A Category is a Partial Algebra

SHAO-DAN LEE

Abstract A category consists of arrows and objects. We may define a language $\mathfrak{L} := \{\text{dom}, \text{cod}, \circ\}$. Then a category is a partial algebra of the language \mathfrak{L} . Hence a functor is a homomorphism of partial algebras. And a natural transformation of functors is a natural transformation of homomorphisms. And we may define a limit of a homomorphism like a limit of functor. Then a limit of a homomorphism forms a homomorphism of partial algebras.

CONTENTS

2. Preliminaries	
	2
2.1. Partial Algebra	2
2.2. Category	2
3. A Category is a Partial Algebra	3
4. Examples	6
References	6

1. INTRODUCTION

We may define a language[1] $\mathfrak{L} := \{\text{dom}, \text{cod}, \circ\}$ where 'dom' and 'cod' are partial unary operations, 'o' is a partial binary operation. Then we have that every category[2] is a partial algebra[5] of the language \mathfrak{L} , see proposition 3.1 and corollary 3.1.1 for more details.

So a functor of categories is a homomorphism of the partial algebras, see proposition 3.2. Suppose that **A** is a partial algebra of the language \mathfrak{L} . Let **A'**, **A''** be partial subalgebras of **A**, and let $\varepsilon: \mathbf{A'} \to \mathbf{A''}$ be a natural homomorphism. Then we may define a natural transformation (cf. [2,3]) along ε , see definitions 3.1 and 3.2 for the details. And we may define a natural transformation of homomorphisms, see notation 3.2, definition 3.3, and proposition 3.3 for more details.

Suppose that A, B are partial algebras of the language \mathfrak{L} . Then the set Hom (A, B) together with the set of the natural transformations constitutes a partial algebra of the language \mathfrak{L} , see proposition 3.4.

Suppose that I, A are partial algebras of the language \mathfrak{L} . Let $\varphi: I \to A$ be a homomorphism. Then we have that a limit(cf. [2, 3]) of φ is an object $\lim_{t \to 0} \varphi$ of A together with a natural transformation $\tau: \Delta(\lim_{t \to 0} \varphi) \to \varphi$ such that $v: \Delta(x) \to \varphi$ factors uniquely through τ for every object $x \in A$, see notation 3.3 and definition 3.5 for more details. And we have that $\lim_{t \to 0} is a$ homomorphism from B^A to B, see proposition 3.5 for the details.

2020 Mathematics Subject Classification. 08A55.

Date: November 13, 2022.

Key words and phrases. Category, Universal Algebra, Partial Algebra.

SHAO-DAN LEE

2. Preliminaries

2.1. Partial Algebra.

Definition 2.1 ([1,5]). An ordered pair (L, σ) is said to be a **language** provided that

- *L* is a nonempty set,
- $\sigma: L \to \mathbb{Z}$ is a mapping.

A language $\langle L, \sigma \rangle$ is denoted by \mathfrak{L} . If $f \in \mathfrak{L}$ and $\sigma(f) \ge 0$ then f is called an **operation symbol**, and $\sigma(f)$ is called the **arity** of f. If $r \in \mathfrak{L}$ and $\sigma(r) < 0$, then r is called a **relation symbol**, and $-\sigma(r)$ is called the **arity** of r. A language is said to be **algebraic** if it has no relation symbols.

Definition 2.2 ([1]). Let X be a nonempty class and n a nonnegative integer. Then an *n*-ary **partial operation** on X is a mapping from a subclass of X^n to X. If the domain of the mapping is X^n , then it is called an *n*-ary **operation**. And an *n*-ary **relation** is a subclass of X^n where n > 0. An operation(relation) is said to be **unary**, **binary** or **ternary** if the arity of the operation(relation) is 1, 2 or 3, respectively. And an operation is called **nullary** if the arity is 0.

Definition 2.3 ([1]). An ordered pair $\mathbf{A} := \langle A, \mathfrak{L} \rangle$ is said to be a **structure** of a language \mathfrak{L} if A is a nonempty class and there exists a mapping which assigns to every n-ary operation symbol $f \in \mathfrak{L}$ an n-ary operation f^A on \mathbf{A} and assigns to every n-ary relation symbol $r \in \mathfrak{L}$ an n-ary relation r^A on \mathbf{A} . If all operation on \mathbf{A} are partial operations, then \mathbf{A} is called a **partial structure**. A (partial)structure \mathbf{A} is said to be a (**partial)algebra** if the language \mathfrak{L} is algebraic.

Definition 2.4 ([1,5]). Let A, B be structures of a language \mathfrak{L} . A mapping $\varphi: A \to B$ is said to be a **homomorphism** provided that

 $\varphi(f^A(a_1,\ldots,a_n)) = f^B(\varphi(a_1),\ldots,\varphi(a_n))$ for every *n*-ary operation *f*;

 $r^{A}(\alpha_{1},\ldots,\alpha_{n}) \Longrightarrow r^{B}(\varphi(\alpha_{1}),\ldots,\varphi(\alpha_{n}))$ for every *n*-ary relation *r*.

If φ is a homomorphism, then $\varphi(A)$ is a substructure of **B**. We denote the class of all homomorphisms from **A** to **B** by Hom (**A**, **B**).

2.2. Category.

Definition 2.5 ([2]). A **graph** consists of objects, arrows(morphisms) and two unary operations, as follows:

Domain: For every arrow f, dom(f) is an object; **Codomain:** For every arrow f, cod(f) is an object.

Definition 2.6 ([2]). A graph C is called a **category** if it satisfies the following properties:

Identity: For every object *a*, there exists an arrow $id_a: a \rightarrow a$;

Unit law: If $f: a \rightarrow b$, then $f \circ id_a = id_b \circ f = f$;

Composition: If f, g are arrows with dom(g) = cod(f), then the composition $g \circ f$: dom(f) $\rightarrow cod(g)$ is an arrow;

Associative: If $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} d$, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Let a, b be objects in C. The class of all arrows from a to b is denoted C(a, b).

Definition 2.7 ([2, 3]). Let C, \mathcal{D} be categories. A **functor** $F: C \to \mathcal{D}$ consists of a mapping of objects and a mapping of arrows satisfying the following properties:

2

- $F(g \circ f) = F(g) \circ F(f)$ if $a \xrightarrow{r} b \xrightarrow{g} c \in C$;
- $F(id_a) = id_{F(a)}$ for every object $a \in C$.

Definition 2.8 ([3]). Let C, \mathcal{D} be categories, and $F, T: C \to \mathcal{D}$ functors. A **natural transformation** is a class $(\tau_a: F(a) \to T(a))_{a \in C}$ of arrows in \mathcal{D} such that the following diagram is commutative for every arrow $f: a \to b$ in C.

$$\begin{array}{c|c} F(a) & \xrightarrow{\tau_{\sigma}} & T(a) \\ F(f) & & & \\ F(b) & & & \\ F(b) & \xrightarrow{\tau_{b}} & T(b) \end{array}$$

3. A CATEGORY IS A PARTIAL ALGEBRA

Notation 3.1. Suppose that $\mathfrak{L} := \{ \text{dom}, \text{cod}, \circ \}$ is a language where 'dom' and 'cod' are partial unary operations, 'o' is a partial binary operation.

Let \mathcal{G} be a graph, $E(\mathcal{G})$ the class of arrows in \mathcal{G} , and $V(\mathcal{G})$ the class of objects in \mathcal{G} . Suppose that **A** is the union $V(\mathcal{G}) \cup E(\mathcal{G})$.

Proposition 3.1. The class $\langle \mathbf{A}, dom, cod, \circ \rangle$ together with two partial unary operations (dom, cod) and a partial binary operation(\circ) is a partial algebra of the language \mathfrak{L} , where 'dom', 'cod' are defined in definition 2.5, and ' \circ ' is defined in definition 2.6.

Proof. By definition 2.5, we have that 'dom', 'cod' are the mappings from $E(\mathcal{G})$ to $V(\mathcal{G})$. Hence 'dom', 'cod' are partial unary operations on $\mathbf{A} = E(\mathcal{G}) \cup V(\mathcal{G})$. And if $f, g \in E(\mathcal{G})$ with dom(g) = cod(f), then $g \circ f \in E(\mathcal{G})$. It follows that ' \circ ' is a mapping from a subset of $E(\mathcal{G}) \times E(\mathcal{G})$ to $E(\mathcal{G})$. Hence we have that ' \circ ' is a partial binary operation on \mathbf{A} . By definitions 2.2 and 2.3, \mathbf{A} is a partial algebra.

Corollary 3.1.1. Suppose that *C* is a category. Let V(C), E(C) be the class of objects and arrows of *C*, respectively. And let $\mathbf{A} = V(C) \cup E(C)$. Then $\langle \mathbf{A}, \text{dom}, \text{cod}, \circ \rangle$ is a partial algebra.

Proof. By definition 2.6, the category C is a graph. Then it follows from proposition 3.1 that **A** is a partial algebra.

Proposition 3.2. Let CAT be the category of all categories, and PA the category of all partial algebras of the language \mathfrak{L} . Then there exists a functor PA: $CAT \rightarrow PA$ defined as follows:

- For every object $C \in C\mathcal{AT}$, PA(C) is the partial algebra defined as in corollary 3.1.1.
- For every morphism $F: C \to \mathcal{D}$ in $C\mathcal{AT}$, PA(F) is the homomorphism $PA(F): PA(C) \to PA(\mathcal{D})$ given by

 $f \mapsto F(f)$ if $f: a \to b$ is a morphism in C; $a \mapsto F(a)$ if $a \in C$ is an object.

Proof. Let φ denote the mapping PA(*F*). And let $f: a \to b, g: b \to c$ be morphisms in *C*. Since $F(f): F(a) \to F(b)$, we have that $\varphi(f): \varphi(a) \to \varphi(b)$. It follows that $\varphi(\operatorname{dom}(f)) = \operatorname{dom}(\varphi(f)) \text{ and } \varphi(\operatorname{cod}(f)) = \operatorname{cod}(\varphi(f))$. And we have that $F(g \circ f) = F(g) \circ F(f)$ implies $\varphi(g \circ f) = \varphi(g) \circ \varphi(f)$. Hence φ is a homomorphism. Therefore, it is clear that PA is a functor. SHAO-DAN LEE

We have seen that every category is a partial algebra of the language \pounds and every functor is a homomorphism of the partial algebras. Now, we may define a natural transformation.

Definition 3.1. Let A be a partial algebra of the language \mathfrak{L} . Suppose that A' and A'' are partial subalgebras of A. And let $\varepsilon: A' \to A''$ be a homomorphism of the partial subalgebras. If there exists an arrow $a' \to \varepsilon(a')$ in A for all object $a' \in A'$, then we say that ε is **natural**.

Definition 3.2. Let \mathbf{A} be a partial algebra of the language \mathfrak{L} . Suppose that \mathbf{A}' and \mathbf{A}'' are partial subalgebras of \mathbf{A} . And let $\varepsilon : \mathbf{A}' \to \mathbf{A}''$ be a natural homomorphism of the partial subalgebras. Then a **natural transformation** $\tau : \mathbf{A}' \to \mathbf{A}''$ **along** ε is a subset $\tau \subseteq E(\mathbf{A})$ such that there exists an arrow $\tau_{a'} \in \tau$ which makes the following diagram commute for every arrow $f' \in \mathbf{A}'$.

Notation 3.2. If A, B are partial algebras of the language \mathfrak{L} , then the direct product $A \times B$ is a partial algebra of the language \mathfrak{L} . And let $\varphi: A \to B$ be a natural homomorphism. It is clear that the class

(3.1)
$$\vec{\varphi} \coloneqq \{\langle x, \varphi(x) \rangle \mid x \in \mathbf{A}\}$$

is a partial subalgebra of $\mathbf{A} \times \mathbf{B}$. If $\varphi, \psi : \mathbf{A} \to \mathbf{B}$ are homomorphisms, then $\vec{\varphi}$ and $\vec{\psi}$ are partial subalgebras of $\mathbf{A} \times \mathbf{B}$. Let $\vec{\varepsilon} : \vec{\varphi} \to \vec{\psi}$ be a homomorphism given by

$$\langle a, \varphi(a) \rangle \mapsto \langle a', \psi(a') \rangle$$
 for every object $a \in \mathbf{A}$
 $\langle f, \varphi(f) \rangle \mapsto \langle f', \psi(f') \rangle$ for every arrow $f \in \mathbf{A}$

such that the following diagram is commutative where τ_{\Box} is an arrow in **A** and $\tau_{\varphi(\Box)}$ is an arrow in **B**.

If f = f' and τ_{\Box} is an identity arrow, then the homomorphism $\vec{\varepsilon}$ is called a **canonical** homomorphism.

Now we may define the natural transformation of homomorphisms.

Definition 3.3 (cf. [2,3]). Let \mathbf{A}, \mathbf{B} be two partial algebras of the language \mathfrak{L} . Suppose that φ and ψ are homomorphisms from \mathbf{A} to \mathbf{B} . Then a **natural transformation** $\tau: \varphi \rightarrow \psi$ is a natural transformation of subalgebras along a canonical homomorphism $\vec{\tau}: \vec{\varphi} \rightarrow \vec{\psi}$. Let $Nat(\varphi, \psi)$ denote the set of all natural transformations from φ to ψ .

Proposition 3.3. Let C, \mathcal{D} be categories and F,T: $C \to \mathcal{D}$ two functors. If $\tau: F \to T$ is a natural transformation of functors, then $PA(\tau)$ is a natural transformation $PA(\tau): PA(F) \to PA(T)$ of homomorphisms where PA is a functor defined in proposition 3.2.

4

Proof. By definition 2.8, we have that $\tau_b \circ F(f) = T(f) \circ \tau_a$ for all arrow $f: a \to b$. And it is obvious that τ forms a natural transformation $\hat{\tau}: PA(\mathcal{C}) \times PA(F(\mathcal{C})) \rightarrow PA(\mathcal{C}) \times PA(T(\mathcal{C}))$ along a canonical homomorphism given by $\langle f, PA(F(f)) \rangle \mapsto \langle f, PA(T(f)) \rangle$. It implies that $PA(\tau)$ is a natural transformation by definitions 3.2 and 3.3 and notation 3.2. \Box

Proposition 3.4 (cf. [2, 3]). If **A**, **B** are partial algebras of the language \mathfrak{L} then Hom (**A**, **B**) together with the set of natural transformations constitutes a partial algebra of the language \mathfrak{L} . Let **B**^A denote it.

Proof. It is obvious.

Notation 3.3 (cf. [2, 3]). Let **J**, **A** be partial algebras of the language \mathfrak{L} . A homomorphism $\Delta: \mathbf{A} \to \mathbf{A}^{\mathbf{J}}$ is called a **diagonal homomorphism** if Δ assigns to every object $a \in \mathbf{A}$ a homomorphism $\Delta(a): \mathbf{J} \to \mathbf{A}$ that is defined as follows:

 $i \mapsto a$ for all object $i \in \mathbf{J}$; $f \mapsto id_a$ for all arrow $f \in \mathbf{J}$.

Let $a, b \in \mathbf{A}$. It is obvious that the codomain of $\Delta(a)$ is the partial subalgebra $\{a, id_a\}$. And if $(a \xrightarrow{f} b) \in \mathbf{A}$, then there exists a natural transformation $\tau : \Delta(a) \rightarrow \Delta(b)$, and we have that $\Delta(f) = \tau$.

Definition 3.4 (cf. [2, 3]). Let $I := \bullet \to \bullet \leftarrow \bullet$, A be two partial algebras of the language \mathfrak{L} . Suppose that $\varphi: I \to A$ is a homomorphism. Then the **pullback** of φ is an object $p \in A$ together with a natural transformation $\pi: \Delta(p) \rightarrow \varphi$ such that every natural transformation $\tau: \Delta(x) \rightarrow \varphi$ factors uniquely through π for every object $x \in A$.

Definition 3.5 (cf. [2,3]). Suppose that I, A are partial algebras of the language \mathfrak{L} . Let $\varphi: I \to A$ be a homomorphism. Then the **limit** of φ , denoted $\lim \varphi$, is an object in A together with a natural transformation $\pi: \Delta(\lim \varphi) \to \varphi$ such that $v: \Delta(x) \to \varphi$ factors uniquely through π for every object $x \in A$ and every $v \in Nat(\Delta(x), \varphi)$.

We have seen that B^A is a partial algebra of the language \mathfrak{L} in proposition 3.4. Hence we have the following proposition.

Proposition 3.5 (cf. [2,3]). Let A, B be partial algebras of the language \mathfrak{L} . Suppose that every object of B^A has a limit. Then we have that the mapping $\lim_{\leftarrow} : B^A \to B$ given by $\varphi \mapsto \lim_{\leftarrow} \varphi$ is a homomorphism.

Proof. Let $\varphi, \psi \in \mathbf{B}^{\mathbf{A}}$ be two objects. If $\tau: \varphi \rightarrow \psi$ is an arrow in $\mathbf{B}^{\mathbf{A}}$, then τ uniquely determines an arrow $\lim_{t \to \infty} \varphi \rightarrow \lim_{t \to \infty} \psi$ in \mathbf{B} . Therefore, it is clear that $\lim_{t \to \infty} \varphi$ is a homomorphism.

Remark 3.1. Suppose that \mathbf{A}, \mathbf{B} are partial algebras of the language \mathfrak{L} . Let φ, ψ be homomorphisms from \mathbf{A} to \mathbf{B} . Then $\vec{\varphi} := \{\langle x, \varphi(x) \rangle \mid x \in \mathbf{A}\}$ and $\vec{\psi} := \{\langle x, \psi(x) \rangle \mid x \in \mathbf{A}\}$ are subalgebras of $\mathbf{A} \times \mathbf{B}$. Suppose that $\varepsilon : \vec{\varphi} \to \vec{\psi}$ is a natural homomorphism that is not a canonical homomorphism. Then a natural transformation $\zeta : \vec{\varphi} \to \vec{\psi}$ along ε makes the following diagram commute for every arrow $(f: \alpha \to b) \in \mathbf{A}$.

And the arrow $\zeta_{\langle \alpha, \varphi(\alpha) \rangle}$ is an ordered pair $\langle \zeta_{\alpha}, \zeta_{\varphi(\alpha)} \rangle$ where ζ_{α} is an arrow in **A** and $\zeta_{\varphi(\alpha)}$ is an arrow in **B**. Hence the diagram (3.2) consists of two commutative diagrams:

$$\begin{array}{cccc} a & \stackrel{\zeta_{\alpha}}{\longrightarrow} a' & \varphi(a) & \stackrel{\zeta_{\varphi(a)}}{\longrightarrow} \psi(a') \\ f & & & & \\ b & \stackrel{\zeta_{b}}{\longrightarrow} b' & \varphi(b) & \stackrel{\zeta_{\varphi(b)}}{\longrightarrow} \psi(b') \end{array}$$

And we have that $\varepsilon(\langle f, \varphi(f) \rangle) = \langle f', \psi(f') \rangle$.

4. EXAMPLES

Example 4.1 (Natural numbers). Let $\mathbb{N} = \{1, 2, ...\}$ be the set of all natural numbers. Then $(\mathbb{N}, \mathfrak{L})$ is a partial algebra consists of

Object: prime and 1; Arrow: otherwise,

together with three partial operations defined as follows:

 $n \circ m = qpr$ if m = qp and n = pr where p is a prime; $dom(q) = p_1$ if $q = p_1p_2...p_n$ with $p_i \le p_{i+1}$ where p_i is a prime. $cod(q) = p_n$

There is *not* identity arrows in $\langle \mathbb{N}, \mathfrak{L} \rangle$. Suppose that \mathbb{P} is the set of all prime numbers. Let $\varphi \colon \mathbb{N} \to \mathbb{N}$ be a homomorphism of the partial algebra of the language \mathfrak{L} . Then we have that φ is generated by a mapping of \mathbb{P} .

Example 4.2 (Chain Complex). Let $\mathfrak{L}' = \mathfrak{L} \cup \{\mathbf{0}\}$ where **0** is a nullary operation symbol. Hence we have that $\mathfrak{L}' = \langle \text{dom}, \text{cod}, \circ, \mathbf{0} \rangle$ is a language. Let *C* be a partial ordered set. We may construct a partial algebra **C** of the language \mathfrak{L}' over the set *C* as follows:

Object:c $c \in C$ Arrow: $a \rightarrow b$ if a < b and a is adjacent to b for $a, b \in C$;
otherwise;o: $g \circ f = \mathbf{0}$ for all $(a \xrightarrow{f} b \xrightarrow{g} c) \in C$.

Let J be an ordered set. So $\mathbf{J} = \langle J, \mathfrak{L}' \rangle$ is a partial algebra of the language \mathfrak{L}' . Suppose that $\varphi: \mathbf{J} \to \mathbf{C}$ is a monomorphism[3,5]. Then the image of φ is a partial subalgebra which is an ordered set. If $\varphi(\mathbf{J})$ is a set of abelian groups, then $\varphi(\mathbf{J})$ is a chain complex, cf. [4]. Let $\psi: \mathbf{J} \to \mathbf{C}$ be a monomorphism and let $\tau: \varphi \to \psi$ be a natural transformation. Then we have that τ is a chain map[4].

REFERENCES

- [1] Jaroslav Ježek, Universal algebra, 1st ed., 2008.
- [2] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Springer, 1971.
- [3] Tom Leinster, *Basic category theory*, Cambridge University Press, 2014.
- [4] Joseph J. Rotman, An introduction to homological algebra, 2nd ed., Springer, 2009.

A Category is a Partial Algebra

 [5] S.Burris and H.P.Sankappanavar, A course in universal algebra, 2012. Email address: leeshuheng@icloud.com