PROBLEM WITH THE DERIVATION OF NAVIER-STOKES EQUATIONS

DMITRI MARTILA

INDEPENDENT RESEARCHER
J. V. JANNSENI 6-7, PÄRNU 80032, ESTONIA

Abstract

The English idiom "Where there's a will, there's a way" means that if someone really wants to do something, she or he will find a way to do it.

MSC Class: 35Q30

My most recent progress is Ref. [1].

1. Mathematical Problem

The derivation begins with ansatz:

$$
\begin{equation*}
\rho(\vec{r}, t) \frac{\partial \vec{u}(\vec{r}, t)}{\partial t}=\vec{f}(\vec{r}, t) \tag{1}
\end{equation*}
$$

Let us insert $\vec{r}=\vec{r}(t)$,

$$
\begin{gathered}
\rho(\vec{r}(t), t) \frac{d \vec{u}(\vec{r}(t), t)}{d t}=\vec{f}(\vec{r}(t), t), \\
\rho(\vec{r}(t), t)\left(\left.\frac{\partial \vec{u}(\vec{r}, t)}{\partial t}\right|_{\vec{r}=\vec{r}(t)}+\left.\frac{d \vec{r}(t)}{d t} \frac{\partial \vec{u}(\vec{r}, t)}{\partial \vec{r}}\right|_{\vec{r}=\vec{r}(t)}\right)=\vec{f}(\vec{r}(t), t) .
\end{gathered}
$$

Let us remove the unnecassary notation $\vec{r}(t) \rightarrow \vec{r}$, and we get the Navier-Stokes equations

$$
\begin{equation*}
\rho(\vec{r}, t)\left(\frac{\partial \vec{u}(\vec{r}, t)}{\partial t}+\vec{v} \nabla \vec{u}\right)=\vec{f}(\vec{r}, t) . \tag{2}
\end{equation*}
$$

The $\vec{v} \equiv \vec{u}$, if \vec{u} is velocity at the point \vec{r}, at the moment t.
With all respect to Dr. Stokes, equation (2) contradicts equation (1).

2. Physical Problem

Let the velocity pattern of the fluid is \vec{u}. Let us run toward the fluid with velocity \vec{w}. Then according to us, the fluid approaches us with velocity $\vec{V}=\vec{u}-\vec{w}$, where \vec{w} is a constant vector. All other inner

[^0]parameters of the fluid (ρ and \vec{f}) remain the same. If Eq.(1) is the description of this fluid, then
\[

$$
\begin{equation*}
\rho \frac{\partial \vec{V}}{\partial t}=\vec{f} . \tag{3}
\end{equation*}
$$

\]

1 As you see, the Eq.(3) is the same as Eq.(1), but with velocity \vec{V} in the role of \vec{u}.

If Eq.(2) is the description of the fluid, then

$$
\begin{equation*}
\rho\left(\frac{\partial \vec{V}}{\partial t}+\vec{V} \nabla \vec{V}+\vec{w} \nabla \vec{V}\right)=\vec{f} . \tag{4}
\end{equation*}
$$

As you see, the Eq.(4) is not the same as Eq.(2), with velocity \vec{V} in the role of \vec{u}.

In other words, Eq.(2) is not Invariant under Galilean Coordinate Transformation. All non-relativistic Physical systems (low-velocity systems) satisfy the Galilean Coordinate Transformation.

References

[1] Dmitri Martila, Stefan Groote, "Evaluation of the Gauss Integral." Stats. 5(2): 538-545 (2022). https://doi.org/10.3390/stats5020032
Dmitri Martila, Stefan Groote, "Analytic Error Function and Numeric Inverse Obtained by Geometric Means." Stats. 6(1): 431-437 (2023).
https://doi.org/10.3390/stats6010026

[^0]: eestidima@gmail.com.

