 2  for specification and Fig 4 for an example .
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3.2 Existence  
An existence proof is a proof that a node exists within a tree. Specifically, it is a proof that the node   
has value  for a tree  with root . Existence proofs are generally used to prove the existence of leaf 
nodes. However, in this paper, they are also used to prove the existence of sub-roots which can be 
anywhere in the tree. See Algorithms A.9 - A.10 for details. This algorithm is well-known in the literature 
as an "audit proof", and provided here for brevity.

Fig 4: Existence proof example  

 

The existence-proof for  comprises of the hash-path  and the object  
and the index  of the object. The verifier has the merkle-root  and knows the total leaf-count 

. Knowing the index , the verifier computes the direction flags  which represent 
which side of the hash-function a node's digest is an argument of. The verifier then computes the start 
digest  by hashing .  The verifier then performs 

 noting that the ordering of the hash arguments  is 
determined by flag . The verifier knows if  then proof is valid and  exists at index  , 
otherwise it is invalid.

Fig 5: Existence proof example 2  
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Similarly, the existence-proof for object 8 comprises of start digest  , hash-path , 
flags  and root . The verifier checks that .  Of note in Fig 4 is the 
implicit traversal of bubble-nodes by virtue of the logical parent/siblings algorithms found the reference 

implementation 2 .

3.3  Ranged Existence  
A ranged-existence-proof extends an existence-proof to multiple leaf nodes (not necessarily adjacent). 
The purpose is to provide  proof that  leaves exist rather that relying on  proofs that  leaf exists. 
Since neighbouring leaf nodes tend to share antecedent nodes, by taking the union of all their individual 
existence-proof paths a significant saving in space complexity is achieved. See reference 

implementation 2 for specification.

3.4 Right Delete (Consistency)  
A consistency-proof proves that the first  leaves of two trees are equal. In other words, it proves that a 
merkle-tree  with  leaves and root   has the same first  leaves as tree  with  leaves 
and root . The consistency-proof construction in this paper is unique and differs from commonly 
known implementations. In the opinion of the author, the construction here is more elegant and simpler. 
It works by proving that the invariant right-most sub-root  of the smaller tree  exists in the larger tree 

. If the trees are consistent to  leaves, the existence-proof of  in  necessarily traverses the 
existence-path of  in . This allows  to be recovered from the existence-proof of  in  alone. By 
verifying  indeed derives from the existence-proof of  in , and the existence proof itself validates to 

,  then the verifier shown  and  are consistent up to and including  leaves.  See reference 

implementation 2  for specification.

REMARK 3.4.1: In other treatments, consistency proofs are proffered as a (weak) proof that a tree was 
appended to with new leaves.  In the opinion of the author, consistency-proofs are a weak form of 
proving an append since they only prove that a count of leaves were appended but say nothing about 
the appended leaves themselves. In practice, knowing that items were appended to a list but without 
knowing what those items were can lead to insecure assumptions about the system. A consistency-proof 
only proves the post-transformation leaf-set of a tree is consistent with the pre-transformation leaf-set 
and nothing more. With this in mind, it is the opinion of the author that a "consistency proof" ought to be 
correctly interpreted as a "right-delete-proof" in reverse. In other words, a right-delete-proof proves that 
a tree  with  leaves and root  becomes a tree  with  leaves with root . This is 
equivalent to a consistency proof in reverse but is "strong" in the sense that it completely proves the 
"right-deletion" (rather than "weakly" proves an append). By preference to elegancy, the primary form of 
this proof ought be a right-delete-proof and a consistency-proof ought to be considered a delete-proof in 
reverse. However, to maintain parity with existing convention, we treat a "right-delete-proof" as a reverse 
of a "consistency-proof".

3.5 Append  
An append-proof is a new type of security proof that permits a verifier to prove, knowing only the 
merkle-root, that a specific subset of leaves were appended to a merkle-tree. In this scenario, the verifier 
is assumed to have the appended leaves   and the merkle-root  of the pre-
appended tree. Given an append-proof , the following construction permits the verifier to compute the 
post-append merkle-root  using only ,  and .
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The proof  is simply the sub-roots  of the pre-append tree (a surprisingly small set). For example, if  
is the leaf count then . The verifier proceeds by iteratively transforming  with 
every item in  in accordance with append leaf algorithm 3.5.1. The transformed sub-roots  are then 
aggregated via algorithm 2.6.4 to recover . In this manner, the verifier proves that the only change to 
the leaves of  was the right-append of , resulting in .

The space and time complexity of this proof is . The  term derives as the 
average cardinality of the sub-roots of  for increasing , and  self-evidently denotes the count of 
items being appended.  When appending small sets of leaves to large trees (i.e. ) the space and 
time complexity becomes .  This is the primary use-case for this proof. In the opinion of 
the author, this new security proof construction offers a significant innovation in the area of merkle-
trees. Algorithm 2.6.4 is modelled after a  where  maps an integer argument to it's 
pow-2 partition. Conceptually it is "adding  to " but in a "hash-based arithmetic". In other words, the 
algorithm transforms the sub-roots as if they were a pow-2 partition being incremented by  (replacing 
exponentiation with hashing). This algorithm is also the basis for a spatially-optimized merkle-tree 
implementation suitable for the efficient construction of practically unbounded trees.

Algorithm 3.5.1 Append Leaf  

Transforms a tree's sub-roots  by appending  to the leaf set of the tree.

 

3.6 Remove  
A remove-proof allows a verifier to prove that specific leaves were removed from the right of a tree.  It 
achieves this by simply by re-interpreting an append-proof in reverse by virtue of it's symmetry. In more 
formal terms, proving that a tree with root  and leaf count  attained the root  and leaf count 

 after removing leaves  from the right is equivalent to an append-proof that a tree with 
root  and leaf count  attained the root  and leaf count   after appending  to the 
right. Thus a remove-proof is an append-proof in reverse.

 

3.7 Update  

 1: algorithm AddLeaf

 2:   INPUT:

 3:      S : Array of 2-Tuple (Height : Integer, Digest : Integer)

 4:      L : Digest

 5:   OUTPUT

 6:      S : Array of 2-tuple (Height : Integer, Digest : Integer)

 7:   PSEUDO-CODE:

 8:      let e = 2-Tuple (0, L);

 9:      while (true)

10:         if (||S|| = 0 || S[^-1].Height > e.Height)  ;^-1 is last index

11:            S.Add(e)

12:            break while;

13:         e = (S[^1].Height + 1, H(S[^1].Digest, e.Digest)) 

14:         S.RemoveAt(^1)

15: end algorithm
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An update proof is a new type of security proof that permits a verifier to prove, knowing only the merkle-
root , that a single node  was updated to  resulting in a new root . The update proof comprises 
simply of an existence-proof of  in  denoted , bundled with  and .  Having the root , the verifier 
first confirms  exists in  by running  using the start-digest . Once confirmed, the verifier re-runs  
using start-digest  to recover the new root .

3.8  Ranged Update  
A ranged-update-proof extends an update-proof in much the same way that a ranged-existence-proof 
extends an existence-proof. It provides a single proof that  leaves were updated which is far more 
space and time efficient than  proofs of  leaf update. This construction comprises of a ranged-
existence-proof of the old leaf values coupled with the old leaf values themselves. The verifier first runs 
an existence-proof of the old leaf values to ensure  the root old  is recovered. The verifier then maps 
the digests in the proof to their corresponding nodes in a partial merkle-tree, by calculating the path of 
that proof. It then proceeds to iteratively update the tree for every new appended leaf value.  It 
concludes by verifying that the root of the updated tree matches the expected new root. If it does, it 
proves that the only change from  to  was the update of the leaves. This construction is provided in 

the reference implementation 2 .

3.9 Insert  
An insert-proof is a general proof of insertion into the tree leaf-set. This is a high-level proof composed of 
base proofs 3.2 - 3.5. it proves that the neighbourhood of leaves  are inserted after  and before .

Fig 6: Insert Proof

Proving that a tree with root  had leaves  inserted after  and before  resulting in root  is 
constructed as follows:

1. A ranged-existence-proof of  in .  

2. A right-delete proof of   leaves from  resulting in root . 

3. An append-proof of leaves  to  resulting root . 

4. An append-proof of  to  resulting in . 
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In practice, an insert proof would be implemented as an ordered sequence of the sub-proofs. A verifier 
would evaluate the proof by evaluating the sub-proofs in order, ensuring each step verifies to the root 
that was the output of the preceding step (the first step verifies to to start root).

3.10 Delete  
A delete-proof is a general proof of deletion from the tree leaf-set. Specifically, it proves that a 
neighbourhood of leaves  after  and before  was removed.

Fig 7: Delete Proof

Proving that a tree with root  had  leaf neighbourhood  removed resulting in the neighbourhood  
joined to neighbourhood  as follows from:

1. A ranged-existence-proof of  in .  

2. A right-delete proof of   leaves from  resulting in root . 

3. An append-proof of  to  resulting root . 

 

3.11 Subset  
A subset-proof is a proof that a neighbourhood of leaves in one tree exist in another. Whilst similar in 
principle to a ranged-existence proof, a subset proof makes no statement about individual leaves in the 
neighbourhood, only about the neighbourhood itself.  A trivial example of a subset-proof is a merkle-root 
comparison. If two trees share the same root then they share the same leaves (and all other nodes). We 
extend this concept for all perfect nodes in a tree. By showing the existence of such a node in both trees, 
it necessarily implies the existence of all their leaf descendants in both trees (by virtue of lemma 2.3.6).

Subset proofs only work for leaf-descendants of perfect-nodes which is generally restrictive. As a result, a 
subset proof is a special-case security proof with a limited domain of applicability. To construct this 
proof, consider two trees  and  sharing a common leaf subset 
. The prover must find the antecedent node   such that the left-most and right-most leaf 
descendant indices are  and  respectfully. Similarly for the other tree, the provider finds antecedent 

 for left/right leaf descendants  and .  Use lemma 2.3.6 to get  ,  
and  and . Assuming  and  can be solved,  the prover sends both their 
existence-proofs of  and  coupled with digest of , to the verifier. 
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The verifier proceeds to verify the existence of  in  and  in   by assuming = . If both both proofs 
pass then it has been proven that  exists in both trees and their respective offsets.

REMARK 3.11.1: Due to the requirement that  be the leaf descendants of a perfect-node, it greatly 
restricts the possible sets  applicable for this proof due to odd index numbers and neighbourhoods 
overlapping subtree leaf-boundaries. Furthermore, when  is in a different location in , the restriction 
exacerbates by applying twice (once per tree). Any attempt to split the neighbourhood  into acceptable 
sub-neighbourhoods rapidly converges to  splits, one per node. Thus such attempts are equivalent 
to a ranged-existence proof. 

3.12 Substitution  
Following from subset-proof, a substitution proof is a proof that a neighbourhood of leaves  was 
replaced by another neighbourhood  (of equal magnitude) with all other leaf nodes remaining 
invariant. This is similar in construction to the subset-proof but simpler in that the prover only solves for 
antecedent node   of the neighbourhood  once, and just sends the existence proof of  in  to the 
verifier (along with the old and new digest values for  and ). The old value  denotes the commitment 
to the old neighbourhood  whereas  a commitment to neighbourhood . The verifier begins by 
validating the existence of  in  and then re-running the proof using . If the result matches the post-
transformation root , the proof has shown that  replaces  in .

REMARK 3.12.1 Like subset-proof, the substitution-proof suffers from limited domain of applicability. 
However, since only one tree is involved it less severe thus could find utility in specialized cryptographic 
constructions and consensus workflows.

4. Tree Implementations  
This section discusses merkle-tree implementations of relevance. A "flat-tree" is described which permits 
efficient storage of a tree as a single contiguous block of memory. Appending or right-deleting leaves 
grow and shrink the memory buffer without invalidating other nodes. In addition, a merkle-tree 
implementation called "long trees" is discussed which permit unboundedly large tree construction with 
negligible storage. 

4.1 Flat Coordinates  
Fig 8: Float Coordinates
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In this section, a system of merkle-coordinates is constructed that flatten the  2-tuple into a single 
positive integer value . The purpose of these flat coordinate addressing is to permit storage of a 
dynamic merkle-tree in contiguous memory. In other words, as new nodes are appended to the tree the 
node buffer can be expanded without affecting prior node values, and similarly when shrinking.

The flat-coordinate line traces out the tree nodes in an interesting diagonal "wave" pattern emanating 
from  and covering the perfect nodes in ordered sequence. This ordered set of nodes is coined the 
"ordinal nodes" of the tree. Imperfect nodes are not traced by flat coordinates as they are transient by 
nature and thus subject to change with the tree as it is appended (unlike ordinal nodes) . As a result, 
imperfect nodes must be computed on-the-fly.  Flat coordinates solve the memory fragmentation 
problem when dealing with large trees. Due to their high node count, allocating each node separately 
can lead to excessive memory fragmentation which exhausts memory by future preventing allocations. 
This can lead to out-of-memory issues despite such memory being available.

The coordinate transformations from merkle-coordinates to flat coordinates is a function 
  and described by algorithm 4.1.2. Similarly, the inverse transformation from flat 

coordinates to merkle-coordinates  is described by algorithm algorithm 4.1.3. 

Refer to the following C# algorithms for algorithm implementations:

Algorithm 4.1.2 To Flat Index  

public static ulong ToFlatIndex(MerkleCoordinate coordinate) {

    // Step 1: Find the closest perfect root ancestor

    var numNodesBefore = (1UL << coordinate.Level + 1) * ((ulong)coordinate.Index + 1) 

- 1;

    var rootLevel = Array.BinarySearch(PerfectLeftMostIndices, numNodesBefore);

    if (rootLevel < 0)

        rootLevel = ~rootLevel;

    var perfectRoot = MerkleCoordinate.From(rootLevel, 0);

    Debug.Assert(perfectRoot.Level >= coordinate.Level);

    // Step 2: calculate the path to root, tracking left/right turns

    var flags = new int[perfectRoot.Level - coordinate.Level];

    for (var i = 0; i < flags.Length; i++) {

        flags[i] = coordinate.Index % 2;

        coordinate = MerkleCoordinate.From(coordinate.Level + 1, coordinate.Index / 2);

    }

    // Step 2: Traverse from root down to the node, adjusting the flat index along the 

way

    var flatIX = PerfectLeftMostIndices[rootLevel];

    for (var i = 0; i < flags.Length; i++) {

        if (flags[flags.Length - i - 1] == 0)

            // moving to left child, so flat index decreases by the difference between 

the corresponding roots.

            flatIX -= PerfectLeftMostIndices[rootLevel - i] - 

PerfectLeftMostIndices[rootLevel - i - 1];

        else

            flatIX--;  // moving to right child, so flat index decreases by one

    }

    return flatIX - 1;  // decrease by one, since 0-based indexing

}
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Algorithm 4.1.3 From Flat Index  

Noting that,

Definition 4.1.4 Ordinal Nodes  

The ordinal nodes of a merkle-tree  are the set  where  is 
algorithm 4.3.1 and   the cardinality of the ordinal nodes.

Lemma 4.1.5 Cardinality of Ordinal Nodes  

For merkle-tree  with leaf-count , the cardinality of the ordinal nodes of  is  
where  is the pow-2 partition of .

Proof: This follows directly from Lemma 2.5.3: Perfect Nodes.

 

 

 

 

 

 

 

 

MerkleCoordinate FromFlatIndex(ulong flatIndex) {

    flatIndex++; // algorithm below based on 1-based indexing

    var rootLevel = Array.BinarySearch(PerfectLeftMostIndices, flatIndex);

    if (rootLevel < 0)

        rootLevel = ~rootLevel; // didn't find, so take next larger index

    var index = 0;

    var rootFlatIX = PerfectLeftMostIndices[rootLevel];

    while (flatIndex != rootFlatIX) {

        var isRight = flatIndex > rootFlatIX >> 1;

        index = 2 * index + (isRight ? 1 : 0);

        rootFlatIX = PerfectLeftMostIndices[--rootLevel];

        if (isRight)

            flatIndex -= rootFlatIX;

    }

    return MerkleCoordinate.From(rootLevel, index);

}

PerfectLeftMostIndices = new ulong[63];

for (var i = 1; i < 64; i++) {

    PerfectLeftMostIndices[i - 1] = (1UL << i) - 1;

}
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4.2 Long Trees  
A long-tree is a specialized merkle-tree suitable for tracking an unbounded lists of objects in 

 space and time complexity. Long merkle-trees are suitable for use-cases where very large 
trees need to be constructed rapidly and/or maintained indefinitely. These mutations occur through 
append-only operations (although not strictly required). Example use-cases for these trees include 
efficient "big block" construction in blockchain consensus systems as well as high-frequency blockchains.

Under the hood, long-trees only maintain the sub-roots of the tree and nothing else.  When appending a 
leaf node the sub-roots are mutated in accordance with algorithm 3.5.1. Long-trees can only be mutated 
intrinsically through leaf append transformations. By this we mean that by knowing only the sub-roots 
it's only possible to append to the tree, not delete, insert, etc. However, through the use of security 
proofs constructed by fuller tree implementations (such as long-trees), the tree can be mutated 
arbitrarily. To achieve this, the security proofs should never refer to merkle-roots directly but always to 
their sub-roots. The merkle-root can be easily calculated from the sub-roots when needed, however the 
sub-roots can never be recovered from the root. Thus a system of proofs that bundles the sub-roots in 
place of roots allows a long-tree to adopt those sub-roots after verifying the proofs. It's important to note 
that whilst long-trees can mutate arbitrarily through security proofs, the proofs themselves must be 
constructed by trees that maintain fuller node sets. Thus a consensus network could not comprise 
exclusively of long-tree nodes. They necessarily require nodes which maintain the full tree (such as flat-
trees) in order to construct the general mutation proofs which can be verified by long-tree peers. The 

reader is referred to the reference implementation 3  for specification.

REMARK 4.2.1  A hybrid implementation of long-tree that tracks a neighbourhood of leaves (the last  
leaves) would allow all the peers in P2P consensus network to verify and construct a full set of dynamic 
merkle-proofs for that neighbourhood. With this approach, peers in P2P consensus network can be 
comprised of peers that all use a hybrid long-tree implementation.  Use-cases here include "deletable 
blockchains" with checkpoints. The the view of author, long-trees are a significant innovation in the field 
of merkle-trees. 

4.3 Flat Trees  
A flat tree is a merkle-tree implemented under the hood using flat coordinates. A flat-tree tracks all it's 
ordinal nodes in a contiguous block of memory. If  is the leaf-count of a tree, the number of perfect 
nodes is  where  is the pow-2 partition of  (lemma 4.1.5). Thus if  is the byte-
length of the underlying cryptographic hash function , a flat-tree with  leaves consumes a buffer of 
size  bytes. A flat-tree also maintains a bit vector of length  that tracks which ordinal nodes are 
"dirty" and require recalculation from their child nodes digests. Flat-trees never store imperfect/bubble-
up nodes due to their transience, and are instead computed on the fly if needed.  Thus when fetching a 
node at , if the coordinate is imperfect its digest is calculated recursively by fetching it's child-nodes 
and node hashing them. When fetching an ordinal (perfect) node, then the flat coordinate  is 
determined where  is given by algorithm 4.1.2. Then the dirty bit for  is examined in the bit vector. If  
the node value is already calculated and fetched from the buffer at offset  with length . If the dirty bit 
is  then it's child nodes for  are recursively fetched (ensuring they too are calculated). The left 
child  and right child  are then node-hashed via  and the buffer at  is updated with the value. 
The dirty bit set to , and the value returned. 
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3. Github. Hydrogen Framework, Long-Tree implementation. Url: https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/LongMer
kleTree.cs ↩

4. Github. Hydrogen Framework, Flat-Tree implementation. Url: https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/FlatMerkle
Tree.cs ↩

Inserting, updating and deleting from the leaf-sets requires similar maintenance of the dirty bit vector 
and manipulating of ordinal nodes. These algorithms are straightforward but cumbersome thus omitted 

from this paper. The reader is referred to the reference implementation 4  for specification.

5. Reference Implementation  
This section contains an overview of the full reference implementation 2  which accompanies this paper. 
The reference implementation is complete and is thoroughly tested.

Of particular relevance are the following source files:

The MerkleMath.cs  file which implements most of the algorithms and proofs described in this 
paper: https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/MerkleMath.cs

The Pow2.cs  file which implements the powers-of-2 algorithms such as reduce : https://github.co
m/Sphere10/Hydrogen/blob/master/src/Hydrogen/Maths/Pow2.cs

The LongMerkleTree.cs  file which implements the memory-efficient long-tree implementation of 
dynamic merkle-trees: 
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/LongMerkleTree.cs

The FlatMerkleTree.cs  source file which implements the contiguous-memory flat-tree 

implementation of dynamic merkle-trees: 
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/FlatMerkleTree.cs

 

6. References  

http://www.merkle.com/papers/Certified1979.pdf
https://github.com/Sphere10/Hydrogen/tree/master/src/Hydrogen/Merkle
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/LongMerkleTree.cs
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/FlatMerkleTree.cs
af://n304
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/MerkleMath.cs
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Maths/Pow2.cs
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/LongMerkleTree.cs
https://github.com/Sphere10/Hydrogen/blob/master/src/Hydrogen/Merkle/FlatMerkleTree.cs
af://n317

	Dynamic Merkle-Trees
	1. Introduction
	2. Merkle-Tree Construction
	Fig 1
	2.1 Formal definition
	2.2 Root
	2.3 Descendants
	Fig 2
	Lemma 2.3.1: Left-most descendant 
	Lemma 2.3.2: Right-most perfect descendant 
	Lemma 2.3.3: Right-most descendant
	Remark 2.3.4
	Theorem 2.3.5: Descendants
	Lemma 2.3.6: Leaf descendants
	Lemma 2.3.7: Descendant Equality
	2.4 Powers of 2
	Theorem 2.4.1 Powers of 2 Partition
	Definition 2.4.2: Pow-2 Partition
	Lemma 2.4.3: Strictly Decreasing 
	Algorithm 2.4.5 CalcPow2Partition
	Algorithm 2.4.6 Reduce
	Table 2.4.7 Pow-2 Partitions of N
	Theorem 2.4.8: Integer Addition in terms of Reduce
	Theorem 2.4.9: Integer Multiplication in terms of Reduce
	2.5 Perfect Trees
	Definition 2.5.1: Perfect tree
	Lemma 2.5.2: Perfect sub-trees 
	Lemma 2.5.3: Perfect Nodes
	2.6 Sub-Roots
	Lemma 2.6.1: Sub-Roots
	Lemma 2.6.2: Sub-Root Invariance
	Remark 2.6.3
	Theorem 2.6.3: Sub-Root Aggregation 
	Algorithm 2.6.4: Aggregate Roots
	2.7 Node Traversal
	Fig 3

	3. Security Proofs
	3.1 Proof Construction
	3.2 Existence
	Fig 4: Existence proof example
	Fig 5: Existence proof example 2

	3.3  Ranged Existence 
	3.4 Right Delete (Consistency)
	3.5 Append
	Algorithm 3.5.1 Append Leaf

	3.6 Remove
	3.7 Update
	3.8  Ranged Update
	3.9 Insert
	3.10 Delete
	3.11 Subset
	3.12 Substitution

	4. Tree Implementations 
	4.1 Flat Coordinates
	Algorithm 4.1.2 To Flat Index
	Algorithm 4.1.3 From Flat Index
	Definition 4.1.4 Ordinal Nodes
	Lemma 4.1.5 Cardinality of Ordinal Nodes

	4.2 Long Trees
	4.3 Flat Trees

	5. Reference Implementation
	6. References

