Solution Conditions

Hajime Mashima

Abstract

For Fermat's Last Theorem, the condition that holds when there is inverse element.

Contents

L	intr	oduction 1
	1.1	$\delta \perp xyz$
		1.1.1 $p \mid x$
		$1.1.2 p \perp x \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	1.2	解の条件 (Solution Conditions)
	1.3	解の条件 1(Solution Conditions 1)
		1.3.1 Condition L
	1.4	解の条件 2(Solution Conditions 2)
		1.4.1 Condition R
		1.4.2 Condition L and Condition R
	1.5	$\delta = 2 \dots \dots$
		$1.5.1 2 \mid x , 2 \perp yz \ldots \qquad 13$
		$1.5.2 p \mid z \dots 14$
		1.5.3 Condition L
		1.5.4 Condition R
	1.6	$\delta' = 2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		$1.6.1 2 \mid z$, $2 \perp xy$

1 introduction

ある三乗数を二つの三乗数の和で表すこと、あるいはある四乗数を二つの四乗数の和で表すこと、および一般に二乗より大きいべきの数を同じべきの二つの数の和で表すことは不可能である。私はこの命題の真に驚くべき証明を持っているが、余白が狭すぎるのでここに記すことはできない。

1.1 $\delta \perp xyz$

Theorem 1 (Fermat's Last Theorem)

$$x^p + y^p \neq z^p$$
 $(p \ge 3, x, y, z)$ は一つが偶数で互いに素)

Proposition 2 p は奇素数で次の等式 $x^p + y^p = z^p$ を満たすとき

$$p \mid x$$
 , $p \perp yz$ \Rightarrow $p^n \mid x \ (n \ge 2)$, $p^{pn-1} \mid z - y$

Proof 3

$$x^p + y^p - z^p = 0 \Rightarrow p \mid (x + y - z)^p$$

よって $p \mid (z - y)$ と置ける。一般的に

$$(y+z-y)^p = y^p + (z-y)(\cdots)$$

$$z^{p} - y^{p} = (z - y) \left(py^{p-1} + \frac{p!}{(p-2)!2!} y^{p-2} (z - y) + \dots + \frac{p!}{1!(p-1)!} y(z - y)^{p-2} + (z - y)^{p-1} \right)$$
$$x^{p} = (L) (R)$$

$$R = py^{p-1} + \frac{p!}{(p-2)!2!}y^{p-2}(z-y) + \dots + \frac{p!}{1!(p-1)!}y(z-y)^{p-2} + (z-y)^{p-1}$$

 $p^2 \mid R \Rightarrow p \mid y^{p-1}$ となってしまうため

$$p^1 \mid R \tag{1}$$

また、p を除く素数に関して

$$L \perp R$$
 (2)

Definition 4 $p \perp abc$

$$(z-x) - (x+y) = b^p - c^p$$
$$(z-y) - 2x = b^p - c^p \equiv 0 \mod p$$

 $p \mid L' \Leftrightarrow p \mid R'$ なので、少なくとも $p^2 \mid b^p - c^p = L' \cdot R'$

$$p^{p-1}a^p - 2x = b^p - c^p \equiv 0 \mod p^2$$

$$p^2 \mid x \tag{3}$$

$$(x - (z - y))^{p} = x^{p} - \frac{p!}{(p-1)!1!}x^{p-1}(z - y) + \frac{p!}{(p-2)!2!}x^{p-2}(z - y)^{2} - \frac{p!}{(p-3)!3!}x^{p-3}(z - y)^{3} + \cdots + \frac{p!}{1!(p-1)!}x(z - y)^{p-1} - (z - y)^{p}$$

$$x^p = (z - y) \cdot p\alpha^p$$
 と置き、上式に代入する。

$$(x+y-z)^p = (z-y)\left(p\alpha^p - \frac{p!}{(p-1)!1!}x^{p-1} + \dots + \frac{p!}{1!(p-1)!}x(z-y)^{p-2} - (z-y)^{p-1}\right)$$

$$K = p\alpha^{p} - \frac{p!}{(p-1)!1!}x^{p-1} + \dots + \frac{p!}{1!(p-1)!}x(z-y)^{p-2} - (z-y)^{p-1}$$
 (4)

(3) より $x = p^2 a \alpha$ と置けるので

$$(x - (z - y))^p = (z - y) \cdot K$$
$$(p^2 a \alpha - p^{p-1} a^p)^p = p^{p-1} a^p K$$
$$(p^2 a (\alpha - p^{p-3} a^{p-1}))^p = p^{p-1} a^p K$$
$$p^{2p} a^p (\alpha - p^{p-3} a^{p-1})^p = p^{p-1} a^p K$$
$$p^{p+1} (\alpha - p^{p-3} a^{p-1})^p = K$$

$$p^{p+1} \mid K$$

 $p^1 \mid K$ でなければならない。

よって

$$p^2 \mid x \implies p^{2p-1} \mid (z-y)$$

一般的に

$$p^{n} \mid x \ (n \ge 2) \Rightarrow p^{pn} \mid x^{p} \quad \Rightarrow \quad p^{pn-1} \mid L$$

$$(x - (z - y))^{p} = (z - y) \cdot K$$

$$(p^{n} a \alpha - p^{pn-1} a^{p})^{p} = p^{pn-1} a^{p} K$$

$$(p^{n} a \left(\alpha - p^{pn-1-n} a^{p-1}\right))^{p} = p^{pn-1} a^{p} K$$

$$p^{pn} a^{p} (\alpha - p^{pn-1-n} a^{p-1})^{p} = p^{pn-1} a^{p} K$$

$$p(\alpha - p^{n(p-1)-1} a^{p-1})^{p} = K$$

$$(\alpha - p^{n(p-1)-1}a^{p-1}) \perp p$$
$$p^1 \mid K$$

また

$$x + y - z = x - (z - y)$$

$$x + y - z = p^n a\alpha - p^{pn-1} a^p$$

$$x + y - z = p^n (a\alpha - p^{n(p-1)-1} a^p)$$

$$p^n \mid x + y - z$$

1.1.1 $p \mid x$

$$x = p^n a \alpha$$
 $z - y = p^{pn-1} a^p$
 $y = b \beta$ $z - x = b^p$
 $z = c \gamma$ $x + y = c^p$
 $p \perp a \alpha y z S$ $2 \perp \delta$

Proposition 5 $x + z - y = p^n aS$, $\delta \mid S \Rightarrow \delta \perp xyz$

 $x + z - y = p^n a\alpha + p^{pn-1}a^p$

Proof 6

$$= p^{n} a (\alpha + p^{(p-1)n-1} a^{p-1})$$

$$p\alpha^{p} = R = py^{p-1} + (z - y)(\dots)$$

$$R \equiv py^{p-1} \mod a$$

$$py^{p-1} \perp a$$

$$\alpha \perp a$$

 $\delta \mid S$, $\delta \mid a$ ならば矛盾する。よって

$$\begin{split} \delta \perp x \\ 2x &= (x+y-z) + (x+z-y) \\ bc \mid x+y-z \\ x \perp bc \end{split}$$

 $\delta \mid bc$ ならば $\delta \mid 2x$ でなければならず矛盾する。よって

$$\delta \perp bc$$

 $\delta \mid \beta$ ならば $\delta \mid x + z$

$$x \equiv -z \mod \delta$$

$$x^p \equiv -z^p \mod \delta$$

$$x^p + z^p \equiv 0 \mod \delta$$

 $z^p - x^p = y^p \equiv 0 \mod \delta$ なので

$$x^p + z^p - (z^p - x^p) \equiv 0 \mod \delta$$

 $2x^p \not\equiv 0 \mod \delta$

よって
$$\delta \perp \beta$$

 $\delta \mid \gamma$, $\delta \mid x - y$ ならば同様に

$$x^p - y^p + (x^p + y^p) \equiv 0 \mod \delta$$

 $2x^p \not\equiv 0 \mod \delta$

よって $\delta \perp \gamma$

1.1.2 $p \perp x$

$$\begin{aligned} x &= a'\alpha' & z - y = a'^p \\ y &= b'\beta' & z - x = b'^p \\ z &= c'\gamma' & x + y = c'^p \\ p &\perp a'\alpha'S'(\divideontimes p \mid x - z + y) & 2 \perp \delta \end{aligned}$$

Proposition 7 x + z - y = a'S', $\delta \mid S' \Rightarrow \delta \perp xyz$

Proof 8

$$x + z - y = a'\alpha' + a'^{p}$$

$$= a'(\alpha' + a'^{p-1})$$

$$\alpha'^{p} = R = py^{p-1} + (z - y)(\dots)$$

$$R \equiv py^{p-1} \mod a'$$

$$py^{p-1} \perp a'$$

$$\alpha' \perp a'$$

 $\delta \mid S'$, $\delta \mid a'$ ならば矛盾する。よって

$$\delta \perp x$$

$$2x = (x + y - z) + (x + z - y)$$
$$b'c' \mid x + y - z$$
$$x \perp b'c'$$

 $\delta \mid b'c'$ ならば $\delta \mid 2x$ でなければならず矛盾する。よって

$$\delta \perp b'c'$$

 $\delta \mid \beta'$ ならば $\delta \mid x+z$

$$x \equiv -z \mod \delta$$

$$x^p \equiv -z^p \mod \delta$$

$$x^p + z^p \equiv 0 \mod \delta$$

 $z^p - x^p = y^p \equiv 0 \mod \delta$ なので

$$x^p + z^p - (z^p - x^p) \equiv 0 \mod \delta$$

 $2x^p \not\equiv 0 \mod \delta$

よって
$$\delta \perp eta'$$

 $\delta \mid \gamma'$, $\delta \mid x-y$ ならば同様に

$$x^p - y^p + (x^p + y^p) \equiv 0 \mod \delta$$

 $2x^p \not\equiv 0 \mod \delta$

よって $\delta \perp \gamma'$

1.2 解の条件 (Solution Conditions)

 $\theta \perp xyz$ ならば、その逆元が存在するので以下のように表すことができる。

$$x^p + Uz^{p-1} \equiv Ty^{p-1} \mod \theta$$

$$z^{p} - y^{p} + Uz^{p-1} \equiv Ty^{p-1} \mod \theta$$

$$z^{p} + Uz^{p-1} \equiv Ty^{p-1} + y^{p} \mod \theta$$

$$z^{p-1}(z+U) \equiv y^{p-1}(T+y) \mod \theta$$

$$z^{p-1}(yz+yU) \equiv y \cdot y^{p-1}(T+y) \mod \theta$$
(5)

 $y^p z^p \equiv U z^{p-1} T y^{p-1} \mod \theta$ のとき

$$yz \equiv UT \mod \theta \Rightarrow$$

$$z^{p-1}(UT + yU) \equiv y^p(T+y) \mod \theta$$

 $Uz^{p-1}(T+y) \equiv y^p(T+y) \mod \theta$

同様に

$$\begin{array}{rcl} z \cdot z^{p-1}(z+U) & \equiv & y^{p-1}(zT+yz) \mod \theta \\ & z^p(z+U) & \equiv & y^{p-1}(zT+UT) \mod \theta \\ & z^p(z+U) & \equiv & Ty^{p-1}(z+U) \mod \theta \end{array}$$

よって (5)、 $yz \equiv UT \mod \theta$ を満たすとき解の候補は以下の 2 通りである。

$$Uz^{p-1} \equiv y^p \mod \theta$$

$$Ty^{p-1} \equiv z^p \mod \theta$$

$$or$$

$$Uz^{p-1} \equiv -z^p \mod \theta$$

$$Ty^{p-1} \equiv -y^p \mod \theta$$
(6)

Definition 9 U = y , T = z のとき

Condition L

$$z^{p-1} \equiv y^{p-1} \mod \theta_l$$

$$or \tag{7}$$

Condition R

$$y \equiv -z \mod \theta_r$$

 $\theta \perp xyz$ ならば、その逆元が存在するので以下のように表すことができる。

$$-U'z^{p-1} + y^p \equiv -T'x^{p-1} \mod \theta$$

$$-U'z^{p-1} + z^p - x^p \equiv -T'x^{p-1} \mod \theta$$

$$-U'z^{p-1} + z^p \equiv x^p - T'x^{p-1} \mod \theta$$

$$-z^{p-1}(U'-z) \equiv x^{p-1}(x-T') \mod \theta$$

$$-z^{p-1}(U'x - xz) \equiv x \cdot x^{p-1}(x-T') \mod \theta$$
(8)

 $x^p z^p \equiv -U' z^{p-1} \cdot -T' x^{p-1} \mod \theta$ のとき

$$xz \equiv U'T' \mod \theta \Rightarrow$$

$$\begin{array}{rcl} -z^{p-1}(U'x-U'T') & \equiv & x^p(x-T') \mod \theta \\ -U'z^{p-1}(x-T') & \equiv & x^p(x-T') \mod \theta \end{array}$$

同様に

$$-z \cdot z^{p-1}(U'-z) \equiv x^{p-1}(xz - T'z) \mod \theta$$
$$-z^p(U'-z) \equiv x^{p-1}(U'T' - T'z) \mod \theta$$
$$z^p(U'-z) \equiv -T'x^{p-1}(U'-z) \mod \theta$$

よって (8)、 $xz \equiv U'T' \mod \theta$ を満たすとき解の候補は以下の 2 通りである。

$$-U'z^{p-1} \equiv x^p \mod \theta$$

$$-T'x^{p-1} \equiv z^p \mod \theta$$

$$or$$

$$-U'z^{p-1} \equiv -z^p \mod \theta$$

$$-T'x^{p-1} \equiv -x^p \mod \theta$$
(9)

Definition 10 U' = x , T' = z のとき

$$-z^{p-1} \equiv x^{p-1} \mod \theta_l$$
or (10)

Condition R

$$x \equiv z \mod \theta_r$$

 $\theta \perp xyz$ ならば、その逆元が存在するので以下のように表すことができる。

$$-U"y^{p-1} - T"x^{p-1} \equiv z^p \mod \theta$$

$$-U"y^{p-1} - T"x^{p-1} \equiv x^p + y^p \mod \theta$$

$$-x^p - T"x^{p-1} \equiv U"y^{p-1} + y^p \mod \theta$$

$$-x^{p-1}(x+T") \equiv y^{p-1}(U"+y) \mod \theta$$

$$-x^{p-1}(xy+T"y) \equiv y \cdot y^{p-1}(U"+y) \mod \theta$$
(11)

 $x^p y^p \equiv -U" y^{p-1} \cdot -T" x^{p-1} \mod \theta$ のとき

$$xy \equiv U"T" \mod \theta \Rightarrow$$

$$\begin{array}{rcl} -x^{p-1}(U"T"+T"y) & \equiv & y^p(U"+y) \mod \theta \\ -T"x^{p-1}(U"+y) & \equiv & y^p(U"+y) \mod \theta \end{array}$$

同様に

$$-x \cdot x^{p-1}(x+T") \equiv y^{p-1}(xU"+xy) \mod \theta$$
$$-x^p(x+T") \equiv y^{p-1}(xU"+U"T") \mod \theta$$
$$x^p(x+T") \equiv -U"y^{p-1}(x+T") \mod \theta$$

よって (11)、 $xy \equiv U^{"}T^{"} \mod \theta$ を満たすとき解の候補は以下の 2 通りである。

$$-U"y^{p-1} \equiv x^p \mod \theta$$

$$-T"x^{p-1} \equiv y^p \mod \theta$$

$$or$$

$$-U"y^{p-1} \equiv y^p \mod \theta$$

$$-T"x^{p-1} \equiv x^p \mod \theta$$

$$(12)$$

Definition 11 U" = x , T" = y のとき

$$-y^{p-1} \equiv x^{p-1} \mod \theta_l$$
or (13)

Condition R

$$-x \equiv y \mod \theta_r$$

1.3 解の条件 1(Solution Conditions 1)

1.3.1 Condition L

(5),(8),(11) から

$$z^{p-1}(z+y) \equiv y^{p-1}(z+y) \mod \theta$$
$$-z^{p-1}(x-z) \equiv x^{p-1}(x-z) \mod \theta$$
$$-x^{p-1}(x+y) \equiv y^{p-1}(x+y) \mod \theta$$
 (14)

$$z^{p-1} \equiv y^{p-1} \mod \theta_l \Longrightarrow y \not\equiv -z \mod \theta_l$$
$$-z^{p-1} \equiv x^{p-1} \mod \theta_l \Longrightarrow x \not\equiv z \mod \theta_l$$
$$-x^{p-1} \equiv y^{p-1} \mod \theta_l \Longrightarrow -x \not\equiv y \mod \theta_l$$

合同式 (14) を満たすので解の条件を展開できる。 (7),(10),(13) から

$$y \equiv -z \mod \theta_r \implies z^{p-1} \not\equiv y^{p-1} \mod \theta_r$$

 $x \equiv z \mod \theta_r \implies -z^{p-1} \not\equiv x^{p-1} \mod \theta_r$
 $-x \equiv y \mod \theta_r \implies -x^{p-1} \not\equiv y^{p-1} \mod \theta_r$

もし以下の関係が成り立つと仮定すると

$$y \not\equiv -z \mod \theta_r \implies z^{p-1} \not\equiv y^{p-1} \mod \theta_r$$

$$x \not\equiv z \mod \theta_r \implies -z^{p-1} \not\equiv x^{p-1} \mod \theta_r$$

$$-x \not\equiv y \mod \theta_r \implies -x^{p-1} \not\equiv y^{p-1} \mod \theta_r$$

Condition R に相反する条件が存在するので矛盾する。

$$\begin{split} y &\equiv -z \mod \theta_r \quad \bot \quad y \not\equiv -z \mod \theta_r \\ x &\equiv z \mod \theta_r \quad \bot \quad x \not\equiv z \mod \theta_r \\ -x &\equiv y \mod \theta_r \quad \bot -x \not\equiv y \mod \theta_r \end{split}$$

よって以下の関係が成り立つ。

$$z^{p-1} \equiv y^{p-1} \mod \theta_l \iff y \not\equiv -z \mod \theta_l$$
$$-z^{p-1} \equiv x^{p-1} \mod \theta_l \iff x \not\equiv z \mod \theta_l$$
$$-x^{p-1} \equiv y^{p-1} \mod \theta_l \iff -x \not\equiv y \mod \theta_l$$

また他に、もし以下の関係が成り立つと仮定すると

$$z^{p-1} \not\equiv y^{p-1} \mod \theta_l \implies y \not\equiv -z \mod \theta_l$$
$$-z^{p-1} \not\equiv x^{p-1} \mod \theta_l \implies x \not\equiv z \mod \theta_l$$
$$-x^{p-1} \not\equiv y^{p-1} \mod \theta_l \implies -x \not\equiv y \mod \theta_l$$

Condition L に相反する条件が存在するので矛盾する。

$$\begin{split} z^{p-1} &\equiv y^{p-1} \mod \theta_l \perp \quad z^{p-1} &\not\equiv y^{p-1} \mod \theta_l \\ -z^{p-1} &\equiv x^{p-1} \mod \theta_l \perp -z^{p-1} &\not\equiv x^{p-1} \mod \theta_l \\ -x^{p-1} &\equiv y^{p-1} \mod \theta_l \perp -x^{p-1} &\not\equiv y^{p-1} \mod \theta_l \end{split}$$

よって以下の関係が成り立つ。

$$y \equiv -z \mod \theta_r \iff z^{p-1} \not\equiv y^{p-1} \mod \theta_r$$

$$x \equiv z \mod \theta_r \iff -z^{p-1} \not\equiv x^{p-1} \mod \theta_r$$

$$-x \equiv y \mod \theta_r \iff -x^{p-1} \not\equiv y^{p-1} \mod \theta_r$$

$$(15)$$

Proposition 12

Condition L の 3 組
$$-x^{p-1} \equiv y^{p-1} \equiv z^{p-1} \mod \delta$$
 は同時に成り立つ。 (16)

•
$$x^p - yx^{p-1} \equiv -zx^{p-1} \mod \delta$$

•
$$xy^{p-1} - y^p \equiv -zy^{p-1} \mod \delta$$

•
$$xz^{p-1} - yz^{p-1} \equiv -z^p \mod \delta$$

上式を並び替える。

$$x^{p} - yx^{p-1} \equiv -zx^{p-1} \mod \delta$$

$$-xy^{p-1} + y^{p} \equiv zy^{p-1} \mod \delta$$

$$-xz^{p-1} + yz^{p-1} \equiv z^{p} \mod \delta$$
(17)

解の条件より

$$x^{p} + y^{p} \equiv z^{p} \mod \delta$$

$$\Leftrightarrow$$

$$x^{p} + yz^{p-1} \equiv zy^{p-1} \mod \delta$$

$$-xz^{p-1} + y^{p} \equiv -zx^{p-1} \mod \delta$$

$$-xy^{p-1} - yx^{p-1} \equiv z^{p} \mod \delta$$
(18)

1.4 解の条件 2(Solution Conditions 2)

 $\theta \perp xyz$ ならば、その逆元が存在するので以下のように表すことができる。

$$u'z^{2} + y^{p} \equiv t'x^{2} \mod \theta$$

$$u'z^{2} + z^{p} - x^{p} \equiv t'x^{2} \mod \theta$$

$$z^{2}(u' + z^{p-2}) \equiv x^{2}(x^{p-2} + t') \mod \theta$$

$$z^{2}(x^{p-2} + z^{p-2}) \equiv x^{2}(x^{p-2} + z^{p-2}) \mod \theta$$

 $x^2 \equiv z^2 \mod \theta$, $-z^{p-2} \not\equiv x^{p-2} \mod \theta$ のとき上記合同式を満たすので解の条件 1 と同様に以下の関係が成り立つ。

Definition 14

Condition M $x^2 \equiv z^2 \mod \theta_m$ or Condition N $-z^{p-2} \equiv x^{p-2} \mod \theta_n$

$$-z^{p-2} \not\equiv x^{p-2} \mod \theta_m \iff x^2 \equiv z^2 \mod \theta_m \tag{19}$$

 $-z^{p-1} \equiv x^{p-1} \mod \delta$ のとき $z \not\equiv x \mod \delta$ より $-z^{p-2} \not\equiv x^{p-2} \mod \delta$ なので (19) より

$$x^{2} \equiv z^{2} \mod \delta$$

$$x^{2} - z^{2} \equiv 0 \mod \delta$$

$$(x+z)(x-z) \equiv 0 \mod \delta$$

$$x+z \equiv 0 \mod \delta$$

 $x + z \equiv y \mod \delta$ より矛盾するので

$$-z^{p-1}\not\equiv x^{p-1}\mod\delta$$
 (16) より
$$-x^{p-1}\not\equiv y^{p-1}\not\equiv z^{p-1}\mod\delta$$
 (20)

1.4.1 Condition R

 $-x^{p-1} \not\equiv y^{p-1} \not\equiv z^{p-1} \mod \delta$ ならば (15) より

$$z + y \equiv 0 \mod \delta$$

$$x - z \equiv 0 \mod \delta \tag{21}$$

$$x + y \equiv 0 \mod \delta \tag{22}$$

(21),(22) は $\delta \perp yz$ と矛盾する。

また、Condition Lと Condition R どちらも成り立たないのは解の条件に反する。

1.4.2 Condition L and Condition R

 $\delta \perp yz$ の前提から Condition L と Condition R がともに成り立つ可能性があるのは

Condition L

$$z^{p-1} \equiv y^{p-1} \mod \theta_l$$

and

Condition R

$$y \equiv -z \mod \theta_r$$

しかし (20) より Condition L の組は全て成り立たないので、Condition R ともに成り立つことはない。よって

$$\delta \neq odd$$

1.5
$$\delta = 2$$

1.5.1
$$2 \mid x$$
 , $2 \perp yz$

$$S=2^k$$
 のとき

$$x + z - y = p^n a 2^k$$

$$x^p = z^p - y^p = (z - y)(py^{p-1} + (z - y)(...))$$

$$2\mid L=p^{pn-1}a^p$$

$$2 \mid a$$

$$2 \perp R = p\alpha^p$$

$$2 \perp \alpha$$

$$x + z - y = p^{n} a (\alpha + p^{(p-1)n-1} a^{p-1})$$
$$2^{k} = \alpha + p^{(p-1)n-1} a^{p-1} = odd$$
$$2^{0} = 1$$

しかし、 $\alpha + p^{(p-1)n-1}a^{p-1} > 1$ なので矛盾する。

$$S'=2^k$$
 のとき

$$x + z - y = a'2^k$$

$$x^{p} = z^{p} - y^{p} = (z - y)(py^{p-1} + (z - y)(...))$$

$$2 \mid L = a'^p$$

$$2 \mid a'$$

$$2 \perp R = \alpha'^p$$

$$2 \perp \alpha'$$

$$x+z-y=a'(\alpha'+a'^{p-1})$$

$$2^k=\alpha'+a'^{p-1}=odd$$

$$2^0 = 1$$

しかし、 $\alpha' + a'^{p-1} > 1$ なので矛盾する。

よって $2 \mid x$ のとき成り立たない。

1.5.2 $p \mid z$

$$x = a\alpha$$
 $z - y = a^p$
 $y = b\beta$ $z - x = b^p$
 $z = p^n c\gamma$ $x + y = p^{pn-1}c^p$
 $p \perp xyc\gamma S$ " $2 \perp \delta'$

Proposition 15 $z + x + y = p^n c S$ ", $\delta' \mid S$ " $\Rightarrow \delta' \perp xyz$

Proof 16

$$z + x + y = p^{n}c\gamma + p^{pn-1}c^{p}$$
$$= p^{n}c(\gamma + p^{(p-1)n-1}c^{p-1})$$

$$p\gamma^{p} = R = py^{p-1} + (x+y)(\ldots)$$

$$R \equiv py^{p-1} \mod c$$

$$py^{p-1} \perp c$$

$$\gamma \perp c$$

 $\delta' \mid S$ " $,\delta' \mid c$ ならば矛盾する。よって

$$\delta' \perp z$$

$$\begin{aligned} 2z &= -(x+y-z) + (z+x+y) \\ ab \mid x+y-z \\ z \perp ab \end{aligned}$$

 $\delta' \mid ab$ ならば $\delta' \mid 2z$ でなければならず矛盾する。よって

$$\delta' \perp ab$$

 $\delta' \mid \beta$ ならば $\delta' \mid z + x$

$$z \equiv -x \mod \delta'$$

$$z^p \equiv -x^p \mod \delta'$$

$$z^p + x^p \equiv 0 \mod \delta'$$

 $z^p - x^p = y^p \equiv 0 \mod \delta'$ なので

$$z^p + x^p + (z^p - x^p) \equiv 0 \mod \delta'$$

 $2z^p \not\equiv 0 \mod \delta'$

よって
$$\delta' \perp \beta$$

 $\delta' \mid \alpha$, $\delta' \mid z + y$ ならば同様に

$$z^p + y^p + (z^p - y^p) \equiv 0 \mod \delta'$$

 $2z^p \not\equiv 0 \mod \delta'$

よって $\delta' \perp \alpha$

1.5.3 Condition L

$$\begin{array}{rl} x^p + yx^{p-1} & \equiv -zx^{p-1} \mod \delta' \\ xy^{p-1} + y^p & \equiv -zy^{p-1} \mod \delta' \\ -xz^{p-1} - yz^{p-1} & \equiv z^p \mod \delta' \end{array}$$

解の条件より

$$\begin{array}{cccc} x^p & +y^p \equiv & z^p \mod \delta' \\ & \Leftrightarrow & \\ x^p & -yz^{p-1} & \equiv -zy^{p-1} \mod \delta' \\ -xz^{p-1} & +y^p & \equiv -zx^{p-1} \mod \delta' \\ xy^{p-1} & +yx^{p-1} & \equiv z^p \mod \delta' \end{array}$$

(5),(8),(11) と同様に

$$z^{p-1}(z-y) \equiv -y^{p-1}(z-y) \mod \theta$$
$$-z^{p-1}(x-z) \equiv x^{p-1}(x-z) \mod \theta$$
$$-x^{p-1}(x-y) \equiv -y^{p-1}(x-y) \mod \theta$$

$$x^{p-1}\equiv -z^{p-1}\mod\delta'$$
 のとき $x\not\equiv z\mod\delta'$ より $x^{p-2}\not\equiv -z^{p-2}\mod\delta'$ なので (19) より

$$x^{2} \equiv z^{2} \mod \delta'$$

$$x^{2} - z^{2} \equiv 0 \mod \delta'$$

$$(x+z)(x-z) \equiv 0 \mod \delta'$$

$$x+z \equiv 0 \mod \delta'$$

 $x + z \equiv -y \mod \delta'$ より矛盾するので

$$x^{p-1} \not\equiv -z^{p-1} \mod \delta'$$

(16) と同様に

$$x^{p-1} \not\equiv y^{p-1} \not\equiv -z^{p-1} \mod \delta'$$

1.5.4 Condition R

 $x^{p-1} \not\equiv y^{p-1} \not\equiv -z^{p-1} \mod \delta'$ ならば

$$z - y \equiv 0 \mod \delta' \tag{23}$$

$$x - z \equiv 0 \mod \delta' \tag{24}$$

$$x - y \equiv 0 \mod \delta'$$

(23),(24) は $\delta' \perp xy$ と矛盾する。よって

$$\delta' \neq odd$$

1.6
$$\delta' = 2$$

1.6.1
$$2 \mid z$$
 , $2 \perp xy$

$$S$$
" = 2^k のとき

$$z + x + y = p^n c 2^k$$

$$z^{p} = x^{p} + y^{p} = (x+y)(py^{p-1} + (x+y)(\ldots))$$

$$2 \mid L = p^{pn-1}c^p$$

$$2 \mid c$$

$$2 \perp R = p\gamma^p$$

$$2 \perp \gamma$$

$$z + x + y = p^{n}c(\gamma + p^{(p-1)n-1}c^{p-1})$$

$$2^k = \gamma + p^{(p-1)n-1}c^{p-1} = odd$$

$$2^0 = 1$$

しかし、 $\gamma + p^{(p-1)n-1}c^{p-1} > 1$ なので矛盾する。

よって $2 \mid z$ のとき成り立たない。

y+z-x などの条件は省略しているが $2\mid y$ も同様に成り立たない。以上より

$$x^p + y^p \neq z^p$$