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PREFACE

This book is logically self-contained. No previous knowledge of mathematics or
logic is assumed. The reader will only need the English language and the ability
to recognize patterns. The only exceptions are the abstract and the preface. In
both cases, the reader is assumed to be familiar with the existing literature on
the foundations of mathematics.

WHY I WROTE THIS BOOK

As a student, I looked everywhere for a book that explained mathematics from
first principles: a modern version of Euclid’s Elements. I never found one. The
reason for this can be summarized by a diagram of the logical dependencies in
modern textbooks:

naive set
theory

first order
logic

axiomatic
set theory

There is a vicious circle. The naive concept of a “set” leads to contradictions,
as demonstrated by Russell’s paradox. The purpose of axiomatic set theory is
to restrict the concept of “set,” and thereby resolve the contradictions in naive
set theory. All of the modern books on axiomatic set theory assume knowledge
of first order logic. Unfortunately, all of the modern books on first order logic
use naive set theory for their semantics, completing the vicious circle.

There are a few older books on metamathematics, such as Bourbaki [1970 ]
and Kleene [1952 ], that avoid the vicious circle. However, all such books use
unstated assumptions in their metamathematical proofs, believing them to be



“obvious” or “intuitively true.” When Euclid uses unstated assumptions in the
Elements, we criticize him for not being rigorous. But he could say exactly the
same thing to us. And I doubt that Euclid could tolerate the vicious circle.

Recent efforts to formalize mathematics in digital libraries are not immune
to this criticism. The software is designed using mathematical principles, and
these principles must be justified outside of the software.

In order to understand mathematics, we must start at the beginning. This
book is my attempt to do so. I have aimed for clarity and beauty above all else.
Please feel free to contact me with any criticisms.

Oak Harbor, Washington Forrest C. Taylor
April 2023
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A

THE FOUNDATION OF MATHEMATICS

MATHEMATICAL ASSERTIONS

definition / assertion

• If x is a symbol and δ is a definition, then the statement

“x satisfies δ”

is defined to be an assertion.

• If the statements α and β are assertions, then the statements

“α and β” and “If α, then β”

are defined to be assertions.

remark Assertions may be rephrased in transparent ways, as illustrated by
the following examples.

example The definition of a number is given in the next chapter. If n is a
symbol, then the statement

• “n satisfies the definition of a number”

is an assertion. It can be rephrased as “n is a number.”

example It is often convenient to separate an assertion into a sequence of
statements, as described in table 1. Let α, β, and γ be assertions.

sequence of statements interpretation

Suppose that α ; Then β If α, then β

Suppose that α ; If β, then γ If α and β, then γ

table 1. Interpretation of sequences of assertions.

1



2 chapter A

definition Let α, β, and γ be assertions. The statements defined in table 2
abbreviate sequences of assertions.

sequence of assertions abbreviation

If α, then β ; If β, then α Then α if and only if β

If α, then γ ; If β, then γ If α or β, then γ

table 2. Abbreviations for sequences of assertions.

THE FIRST PRINCIPLES OF MATHEMATICS

intuition Let x denote a symbol, δ a definition, and α and β assertions.
The meanings of the assertions

“x satisfies δ,” “α and β,” and “If α, then β”

elude definition. Instead, we state the rules for using mathematical assertions
to construct proofs.

A.1 / definition application

Let x be a symbol and δ a definition.

1 From “x is defined to satisfy δ,” we may conclude that “x satisfies δ.”

2 From “If α, then x is defined to satisfy δ,” we may conclude that “If α,
then x satisfies δ.”

A.2 / conjunction introduction

Let α, β, and γ be assertions.

1 From “β” and “γ,” we may conclude “β and γ.”

2 From “If α, then β” and “If α, then γ,” we may conclude that “If α,
then β and γ.”

A.3 / conjunction elimination

Let α and β be assertions.

1 We may conclude that “If α and β, then α.”

2 We may conclude that “If α and β, then β.”
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A.4 / implication introduction

Let x be a symbol, δ a definition, and α an assertion. We may conclude that “If
α, then α.”

A.5 / implication elimination

Let α and β be assertions. From “α” and “If α, then β,” we may conclude “β.”

A.6 / hypothetical syllogism

Let α, β, and γ be assertions. From “If α, then β” and “If β, then γ,” we may
conclude that “If α, then γ.”

definition Principles A.1 – A.6 are the first principles of mathematics.

THEOREMS AND PROOFS

definition An assertion is said to be true if it has been concluded using the
first principles of mathematics. True assertions are called theorems.

intuition Theorems express truth by definition. A proof of a theorem is an
explanation of why it is true.

remark It is not necessary to cite the first principles in proofs, because it is
not difficult to understand how they have been used.

intuition A theorem is called:

• a corollary of a given theorem if it requires little or no additional proof

• a lemma if it is useful, but not interesting in its own right.

remark Writing the symbol � against the right-hand margin indicates the
end of a proof or the omission of a trivial proof.

how to read this book Think of each theorem as an exercise, and each
proof as a series of hints. Strive to complete all of the exercises using as few
hints as possible. This is the most enjoyable way to learn mathematics, and it
guarantees a deep understanding.



B

THE SYNTAX OF MATHEMATICS

FUNDAMENTAL CONCEPTS

definition / number

• The symbol 0 is defined to be a number. It is called zero.

• If n is a number, then the symbol s(n) is defined to be a number. It is
called the successor of n.

example The symbols s(0) and s(s(0)) are numbers.

definition Let x and y be symbols. The symbol

x := y

means that x denotes y. In other words, x is a name for y, or represents y.

notation If n is a number, then 0n := n. If x is a symbol and 0x denotes a
number, then x := 0x.

notation Table 3 defines the Hindu-Arabic notation for numbers, where n

is a number and x is a symbol:

n s(n) n s(n) n s(n) n s(n)

x0 x1 x3 x4 x6 x7 x9 s(x)0

x1 x2 x4 x5 x7 x8

x2 x3 x5 x6 x8 x9

table 3. Hindu-Arabic notation.

If the left-hand symbol denotes n, then the right-hand symbol denotes s(n).
The reader is assumed to be familiar with this notation, and with the cardinal
and ordinal words for numbers.

4
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example The successor of zero is called one. Since zero is denoted by 00, it
follows that one is denoted by 01, and therefore by 1.

remark Notation is immaterial to the logical structure of mathematics. Its
purpose is to streamline the use of symbols.

definition Let n be a number. The six symbols

∨ b c s x ∧(x(n))

are defined to be prefixes. The first five are called simple prefixes.

intuition By the end of chapter 1, the meaning of each prefix will be clear.
In other words, it will be clear how each prefix is used in mathematics.

definition / term
Let α be a prefix.

• Numbers are defined to be terms.

• If t is a term, then the symbol α(t) is defined to be a term.

• If t and u are terms, then the symbol t(u) is defined to be a term.

intuition Some terms have meaning, while some do not. Meaningful terms
are called mathematical objects. The next chapter gives the precise definition.

definition If n is a number, then xn is a term. It is called the variable with
index n. The symbol ∧x denotes the prefix ∧(x), where x is understood to be
a variable.

example If t, u, and v are terms, then t(u)(v) and t(u(v)) are terms.

definition / list of terms

• If t is a term, then t is defined to be a list of terms.

• If t is a term and L is a list of terms, then the symbol L, t is defined to
be a list of terms.

notation Let t be a term, L a list of terms, and β a prefix or a term. Then

β(L, t) := β(L)(t).

The symbol βL := β(L) is called the application of β to L, or simply β of L.
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example Let t, u, and v be terms. Each of the four symbols

t(u, v) tu(v) t(u)v tu,v

denotes t(u)(v).

B.1 / lemma
Let t be a term, L a list of terms, and β a prefix or a term. If β(L) is a term,
then β(L, t) is a term.

VARIABLES AND CONTEXTS

definition / context / length of a context
Let t be a term.

• The symbol ‚ is defined to be a context of length zero. It is called the
empty context.

• The symbol x0 : t is defined to be a context of length one.

• If n is a number and Γ is a context of length s(n), then the symbol

Γ, x s(n) : t

is defined to be a context of length s(s(n)).

intuition In type theory, a type of mathematical object, such as integer or
function, is itself a mathematical object, and therefore a term.

intuition A context declares its variables to be objects of certain types, by
labeling them with the corresponding terms. In other words, contexts assign
meanings to variables.

intuition The variable xn only has meaning in a context of length s(n). It
may have different meanings in different contexts.

example Let t, u, and v be terms. The symbol

(B.2) x0 : t, x1 : u(x0), x2 : v(x0, x1)

is a context of length three.

notation Let Γ be a context and t a term. In the symbol

Γ, x : t
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it is understood that x is the variable with index n, where n is the length of Γ.
If Γ is the empty context, then Γ, x : t denotes the context x : t.

definition / labeling of variables
Let y be a variable, t and u terms, and Γ a context.

• The context Γ, x : t is defined to label x with t.

• If Γ labels y with u, then Γ, x : t is defined to label y with u.

intuition The context Γ, x : t assigns the same labels as Γ, and then labels
x with t. The empty context does not label any variables.

example The context (B.2) labels x0 with t and x1 with u(x0).

intuition Let x be a variable. If the context Γ labels x with the type X,
then x is an indeterminate object of type X in the context Γ.

JUDGMENTS AND TEXTS

definition Let t and u be terms and Γ a context. The symbols

Γ ctx Γ |− t : u t ≡ u

are called judgments. They are denoted by (or interpreted as) statements:

judgment interpretation

Γ ctx The context Γ is well-formed

Γ |− t : u The label u applies to t in the context Γ

t ≡ u The term t is substitutable for u

table 4. Interpretation of judgments.

definition / text

• Judgments are defined to be texts.

• If H and K are texts, then the symbol

H K

is defined to be a text, called the conjunction of H and K. This text is
interpreted as the statement H and K.
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notation The conjunction of H and K is denoted by H � K. This notation
is used if H and K are assumed, rather than proved, to be texts.

example Let m be a number, X and Y terms, and Γ a context. The text

Γ ctx Γ |− X : c0(m) Γ, x : X |− Y : c0(m)

will be important in chapter 1. Its interpretation is provided in chapter B.

definition / subtext
Let H, K, and L be texts.

• The text H is defined to be a subtext of itself,

• If H is a subtext of K or L, then H is defined to be a subtext of K � L.

intuition The text H is a subtext of K if every judgment that occurs in H

occurs in K.

B.3 / lemma
Let H and K be texts. Then H is a subtext of H � K and K � H.

INFERENCES AND TRUTH

definition For texts H and K, the inference from H to K is the symbol

H

K

where H is its hypothesis and K its result. Inferences 0.1 – 0.41 are called the
postulates of mathematics.

notation The inference from H to K is denoted by H/K. This notation is
used when H and K are assumed, rather than proved, to be texts.

definition / valid inference
Let H, K, and L be texts and M the text K � L.

• If K is a subtext of H, then H/K is defined to be valid.

• If H/K is a postulate, then H/K is defined be valid.

• If H/K and K/L are valid, then H/L is defined to be valid.
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• If H/K and H/L are valid, then H/M is defined to be valid.

definition Let H and K be texts. If the inference H/K is valid, then K is
said to be derivable from H.

definition The judgment ‚ ctx is called the axiom of mathematics. The
text H is said to be valid if it is derivable from ‚ ctx.

intuition Mathematics is ultimately concerned with valid judgments. The
axiom and postulates constitute the first principles of the type theory.

B.4 / theorem
Let H and K be texts. If H is valid and H/K is valid, then K is valid.

B.5 / theorem
Let H, K, and L be texts. Suppose that K is derivable from H.

1 If H is a subtext of L, then K is derivable from L.

2 If L is a subtext of K, then L is derivable from H.

intuition The hypothesis of a valid inference can be strengthened, and its
conclusion can be weakened.

B.6 / corollary
Let H, K, and L be texts. Then K � L is derivable from H if and only if both
K and L are derivable from H.

Proof By B.3 and B.5.

B.7 / corollary
The texts H and K are both valid if and only if H � K is valid.

B.8 / lemma
Let H, K, and L be texts. Then K � L is derivable from H if and only if L �K
is derivable from H.

Proof By B.6.

remark The next chapter provides a method for expressing valid inferences
using natural language. Refer to postulates 0.1 – 0.4, 0.7, 0.12 – 0.14, and 0.16
for examples.



C

THE LANGUAGE OF MATHEMATICS

IMPLICIT HYPOTHESES

definition This book is divided into entries, which are labeled using small
capitals. An entry may include sub-entries (such as proofs of theorems), which
are labeled using italics.

definition Let K and L be texts. The statements

• K implies L

• Assume that K

• Conclude that L

are called hypothetical statements.

definition / implicit hypothesis
Let H, K, and L be texts and S a hypothetical statement in the entry E.

• If S is the first hypothetical statement in E, then Γ ctx is defined to be
the implicit hypothesis of S in E, where Γ is an arbitrary context.

• Otherwise, let S ′ be the hypothetical statement directly before S in E.

• If H is the implicit hypothesis of S ′ in E and S ′ is the statement

• Assume that K

then the text H � K is defined to be the implicit hypothesis of S in E.

• If H � K is the implicit hypothesis of S ′ in E and S ′ is the statement

• Conclude that L

where the statement “K implies L” precedes S ′ in E, then H is defined
to be the implicit hypothesis of S in E.

• Otherwise, the implicit hypothesis of S ′ in E is defined to be the implicit
hypothesis of S in E.

10
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intuition The assertion that K implies L is proved in two steps:

1 Assume that K. This adds K to the implicit hypothesis.

2 Conclude that L. This removes K from the implicit hypothesis.

The implicit hypothesis does not change unless an assumption is made or an
implication is proved.

definition Let H, K, and L be texts. In table 5, let each statement S in
the left-hand column have the implicit hypothesis H in the entry E.

statement interpretation

Conclude that L L is derivable from H

K implies L L is derivable from H � K

table 5. The meanings of hypothetical statements.

Then the interpretation of S in E is given in the right-hand column.

notation Let X be a statement and S a hypothetical statement. If these
statements have the same meaning in ordinary language, then X denotes S.

example Let K and L be texts.

• The statements “let K” and “suppose that K” mean “assume that K.”

• The statements “then L” and “therefore L” mean “conclude that L.”

The statement “K implies L” is denoted by

L if K • L is necessary for K • If K, then L • K is sufficient for L.

definition Let H and L be texts. If the inference H/L is a postulate, then
L is said to be derivable from H by postulate.

notation Let H and L be texts. The statement

• It is postulated that L

means “It follows that L by postulate.” In other words, H/L is defined to be a
postulate, where H is the implicit hypothesis.

notation Let H, K, and L be texts. The statement

• Then K if and only if L

means “K implies L and L implies K.” In other words, K is derivable from
H � K and L is derivable from H � L, where H is the implicit hypothesis.
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IMPLICIT CONTEXTS

definition Let x be a variable and t, u, and v terms. The statements

• The implicit context is well-formed

• The label u applies to t

• Assign the label v to x

are called contextual statements.

definition / bound variable / depth of a bound variable
Let k be a number, t and u terms, and β a simple prefix or a term.

• The variable x is defined to be bound with depth zero in ∧x(t)

• If the variable y is bound with depth k in t, then y is defined to be bound
with depth s(k) in ∧x(t), and bound with depth k in β(t) and t(u).

definition The symbol Γ is called the fixed context. For the rest of the book,
Γ denotes a context.

definition / implicit context
Let t, u, and v be terms and ∆ a context of length n. Let S be a contextual
statement in the entry E.

• If S is the first contextual statement of E, then Γ is defined to be the
implicit context of S in E.

• Otherwise, let S ′ be the contextual statement directly before S in E.

• If ∆ is the implicit context of S ′ in E and S ′ is the statement

• Assign the label t to x

where x is the variable with index n, then the context ∆, x : t is defined
to be the implicit context of S in E.

• If ∆, x : t is the implicit context of S ′ in E and S states that

• The label v applies to u,

where x is bound with depth zero in u and/or v, then ∆ is defined to be
the implicit context of S in E.

• Otherwise, the implicit context of S ′ in E is defined to be the implicit
context of S in E.
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definition Let t, u, and v be terms. In table 6, let each statement S in the
left-hand column have the implicit context ∆ in the entry E.

statement interpretation

The implicit context is well-formed The context ∆ is well-formed

The label u applies to t The label u applies to t in the
context ∆

table 6. The meanings of contextual statements.

Then the interpretation of S in E is given in the right-hand column.

TYPES AND MATHEMATICAL OBJECTS

definition Let n be a number. The term cn is called the constructor with
index n. The symbol U denotes the constructor with index zero.

intuition Constructors are used to distinguish different types of mathemat-
ical object, in order to manipulate them by different rules.

definition Let m be a number and X a term. The term U(m) is denoted
by Um and called the type universe of order m. The statement that

• X is a type of order m

means that the label Um applies to X.

definition Let a be a term and X a type of order m. The statements

• a is an object of type X

• a has type X

mean that the label X applies to a, written a : X.

definition Let X be a type of order m and S the statement

• Declare x as an object of type X.

Then S means “assign the label X to x.” If the implicit context of S in the
entry E has length n, then x denotes the variable with index n in E.

intuition If the variable x has been declared as an object of type X, then
x represents an indeterminate object of type X.
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0.1 / accumulation of type universes
Let m be a number. It is postulated that :

1 The universe of order m is a type of order s(m)

2 If X is a type of order m, then X is a type of order s(m).

Remark In other words, the following inferences are defined to be postulates:

Γ ctx

Γ |− Um : Us(m)

Γ ctx Γ |− X : Um .
Γ |− X : Us(m)

intuition Type universes are objects of higher-order type universes. Types
accumulate in higher-order type universes.

definition The symbol ν is called the fixed number. For the rest of the
book, ν denotes a number.

• The phrase “of order ν” is suppressed. For example, the type universe of
order ν is simply called the type universe. It is denoted by U.

• The phrase “of order s(ν)” is replaced with the phrase of higher order.

example Let X be a term. The meaning of each statement in the left-hand
column of table 7 is given in the right-hand column.

statement meaning

X is a type X is a type of order ν

X is a higher-order type X is a type of order s(ν)

table 7. Use of the fixed number.

If the term a is assumed to be an object of type X, then X is understood to be
a type of order ν unless otherwise specified.

example Let H and K be texts, ∆ a context, and S the statement

“If K, then a has type X.”

If S has implicit hypothesis H and implicit context ∆ in the entry E, then S

means that the judgment
∆ |− a : X

is derivable from H � K.
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intuition Let X and Y be types. Assume that the variable x is bound with
depth zero in the term y. The implicit context can be changed:

• from ∆ to ∆, x : X by declaring x as an object of type X.

• from ∆, x : X to ∆ by proving that y is an object of type Y .

The implicit context does not change unless a variable is declared or a declared
variable becomes bound.



D

THE USE OF VARIABLES

DECLARATION OF VARIABLES

definition Let ∆ be a context. If the judgment ∆ ctx is true, then ∆ is
said to be well-formed.

D.1 / lemma
The empty context is well-formed.

intuition Let ∆ be a well-formed context which assigns the label X to the
variable x. Postulates 0.2 through 0.4 guarantee that the judgments

∆ |− X : U and ∆ |− x : X

are true. Thus a well-formed context assigns types to variables.

0.2 / context extension
Suppose that X is a type. Declare x as an object of type X. It is postulated that
the implicit context is well-formed.

Remark In other words, the inference

Γ ctx Γ |− X : U

Γ, x : X ctx

is defined to be a postulate.

D.2 / corollary
If the context ∆ is well-formed and ∆ |− X : U is true, then ∆, x : X is
well-formed.

Proof By 0.2 and B.4.

intuition Every well-formed context is constructed using D.1 and D.2.

16
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0.3 / declaration of variables
Suppose that X is a type. Declare x as an object of type X. It is postulated that
x is an object of type X.

Remark In other words, the inference

Γ ctx Γ |− X : U

Γ, x : X |− x : X

is defined to be a postulate.

0.4 / context weakening
Suppose that X is a type and the label u applies to t. Declare x as an object of
type X. It is postulated that the label u applies to t.

Remark In other words, the following inference is defined to be a postulate:

Γ ctx Γ |− X : U Γ |− t : u
.

Γ, x : X |− t : u

Intuition Since Γ does not declare x, neither t nor u depends on x.

SUBSTITUTION OF TERMS IN JUDGMENTS

definition Suppose that the symbol R satisfies the following condition:

• If t and u are terms, then t R u is interpreted as a statement.

Then R is said to express a relationship between terms.

definition / chain of relationships / last term
Let t and u be terms and let R express a relationship between terms.

• The symbol t R u is defined to be a chain of relationships with u as its
last term.

• If c is a chain of relationships with t as its last term, then the symbol

c R u

is defined to be a chain of relationships with u as its last term. It is
interpreted as the statement c and t R u.
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example If t, u, and v are terms, then the symbol

t ≡ u ≡ v

is a chain of relationships. It is interpreted as stating that t ≡ u and u ≡ v.

definition Let t and u be terms. The symbol t ≡ u is called an identity,
and the statement that

• The identity t ≡ u is satisfied

means that t is substitutable for u. It is sometimes said that t is identical to u

or that t is u. This is an abuse of language if t and u are distinct symbols.

D.3 / intuition
Let t and u be terms and Jt a judgment. Let Ju be the judgment constructed
from Jt by substituting u for t. If the judgments

Jt and u ≡ t

are derivable from the text H, then Ju is derivable from H. This is guaranteed
by postulates 0.5 through 0.7.

0.5 / substitution in identities
Let t, u, and v be terms. It is postulated that :

1 The term t is substitutable for itself.

2 If t ≡ u, then u ≡ t.

3 If t ≡ u ≡ v, then t ≡ v.

D.4 / theorem
Let t, u, and v be terms.

1 If t ≡ u and t ≡ v, then u ≡ v.

2 If u ≡ t and v ≡ t, then u ≡ v.

Proof In each case, u ≡ t and t ≡ v by 0.4.2 and B.6, so u ≡ v by 0.4.3.

intuition Let Jt be the identity t ≡ v or v ≡ t in D.3. If Jt and u ≡ t are
derivable from H, then Ju is derivable from H by 0.5 and D.4.

0.6 / substitution in terms
Let α be a prefix and t1, t2, u1, and u2 are terms. Suppose that t1 ≡ t2 and
u1 ≡ u2. It is postulated that α(t1) ≡ α(t2) and t1(u1) ≡ t2(u2).
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0.7 / substitution in descriptions
Suppose that t1 ≡ t2 and u1 ≡ u2, where t1, t2, u1, and u2 are terms. If the
label u1 applies to t1, it is postulated that the label u2 applies to t2.

Remark In other words, the symbol

Γ ctx t1 ≡ t2 u1 ≡ u2 Γ |− t1 : u1

Γ |− t2 : u2

is defined to be a postulate.

D.5 / corollary
Suppose that t1, t2, u1, and u2 are terms such that the label u1 applies to t1.

1 If t1 ≡ t2, then the label u1 applies to t2.

2 If u1 ≡ u2, then the label u2 applies to t1.

Proof By 0.6 and 0.4.1.

intuition With the notation of D.3, let Jt be either of the judgments

∆ |− t : v or ∆ |− v : t.

If Jt and u ≡ t are derivable from H, then Ju is derivable from H by D.5.

intuition Let ∆ be a well-formed context and Jt the judgment

∆, x : t ctx

If Jt and u ≡ t are true, then Ju is true. Indeed, since Jt is true, t is a type
in the context ∆ (intuitively, by 0.2). Therefore u is a type by D.5. It follows
from 0.2 that the context ∆, x : u is well-formed.

SUBSTITUTION OF TERMS FOR VARIABLES

definition If n is a number, then bn is a term. It is called the placeholder
with index n.

intuition Let X be a type. A mathematical operation defined on X is an
object f which encodes a method of constructing an output object f(a) from an
input object a of type X. The encoding uses variables, but can be simplified by
replacing them with placeholders.
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definition Numbers, constructors, and the successor symbol s are defined
to be constants.

0.8 / incrementing placeholders
Let n be a number, t and u terms, and x a variable. Let c be a variable other
than x or a constant. It is postulated that the following identities are satisfied :

∧x(c) ≡ c, ∧x(x) ≡ b0, ∧x

(
bn

)
≡ b s(n), ∧x

(
t(u)

)
≡ ∧x

(
t, ∧x(u)

)
.

Intuition The term ∧x(t) is constructed from t by substituting b0 for x and
incrementing the indices of the other placeholders.

0.9 / decrementing placeholders
Let n be a number, a, t, and u terms, and c a variable or a constant. It is
postulated that the following identities are satisfied :

∨a(c) ≡ c, ∨a

(
b0

)
≡ a, ∨a

(
b s(n)

)
≡ bn, ∨a

(
t(u)

)
≡ ∨a

(
t, ∨a(u)

)
.

Intuition The term ∨a(t) is constructed from t by substituting a for b0 and
decrementing the indices of the other placeholders.

notation Let a and t be terms. Define[
a
x

]
(t) := ∨a

(
∧x(t)

)
.

intuition According to 0.8 and 0.9, the term
[
a
x

]
(t) is constructed from t

by substituting a for x.

D.6 / theorem
Let a be a term, c a constant, n a number, and x a variable. Then[

a
x

]
(c) ≡ c,

[
a
x

](
bn) ≡ bn,

[
a
x

]
(x) ≡ a.

Proof Let n be a number. It follows from 0.8 and 0.9 that

∨a

(
∧x

(
bn

))
≡ ∨a

(
b s(n)

)
≡ bn and ∨a

(
∧x(x)

)
≡ ∨a

(
b0

)
≡ a.

D.7 / theorem
Let x be a variable and a, t, and u terms. Then[

a
x

](
t(u)

)
≡
[
a
x

]
(t)

([
a
x

]
(u)

)
.
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Proof It follows from 0.8 and 0.9 that

∨a

(
∧x

(
t(u)

))
≡ ∨a

(
∧x

(
t, ∧x(u)

))
≡ ∨a

(
∧x(t), ∨a

(
∧x(u)

))
.

0.10 / reflexive substitution
Let t be a term and x a variable. It is postulated that[

x
x

]
(t) ≡ t.

0.11 / independent substitution
Suppose that X is a type, a is an object of type X, and the label u applies to t.
Declare x as an object of type X. It is postulated that[

a
x

]
(t) ≡ t.

intuition As in context weakening (0.4), the term t does not depend on x.
Therefore t is not changed by substituting a for x.

D.8 / corollary
Suppose that X and Y are types, a is an object of type X, and b is an object of
type Y . Declare x as an object of type X. Then[

a
x

](
b(x)

)
≡ b(a) and

[
a
x

](
x(b)

)
≡ a(b).

Proof By D.6, D.7, and 0.11.

0.12 / construction by substitution
Assume that X is a type and a is an object of type X. Declare x as an object of
type X and suppose that the label u applies to t. It is postulated that the label[
a
x

]
(u) applies to

[
a
x

]
(t).

Remark In other words, the symbol

Γ ctx Γ |− X : U Γ |− v : X Γ, x : X |− t : u

Γ |−
[
a
x

]
(t) :

[
a
x

]
(u)

is defined to be a postulate.

D.9 / corollary
Assume that X is a type and a is an object of type X. Declare x as an object of
type X. Suppose that Y is a type. Then

[
a
x

]
(Y ) is a type.

Proof Since
[
a
x

]
(U) ≡ U by 0.12, the result follows from D.5.
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MATHEMATICAL OPERATIONS

PRODUCT TYPES

notation The symbols h and Π denote the constructors with indices one
and two, respectively.

notation If X is a type, then hX

(
∧x(y)

)
is denoted by

h (x :X) y or by x : X |−−→ y.

The variable x is bound with depth zero in this term.

0.13 / construction of product types
Let X be a type. Declare x as an object of type X. Suppose that Y is a type. It
is postulated that ∏

(x :X)Y := Π
(
X, h (x :X) Y

)
: U.

Remark In other words, the following inference is defined to be a postulate:

Γ ctx Γ |− X : U Γ, x : X |− Y : U
.

Γ |−
∏

(x :X)Y : U

definition The type constructed above is called a product type. An object
of a product type is called a mathematical operation, or simply an operation.

notation Let k and n be numbers. Define

s 0(n) := n and s s(k)(n) := s
(
s k(n)

)
.

Let x be a variable and Y and y terms, where x is bound with depth k in Y

and/or y. If the implicit context of the statement

• y is an object of type Y

has length n in the entry E, then x is understood to have index s k(n) in E.

23
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example Let X, Y , and Z be terms. If the implicit context of the statement∏
(x :X)

(∏
(y :Y )

Z

)
: U

has length n in the entry E, then the variables x and y are understood to have
indices n and s(n), respectively, in E.

intuition Bound variables can be declared in order of increasing depth.

1.1 / theorem
Let X and Y be types. Then

X −−→ Y :=
∏

(x :X)
Y : U.

Proof Declare x as an object of type X. Then Y is a type by 0.4. Hence the
result by 0.13.

Definition An object of type X −−→ Y is called an operation from X to Y or a
family of objects of type Y indexed by X.

Notation If f is assumed to be an operation from X to Y , then X and Y are
understood to be types. The symbol Y X denotes the type X −−→ Y .

0.14 / application of an operation
Let a be an object of type X. Declare x as an object of type X. Suppose that Y
is a type and f is an operation of type

∏
(x :X)Y . It is postulated that f(a) is

an object of type
[
a
x

]
(Y ).

Remark In other words, the inference

Γ ctx Γ |− X : U Γ |− a : X Γ, x : X |− Y : U Γ |− f :
∏

(x :X)Y

Γ |− f(a) :
[
a
x

]
(Y )

is defined to be a postulate.

Definition The operation f is said to be defined on the type X, which is called
the domain of f . The object f(a) is called the image of a under f or the value
of f at a.

1.2 / theorem
Let f be an operation from X to Y and a an object of type X. Then f(a) is an
object of type Y .
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Proof Declare x as an object of type X. Then Y is a type by 0.4, so it follows
from 0.14 and D.5 that

f(a) :
[
a
x

]
(Y ) ≡ Y.

Intuition An operation f from X to Y encodes a method of constructing an
object f(a) of type Y from an object a of type X.

1.3 / theorem
Let X be a type. Then X −−→ U is a higher-order type.

Proof The objects X and U are higher-order types by 0.1. Since the implicit
number ν is arbitrary, the result follows from 1.1.

definition Let m be a number and X a type of order m. An operation from
X to Um is called a type family of order m indexed by X.

1.4 / lemma
Let F be a type family indexed by X. Declare x as an object of type X. Then
the object Fx is a type.

Proof It follows from 0.3 and 0.4 that x has type X and F is a type family
indexed by X. Hence the result by 1.2, since Γ is an arbitrary context.

notation Let t, u and v be terms and Λ a constructor. Then

Λ (x : t) u(v) := Λ (x : t)

(
u(v)

)
.

1.5 / corollary
If F is a type family indexed by X, then

∏
(x :X)Fx is a type.

Proof By 1.4 and 0.13.

Definition The type
∏

(x :X)Fx is denoted by
∏

X(F ) or by∏
x :X

Fx.

An object of type
∏

X(F ) is called a selection of F .

Notation If f is assumed to have type
∏

X(F ), then X is understood to be a
type and F is understood to be a type family indexed by X.
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1.6 / theorem
Let f be an operation of type

∏
X(F ) and a an object of type X. Then f(a) is

an object of type Fa.

Proof Declare x as an object of type X. Then F (x) is a type by 1.4, so f(a) is
an object of type

[
a
x

](
F (x)

)
by 0.14. Hence the result by D.5 and D.8.

Intuition An operation f of type
∏

X(F ) encodes a method of constructing an
object f(a) of type Fa from an object a of type X.

0.15 / uniqueness of domains
Suppose that f has types

∏
X1

(F1) and
∏

X2
(F2). Then X1 ≡ X2.

Intuition Either X1 or X2 can be referred to as the domain of f .

CONSTRUCTION OF MATHEMATICAL OPERATIONS

0.16 / construction of operations
Let X be a type. Declare x as an object of type X. Suppose that Y is a type
and t is an object of type Y . It is postulated that

h (x :X) t :
∏

(x :X)
Y

Remark In other words, the inference

Γ ctx Γ |− X : U Γ, x : X |− Y : U Γ, x : X |− t : Y

Γ |− h (x :X) t :
∏

(x :X)Y

is defined to be a postulate.

definition Let x and y be variables and X, Y , and t terms. If the term

x : X |−−→ t

is an operation, it is said to be defined for x of type X by the value t.

0.17 / evaluation of an operation
Let a be an object of type X. Declare x as an object of type X. If Y is a type
and hX (u) has type

∏
(x :X)Y , it is postulated that

(
hX (u)

)
(a) ≡ ∨a(u).
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1.7 / corollary
Let a be an object of type X. Declare x as an object of type X. Suppose that Y
is a type and t is an object of type Y . Then(

h (x :X) t
)
(a) ≡

[
a
x

]
(t).

Proof By 0.16 and 0.17.

Remark In particular, it follows from 0.10 that
(
h (x :X) t

)
(x) ≡ t.

1.8 / constant operation
Let X and Y be types and b an object of type Y . Construct an operation

κX(b) : X −−→ Y

such that κX(b, a) ≡ b if a is an object of type X.

Solution Define κX(b) as the term

x : X |−−→ b.

It has the required type by 0.4 and 0.16. Given an object a of type X,

κX(b, a) ≡
[
a
x

]
(b) ≡ b

by 1.7 and 0.11.

Definition The object κX(b) is called a constant operation.

Remark By definition, X −−→ Y ≡
∏

X

(
κX (Y )

)
.

1.9 / identity operation
Let X be a type. Construct an operation 1X : X −−→ X such that 1X(a) ≡ a if
a is an object of type X.

Solution Define 1X as the term

x : X |−−→ x.

It has the required type by 0.3 and 0.16. Given an object a of type X,

1X(a) ≡
[
a
x

]
(x) ≡ a.

definition The object 1X is called the identity operation of X.
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1.10 / evaluation operator
Let F be a type family indexed by X and a an object of type X. Construct

eva :
∏

X
(F ) −−→ F (a)

such that eva(f) ≡ f(a) if f is a selection of F .

Proof Define eva as the term

f :
∏

X
(F ) |−−→ f(a).

It has the required type by 1.6 and 0.16. Given a selection f of F ,

eva(f) ≡
[
f
x

](
x(a)

)
≡ f(a).

definition The object eva is called an evaluation operator.

1.11 / lemma
Let f be an operation from X to Y and G a type family indexed by Y . Then∏

x :X

G
(
f(x)

)
: U.

Proof Declare x as an object of type X. It follows from 1.2 that f(x) is an
object of type Y and G

(
f(x)

)
is a type. Hence the result by 0.13.

1.12 / composition of operations
Given an operation f from X to Y and an operation g of type

∏
Y (G), construct

g ◦ f :
∏
x :X

G
(
f(x)

)
such that g ◦ f(a) ≡ g

(
f(a)

)
if a is an object of type X.

Solution Define g ◦ f as the term

x : X |−−→ g
(
f(x)

)
.

Declare x as an object of type X. It follows from 1.2 that f(x) has type Y , so
g
(
f(x)

)
has type G

(
f(x)

)
by 1.6. Given an object a of type X,

g ◦ f(a) ≡
[
a
x

](
g
(
f(x)

))
≡ g

(
f(a)

)
.

by 1.7, D.7, 0.11, and D.8.
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Definition The operation g ◦ f is called the composition of g with f .

1.13 / corollary
If f is an operation from X to Y and g is an operation from Y to Z, then

g ◦ f : X −−→ Z.

Proof It follows from 1.12 and the definitions that g ◦ f is a selection of

κY (Z) ◦ f ≡ h (x :X)

(
κY

(
Z, f(x)

))
≡ h (x :X) Z ≡ κX(Z).

1.14 / corollary
Let f be an operation from X to Y and g an operation of type

∏
Y (G). Then

g ◦ f :
∏

Y
(G ◦ f ).

1.15 / theorem
Let f be an operation from X to Y and g an operation from Y to Z. If H is a
type family indexed by Z and h is a selection of H, then

h ◦ (g ◦ f ) :
∏

X

(
H ◦ (g ◦ f )

)
and (h ◦ g) ◦ f :

∏
X

(
(H ◦ g) ◦ f

)
Proof By 1.13 and 1.14.

UNIQUENESS OF OPERATIONS AND DOMAINS

0.18 / uniqueness of operations
Let X be a type and let f and g be operations defined on X. Declare x as an
object of type X. If f(x) ≡ g(x), it is postulated that f ≡ g.

Remark More precisely, f is a selection of F and g is a selection of G, where
F and G are type families.

Intuition The operations f and g are identical if and only if f(x) ≡ g(x) for
all x of type X.

1.16 / corollary
Let F be a type family indexed by X and f a selection of F . Then

x : X |−−→ f(x)

is a selection of F . Furthermore, it is identical to f .
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Proof Let g denote the given formal operator. Then

g(x) ≡
[
x
x

](
f(x)

)
≡ f(x)

by 1.7, 0.10, and 0.11. Hence the result by 1.6, D.5, 0.16, and 0.18.

1.17 / corollary
Let f be an operation from X to Y . Then

f ◦ 1X ≡ f ≡ 1Y ◦ f.

Proof Declare x as an object of type X. By 1.9 and 1.12,

f
(
1X(x)

)
≡ f(x) ≡ 1Y

(
f(x)

)
.

1.18 / corollary
Let f be an operation from X to Y and g an operation from Y to Z. If H is a
type family indexed by Z and h is a selection of H, then

h ◦ (g ◦ f ) ≡ (h ◦ g) ◦ f.

Proof Declare x as an object of type X. By 1.12 and 0.18,

h
(
g ◦ f(x)

)
≡ h

(
g
(
f(x)

))
≡ h ◦ g

(
f(x)

)
.

Notation The operation h ◦ (g ◦ f ) is denoted by h ◦ g ◦ f .
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NATURAL NUMBERS

THE NATURAL NUMBER TYPE

definition The constructor with index three is denoted by N and called the
natural number type.

0.19 / construction of the natural number type
It is postulated that N is a type.

definition An object n of type N is called a natural number. An operation
f defined on N is called a sequence. Its value fn at n is called its nth term.

definition A sequence of type N −−→ X is called a sequence of objects of
type X, or a sequence in X. In particular:

• a sequence of types is called a type sequence

• a sequence of natural numbers is called a numerical sequence.

0.20 / construction of natural numbers
It is postulated that :

1 Zero is a natural number

2 If n is a natural number, then s(n) is a natural number.

Definition The object s(n) is called the successor of n.

intuition Natural numbers can be thought of as numbers, since both are
constructed from zero by iterating the successor operation. The difference is
that variables can be declared as natural numbers.

definition Let C be a type sequence. A recursor of C is an object of type∏
(x :N)

(
Cx −−→ C s(x)

)
.

notation The symbol R denotes the constructor with index four.

31
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0.21 / recursive definition
Let C be a type sequence, T a recursor of C, and c0 an object of type C 0. It is
postulated that R(C, T, c0) is a selection of C, and that

R(C, T, c0, 0) ≡ c0.

Declare x as a natural number. It is postulated that

R
(
C, T, c0, s(x)

)
≡ T

(
x, R(C, T, c0, x)

)
.

Intuition The sequence f := R(C, T, c0) is defined as follows:

1 Define f(0) as the object c0 of type C 0.

2 Given a natural number x and an object f(x) of type Cx, define f
(
s(x)

)
as the object T

(
x, f(x)

)
of type Cs(x).

Since the natural numbers are constructed from zero by iterating the successor
operation, this procedure defines f(x) for every natural number x.

Definition It is said that f is defined recursively on C by the identities

f(0) ≡ c0 and f(s(x)) ≡ T
(
x, f(x)

)
which are called its initial condition and recurrence relation, respectively. The
value of f at zero is called its initial value.

definition Let X be a type. A recursor T of the constant type sequence
κ N(X ) is called a recursor of X. If x0 is an object of type X, then

Rκ (X, T, x0) := R
(
κ N(X ), T, x0

)
.

This sequence is said to be defined recursively on X.

Remark A recursor of X is a sequence in X −−→ X.

definition A recursor of N is called a numerical recursor.

RECURSIVE DEFINITIONS

2.1 / predecessor operation
Construct a numerical sequence pd such that

pd(0) ≡ 0 and pd
(
s(n)

)
≡ n

if n is a natural number.
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Solution Let T denote the term

x : N |−−→ κN(x)

Then T is a recursor of N by 0.3, 1.8, and 0.16. Define

pd := Rκ (N, T, 0),

which is a numerical sequence by 0.21. Declare x as a natural number. Then

pd
(
s(x)

)
≡ T

(
x, pd(x)

)
≡ κN

(
x, pd(x)

)
≡ x.

definition The operation pd is called the predecessor operation. If n is a
natural number, then pd(n) is called the predecessor of n.

definition Let x and y be variables and X, Y , and t terms. The term

x : X |−−→ (y : Y |−−→ t) is denoted by x : X, y : Y |−−→ t.

If this term is a mathematical operation, it is said to be defined for x of type X

and y of type Y by the value t.

2.2 / iteration of an operation
Let f be an operation from X to X. Construct a recursor itrf of X such that

itrf (0) ≡ 1X and itrf
(
s(n)

)
≡ f ◦

(
itrf (n)

)
if n is a natural number.

Solution Let Tf denote the term

x : N, y : XX |−−→ f ◦ y.

Then Tf is a recursor of X −−→ X by 1.13. Define

itrf := Rκ (XX , Tf , 1X ).

Declare x as a natural number. Then

itr f
(
s(x)

)
≡ Tf

(
x, itrf (x)

)
≡ f ◦

(
itrf (x)

)
.

Definition Let n be a natural number. The operation

f n := itrf (n)

is called the nth iterate of f . With this notation,

f 0 ≡ 1X and f s(n) ≡ f ◦ f n.
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2.3 / corollary
If f is an operation from X to X, then

f 1 ≡ f, f 2 ≡ f ◦ f, f 3 ≡ f ◦ f ◦ f.

notation Let x be a variable, t and X terms, and L a list of terms. Then

L : X, x : X |−−→ t is denoted by L, x : X |−−→ t.

If this symbol is a mathematical operation, it is said to be defined for L and x

of type X by the value t.

2.4 / addition of natural numbers
Construct a numerical recursor + such that

+m(0) ≡ m and +m

(
s(n)

)
≡ s

(
+m(n)

)
if m and n are natural numbers.

Solution Define + as the term

x, y : N |−−→ sx(y),

which is a numerical recursor by 0.20 and 2.2. It follows that

+x(0) ≡ s 0(x) ≡ x

+x

(
s(y)

)
≡ s s(y)(x) ≡ s ◦ sy(x) ≡ s

(
+x(y)

)
.

definition If m and n are natural numbers, then

m+ n := +m(n)

is a natural number, called the sum of n and m. With this notation,

m+ 0 ≡ m and m+ s(n) ≡ s(m+ n).

The numerical recursor + is called addition of natural numbers.

2.5 / corollary
If m and n are natural numbers, then

m+ 1 ≡ s(m) and m+ (n+ 1) ≡ (m+ n) + 1.

Example The judgment 2 + 2 ≡ 4 is valid.
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VALUES OF AN OPERATION

IMAGE TYPES

0.22 / construction of image types
Let X be a type and f an operation defined on X. It is postulated that

im f := f(X) : U.

Definition The type imf is called the image of f . An object of type im f is
called a value of f .

0.23 / construction of values
Suppose that X is a type, f is an operation defined on X, and a is an object of
type X. It is postulated that f(a) is a value of f .

3.1 / theorem
Let X be a type and f an operation defined on X. Then f : X −−→ f(X).

Proof Declare x as an object of type X. Then f(x) is a value of f by 0.23, so
the result follows from 0.16.

notation The symbol H denotes the constructor with index five.

definition Let x be an object of type X and f an operation defined on X.
If f(x) ≡ y, then x is said to be a preimage of y under f .

0.24 / the principle of constructive choice
Let X be a type and f an operation defined on X. It is postulated that :

f ∗ := H(X, f ) : f(X) −−→ X1

f ◦ f ∗ ≡ 1f(X).2

Definition The operation f ∗ is called the Hilbert inverse of f . If y is a value
of f , then f ∗(y) is a preimage of y under f . It is said to be canonical.
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Definition The statement

• Choose an object x of type X such that y ≡ f(x)

means that x denotes f ∗(y).

Intuition The statement that y is a value of f means that y ≡ f(x) for some
object x of type X.

3.2 / theorem
Let f be an operation from X to Y and y a value of f . Then y has type Y .

Proof Choose an object x of type X such that y ≡ f(x). Then y ≡ f
(
f ∗(x)

)
by 0.24, so y has type Y by 1.2 and D.5.

definition If x is an object of type X, then the image of κ N(x) is denoted
by {x} and called the singleton type defined by x.

3.3 / theorem
Let x be an object of type X. Then y : {x} if and only if y ≡ x.

3.4 / corollary
If x is an object of type X and f is an operation defined on {x}, then

f ≡ κ {x}
(
f(x)

)
and f

(
{x}
)
≡
{
f(x)

}
.

definition Let X be a type. The canonical object of type X is the term

τ (X) :=
(
κX(0)

)∗
(0).

If τ (X) has type X, then X is said to be inhabited.

3.5 / theorem
Let X be a type. If x is an object of type X, then X is inhabited.

Proof Let f := κX(0) : X −−→ N. Then f(x) ≡ 0, so τ (X) ≡ f ∗(f(x)) has
type X.

definition If the type X is inhabited, then the statement

• Choose an object x of type X

means that x denotes the canonical object of type X.

Intuition Saying that X is inhabited means that some term has type X.
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3.6 / corollary
Let f be an operation defined on X. If f(X) is inhabited, then X is inhabited.

Proof By 3.5, since f ∗(τ (f(X)
))

has type X by 0.24 and 1.2.

THE SUBTYPING RELATION

definition Let A and X be types. If 1A : A −−→ X, then A is said to be a
subtype of X, written A ⊆ X.

intuition The statement that A is a subtype of X means that every object
of type A is an object of type X.

example If m is a number, then Um is a subtype of Um+1 by 0.12. If f is
an operation from X to Y , then f(X) ⊆ Y by 3.2.

3.7 / corollary
Let f an operation defined on the type X. If f(X) ⊆ Y , then f : X −−→ Y .

Proof By 1.13, since f ≡ 1f(X) ◦ f by 3.1.

3.8 / theorem
If X is a type, then X is a subtype of itself.

3.9 / theorem
Let X, Y and Z be types. If X ⊆ Y and Y ⊆ Z, then X ⊆ Z.

Proof By 1.13, since 1X ≡ 1Y ◦ 1X by 1.20.

notation If the term A is assumed to be a subtype of X, then A and X are
understood to be types.

definition Let F be a type family indexed by X and f a selection of F . If
A is a subtype of X, then the operation

f ◦ 1A :
∏
a :A

Fa

is denoted by f
∣∣A and called the restriction of f to A. Its image is denoted by

f [A ] and called the image of A through f .
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Intuition The statement that y has type f [A ] means that y ≡ f(a) for some
object a of type A.

3.10 / lemma
Let X be a type, f an operation defined on X, and A a subtype of X. If a is an
object of type A, then f(a) has type f [A ].

Notation If x has type X, then f [x ] denotes the image of {x} through f .

3.11 / theorem
Let X be a type and f an operation defined on X. Then f [X ] ≡ f(X).

Proof Since f ≡ f ◦ 1X by 1.20.

0.25 / substitution of types
Let X and Y be types. It is postulated that X ≡ Y if X ⊆ Y and Y ⊆ X.

Remark If X ≡ Y , then X ⊆ Y and Y ⊆ X by 0.5 and 3.8.

3.12 / corollary
If A is a subtype of X, then 1X [A ] ≡ A.

Proof By 0.25. Indeed, if a is an object of type A, then 1X ◦ 1A(a) ≡ a.

3.13 / corollary
Let f be an operation from X to Y and g an operation from Y to Z. If A is a
subtype of X, then

g
[
f [A ]

]
≡ (g ◦ f )[A ].

Proof By 0.25. Indeed, if a is an object of type A, then

g ◦ 1f [A]

(
f ◦ 1A(a)

)
≡
(
(g ◦ f ) ◦ 1A

)
(a).

3.14 / corollary
Let X be a type and f an operation defined on X. If A ⊆ B and B ⊆ X, then

f [A ] ⊆ f [B ] and (f |B)[A ] ≡ f [A ].

Proof Declare y as an object of type f [A ]. Choose an object a of type A such
that y ≡ f(a). Then a has type B, so y has type f [B ]. Furthermore

(f ◦ 1B)[A ] ≡ f
[
1B [A ]

]
≡ f [A ]

by the previous two corollaries.
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ASSEMBLIES

COPRODUCT TYPES

notation The symbol ⨿ denotes the constructor with index six.

0.26 / construction of coproduct types
If F is a type family indexed by X, it is postulated that

∐
X(F ) is a type.

Definition The type
∐

X(F ) is denoted by
∐

(x :X)Fx or∐
x :X

Fx

and called a coproduct type. An object of this type is called an assembly.

notation The symbol A denotes the constructor with index seven.

0.27 / construction of assemblies
Let F be a type family indexed by X. If x is an object of type X and y an object
of type Fx, it is postulated that

[x, y ] := A(X, F, x, y) :
∐

X
(F ).

Definition The object constructed in 0.27 is called the assembly of x with y. It
is said to consist of an object x of type X and an object y of type Fx.

intuition The assembly [x, y ] combines x and y into a single object.

4.1 / theorem
Let f be an operation from X to Y and G a type family indexed by Y . Given a
selection g of the type family G ◦ f , construct an operation

[f, g ] : X −−→
∐

Y
(G) such that [f, g ](a) ≡

[
f(a), g(a)

]
if a is an object of type X.

39
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Proof Define [f, g ] as the term

x : X |−−→
[
f(x), g(x)

]
.

Declare x as an object of type X. Then f(x) is an object of type Y and g(x) is
an object of type G

(
f(x)

)
. Hence the result by 0.27, 0.16, and 1.7.

4.2 / canonical inclusion
Let F be a type family indexed by X and x is an object of type X. Construct

ιx : Fx −−→
∐

X
(F ) such that ιx(y) ≡ [x, y ]

for all objects x of type Fx.

Proof Define ιx as the operation
[
κFx(x), 1Fx

]
.

Definition The object ιx is called the canonical inclusion of Fx into
∐

X(F ).

SEPARATORS AND COMBINATORS

notation The symbol C denotes the constructor with index eight.

notation If f is assumed to have type
∐

X(F ), then F is understood to be
a type family indexed by the type X. If x, y and h are terms, then

h[x, y ] := h
(
[x, y ]

)
.

definition Let H be a type family indexed by
∐

X(F ). An object S of type∏
x :X

∏
y :Fx

H [x, y ].

is called a separator of H. The term C(X, F, H, S) is denoted by∐
X
(S) or

∐
x :X

S(x)

and called the combinator of S.

0.28 / construction of combinators
If H is a type family indexed by

∐
X(F ) and S is a separator of H, it is

postulated that ∐
X
(S) :

∏⨿
X(F )

(H ).
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0.29 / evaluation of combinators
Let S be a separator of H, where H is a type family indexed by

∐
X(F ). Declare

x as an object of type X and y as an object of type Fx. It is postulated that(∐
X
(S)

)
[x, y ] ≡ S(x, y).

Definition Given a selection h of H, the operation

x : X, y : Fx |−−→ h [x, y ]

is denoted by sep h and called the separator of H defined by h.

4.3 / corollary
Let S a separator of H, where H is a type family indexed by

∐
X(F ). Then

sep
(∐

X
(S)

)
≡ S.

4.4 / first component of an assembly
Given a type family F indexed by X, construct an operation

σ1 :
∐

X
(F ) −−→ X such that σ1 [x, y ] ≡ x

for all objects x of type X and all objects y of type Fx.

Solution Define σ1 as the combinator∐
x :X

(
κFx(x)

)
.

4.5 / second component of an assembly
Given a type family F indexed by X, construct an operation

σ2 :
∏⨿

X(F )

(
F ◦ σ1

)
such that σ2 [x, y ] ≡ y

for all objects x of type X and all objects y of type Fx.

Solution Define σ2 as the combinator∐
x :X

1Fx .

definition If z is an object of the coproduct type
∐

X(F ), then σ1(z) is
called the first component of z and σ2(z) is called the second component of z.
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0.30 / uniqueness of combinators
Let h be a selection of H, where H is a type family indexed by

∐
X(F ). It is

postulated that
h ≡

∐
x :X

(
seph

)
(x).

4.6 / corollary
Let H be a type family indexed by

∐
X(F ). If h1 and h2 are selections of H

such that sep h1 ≡ sep h2, then h1 ≡ h2.

4.7 / theorem
Let F be a type family indexed by X and z an object of type

∐
X(F ). Then

z ≡ [σ1(z), σ2(z)].

Proof Declare x as an object of type X and y as an object of type Fx. Then

[σ1, σ2 ][x, y ] ≡
[
σ1 [x, y ], σ2 [x, y ]

]
≡ [x, y ]

by 4.1, 4.4, and 4.5. Hence the result by 4.6.

Notation The first component of z is denoted by z1 and the second component
by z2. Therefore z ≡ [z1, z2 ].



5

MATHEMATICAL PROPOSITIONS

PROOF TYPES AND TRUTH

notation The symbols V and � denote the constructors with indices nine
and ten, respectively. If m is a number, then V(m) is denoted by Vm.

Definition The term Vm is called the propositional universe of order m. An
object of type Vm is called a proposition of order m.

0.31 / construction of propositional universes
Let m be a number. It is postulated that Vm is a type of order m + 1 and a
subtype of Vm+1.

intuition Propositions can be thought of as mathematical statements that
can be manipulated using logical operations.

0.32 / construction of proof types
Let m be a number and P a proposition of order m. It is postulated that �(P )

is a type of order m.

Definition The type �P is called the proof type of P . If it is inhabited, then
P is said to be true. An object of type �P is said to prove P , and is called a
proof of P or a proof that P is true.

Notation The canonical proof of P is denoted by 3P . Thus P is true if and
only if 3P proves P . The symbol P denotes the statement that “P is true.”

notation The symbol S denotes the constructor with index eleven.

0.33 / subtyping propositions
Let X and Y be types. It is postulated that S(X,Y ) is a proposition and that
its proof type is a subtype of X −−→ Y . If X is a subtype of Y , it is postulated
that 1X proves S(X,Y ).

43
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Definition The proposition S(X,Y ) is called a subtyping proposition.

0.34 / uniqueness of subtyping proofs
Let X and Y be types, and p a proof of S(X,Y ). It is postulated that p ≡ 1X .

Intuition If the proposition S (X,Y ) is true, then 1X is its only proof.

5.1 / corollary
Let X and Y be types. Then X ⊆ Y if and only if S (X,Y ) is true.

Proof Immediate from the previous two postulates.

5.2 / theorem
Let x be an object of type X and A a subtype of X. Then x has type A if and
only if {x} ⊆ A.

Proof It follows from 3.4 that 1{x} ≡ κ {x}(x). Hence the result by 1.9.

notation Let X and Y be types and A a subtype of X. Let x be an object
of type X and y a term. Subtyping propositions are interpreted as follows:

proposition interpretation notation

S(X,Y ) X is a subtype of Y X ⊆ Y

S
(
{x}, A

)
x is an object of type A x : A

S
(
{x}, {y}

)
x is substitutable for y x ≡ y

table 8. Interpretation of subtyping propositions.

These interpretations are justified by theorems 5.1, 5.2, and 3.3, respectively.

Intuition The judgments given in table 8 can be interpreted as propositions.

notation Suppose that x and y are both natural numbers, both sequences,
or both types. Then the proposition x ≡ y is denoted by x = y.

definition Let X be a type of order m. An operation from X to Vm is
called a predicate of order m on X.

example Let A be a subtype of X and f and g operations on X. The terms

x : X |−−→ x : A and x : X |−−→ f(x) ≡ g(x)

are predicates on X. The former is called the predicate on X defined by A.
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QUANTIFICATION OF A PREDICATE

notation The constructor with index twelve is denoted by ∀ and called the
universal quantifier. For terms P and X, the term ∀X (P ) is denoted by

∀(x :X) P (x).

0.35 / universal quantification
Let X be a type and P a predicate on X. It is postulated that ∀(x :X) P (x) is a
proposition, and that

�
(
∀(x :X) P (x)

)
=
∏

(x :X)
�
(
P (x)

)
.

Definition The proposition ∀X (P ) is called the universal quantification of P .
It is interpreted as the statement

• For all x of type X, the proposition P (x) is true.

The phrases for all, for every, and for each have the same meaning.

Intuition A proof of ∀X (P ) encodes a method of constructing a proof of the
proposition P (a) from an object a of type X.

5.3 / the generalization theorem
Let X be a type and P a predicate on X. If either of the following statements
expresses a valid inference, then so does the other:

1 If a is an object of type X, then P (a) is true

2 The proposition ∀(x :X) P (x) is true.

Proof If 1 is valid, then 2 is valid by 0.3, 0.16, and 3.5. If 2 is valid, then 1 is
valid by 1.6 and 3.5.

5.4 / universal instantiation
Let X be a type, P a predicate on X, and a an object of type X. If P (x) is true
for all x of type X, then P (a) is true.

Proof Choose a proof f of ∀X (P ). Then f(a) proves P (a) by 1.6 and 7.1.

5.5 / corollary
Let X and Y be types. Then X ⊆ Y if and only if every object of type X is an
object of type Y .
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Proof Necessity follows from 5.3 and sufficiency from 5.4.

5.6 / corollary
Let X be a type and f and g operations defined on X. Then f ≡ g if and only
if f(x) ≡ g(x) for all x of type X.

Proof Necessity follows from 0.5 and 5.3, sufficiency from 5.4 and 0.18.

5.7 / corollary
Let F and G be type families indexed by X. If Fx ⊆ Gx for all x of type X,
then ∏

x :X

Fx ⊆
∏
x :X

Gx and
∐
x :X

Fx ⊆
∐
x :X

Gx.

Proof of the first proposition Declare f as an object of type
∏

X(F ) and x as
an object of type X. Then f(x) has type Gx by 1.6 and 5.4. Hence the result
by 0.16 and 5.5.

Proof of the second proposition Declare z as an object of type
∐

X(F ). Then
z1 has type X by 4.4 and z2 has type Gz1 by 4.5 and 5.4. Hence the result by
4.7 and 5.5.

notation The constructor with index thirteen is denoted by ∃ and called the
existential quantifier. For terms P and X, the term ∃X (P ) is denoted by

∃ (x :X) P (x).

0.36 / existential quantification
Let X be a type and P a predicate on X. It is postulated that ∃ (x :X) P (x) is a
proposition, and that

�
(
∃ (x :X) P (x)

)
=
∐

(x :X)
�
(
P (x)

)
.

Definition The proposition ∃X (P ) is called the existential quantification of P .
It is interpreted as the statements

• There exists x of type X such that P (x) is true

• For some x of type X, the proposition P (x) is true.

The phrases there exists and there is have the same meaning.

Intuition A proof of ∃X (P ) is an assembly consisting of an object a of type X

and a proof of the proposition P (a).
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5.8 / existential generalization
Let a be an object of type X and P a predicate on X. If the proposition P (a) is
true, then P (x) is true for some x of type X.

Proof Choose a proof p of P (a). Then [a, p ] proves ∃X (P ) by 0.36.

definition Let a be an object of type X and P a predicate on X. If P (a)

is true, then a is called a witness of P and is said to satisfy P .

notation Let X be a type and P a predicate on X. The term

σ1

(
3
(
∃ (x :X) P (x)

))
is denoted by εX (P ) or by ε (x :X) P (x) and called the canonical witness of P .

Definition Suppose that P (x) is true for some x of type X. The statement

• Choose a witness a of P

means that a denotes the canonical witness of P .

5.9 / existential instantiation
Let X be a type and P a predicate on X. The proposition ∃X (P ) is true if and
only if εX (P ) has type X and P

(
εX (P )

)
is true.

Proof The condition is necessary by 4.4 and 4.5. It is sufficient by 5.8

5.10 / corollary
Let X and Y be types, A a subtype of X, and f an operation from X to Y .
Then y belongs to f [A ] if and only if y ≡ f(a) for some object a of type A.

Proof Necessity follows from 0.24 and 5.8, sufficiency from 5.9 and 3.10.

5.11 / corollary
The type X is inhabited if and only if x : X for some object x of type X.

Proof The condition is necessary by 5.8 and sufficient by 5.9 and 3.5.

definition Let m be a number. The term x is called a mathematical object
of order m if there exists a type X of order m such that x has type X.

intuition There are five kinds of mathematical object: types, operations,
natural numbers, assemblies, and propositions. No object falls within two of
these categories.
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PREDICATE LOGIC

LOGICAL IMPLICATION AND LOGICAL EQUIVALENCE

definition Let P and Q be propositions. The proposition

P =⇒ Q := ∀�P

(
κ �P (Q)

)
is called the conditional from P to Q. It has antecedent P and consequent Q.
The proposition Q =⇒ P is called the converse of P =⇒ Q.

6.1 / deduction theorem
Let P and Q be propositions. If either of the following statements is true, then
so is the other:

1 If P is true, then Q is true

2 The proposition P =⇒ Q is true.

Proof By the generalization theorem.

Notation The statement P implies Q means that P =⇒ Q is true.

6.2 / corollary
If P and Q are propositions, then the proof type of P =⇒ Q is

�(P ) −−→ �(Q).

Proof By 0.35 and 1.9.

6.3 / modus ponens
Let P and Q be propositions. If P is true and P implies Q, then Q is true.

Proof By 5.4.

6.4 / conditional tautology
Let P be a proposition. Then P implies P .

48
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6.5 / hypothetical syllogism
Let P , Q, and R be propositions, where P implies Q and Q implies R. If P is
true, then R is true.

Proof Suppose that f proves P =⇒ Q and g proves Q =⇒ R. Then g ◦ f
proves P =⇒ R by 1.13. Hence the result by the deduction theorem.

6.6 / corollary
Let P , Q, and R be propositions. If P implies Q, then

1 R =⇒ P implies R =⇒ Q

2 Q =⇒ R implies P =⇒ R.

6.7 / lemma
Let X be a type and P a proposition. Then

1 ∃X

(
κX(P )

)
implies P

2 P implies ∀X
(
κX(P )

)
.

Proof By 5.9 and 5.3, respectively.

6.8 / corollary
Let P and Q be propositions. If Q is true, then P implies Q.

Proof By 6.7.2.

6.9 / lemma
Let a be an object of type X and P a predicate on X. Then

1 ∀(x :X) P (x) implies P (a)

2 P (a) implies ∃ (x :X) P (x).

Proof This is a restatement of 5.4 and 5.8.

6.10 / corollary
Let X be an inhabited type and P a proposition. Then

1 ∀X
(
κX(P )

)
is equivalent to P

2 P is equivalent to ∃X

(
κX(P )

)
.

definition Let P and Q be propositions. If P implies Q and Q implies P ,
then P is said to be equivalent to Q, written P ⇐⇒ Q.
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6.11 / the equivalence theorem
Let P and Q be propositions. If either of the following statements is true, then
so is the other:

1 P is true if and only if Q is true

2 P is equivalent to Q.

Proof By the deduction theorem.

6.12 / theorem
Let P , Q, and R be propositions.

1 The proposition P is equivalent to itself

2 If P ⇐⇒ Q, then Q ⇐⇒ P

3 If P ⇐⇒ Q ⇐⇒ R, then P ⇐⇒ R.

Proof By 6.4 and 6.5.

6.13 / lemma
Let P , Q, and R be propositions If P is equivalent to Q, then

1 R =⇒ P is equivalent to R =⇒ Q

2 Q =⇒ R is equivalent to P =⇒ R.

Proof By 6.6.

TRANSFER OF IMPLICATION ACROSS QUANTIFIERS

6.14 / theorem
Let P and Q be predicates defined on the type X. Then :

1 ∀(x :X)

(
P (x) =⇒ Q(x)

)
implies ∀(x :X) P (x) =⇒ ∀(x :X) Q(x)

2 ∀(x :X)

(
P (x) =⇒ Q(x)

)
implies ∃ (x :X) P (x) =⇒ ∃ (x :X) Q(x).

Proof of 1 Declare f as a proof of the antecedent, g as a proof of ∀X (P ), and
x as an object of type X. Then f

(
x, g(x)

)
proves Q(x) by 5.4. Hence the result

by the generalization theorem.

Proof of 2 Declare f as a proof of the antecedent and z as a proof of ∃X (P ).
Then f

(
σ2(z)

)
proves of Q

(
σ2(z)

)
. Hence the result by 5.8.and 6.1.
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6.15 / corollary
Let X be a type, P a predicate on X, and Q a proposition.

1 ∀(x :X)

(
Q =⇒ P (x)

)
implies Q =⇒ ∀(x :X) P (x)

2 ∀(x :X)

(
P (x) =⇒ Q

)
implies ∃ (x :X) P (x) =⇒ Q.

Proof By 6.14, 6.7, and 6.5.

6.16 / theorem
Let P and Q be predicates defined on the type X. Then

∃ (x :X)

(
P (x) =⇒ Q(x)

)
implies ∀(x :X) P (x) =⇒ ∃ (x :X) Q(x).

Proof Declare p as a proof of the antecedent and f as a proof of ∀X (P ). Then
f
(
σ1(p)

)
proves P

(
σ1(p)

)
by 5.9 and 5.4, so

σ2

(
p, f
(
σ1(p)

))
proves Q

(
σ1(p)

)
by 5.9 and 6.3.

6.17 / corollary
Let X be a type, P a predicate on X, and Q a proposition.

1 ∃ (x :X)

(
P (x) =⇒ Q

)
implies ∀(x :X) P (x) =⇒ Q.

2 ∃ (x :X)

(
Q =⇒ P (x)

)
implies Q =⇒ ∃ (x :X) P (x).

Proof By 6.16, 6.7, and 6.5.

6.18 / corollary
Let X be a type, P a predicate on X, and Q a proposition.

1 ∀(x :X)

(
Q =⇒ P (x)

)
is equivalent to Q =⇒ ∀(x :X) P (x)

2 ∀(x :X)

(
P (x) =⇒ Q

)
is equivalent to ∃ (x :X) P (x) =⇒ Q

Proof of 1 Declare f as a proof of the right-hand proposition, x as an object
of type X, and q as a proof of Q. Then f(q, x) proves P (x) by 5.4.

Proof of 2 Declare g as a proof of the right-hand proposition, x as an object of
type X, and p as a proof of P (x). Then g [x, p ] proves Q by 5.8 and 6.3. Hence
the result by 6.15.
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MATHEMATICAL RELATIONS

definition Let m be a number, X a type of order m, and F a type family
of order m indexed by X. An object R of type∏

x :X

(Fx −−→ Vm).

is called a relation of order m on F . Let a be an object of type A and b an
object of type Fa. If R(a, b) is true, then a is said to have the relation R to b.

definition Let X and Y be types. A relation on κX(Y ) is called a relation
from X to Y . A relation from X to X is called a relation on X, or a relation
between objects of type X.

example The following operation is a relation of order m between types:

x, y : Um |−−→ x ⊆ y.

It is called the subtyping relation of order m.

example Let X be a type. The operation defined for x and y of type X by
the proposition x ≡ y is a relation on X, called its identity relation.

example Let X and Y be types and suppose that R is a relation on Y . The
operation defined for f and g of type X −−→ Y by the proposition

∀(x :X)

(
R
(
f(x), g(x)

))
is a relation on X −−→ Y . It is said to be induced by R.

notation Let F be a type family indexed by X and R a relation on F .

proposition interpretation

∀(x :X)

(
∀(y :Fx) R(x, y)

)
For all x of type X and all y of type Fx,
the proposition R(x, y) is true

∃ (x :X)

(
∃ (y :Fx) R(x, y)

)
There exist x of type X and y of type Fx

such that R(x, y) is true

table 9. Interpretation of double quantification.

The interpretation of each proposition in the left-hand column of table 9 is given
in the right-hand column.
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6.19 / lemma
Let X be a type and R a relation on X.

1 ∀(x :X)

(
∀(y :X) R(x, y)

)
implies ∀(x :X) R(x, x)

2 ∃ (x :X) R(x, x) implies ∃ (x :X)

(
∃ (y :X) R(x, y)

)
.

Proof By 6.14 and 6.9.

6.20 / interchange of universal quantifiers
Let X and Y be types and R a relation from X to Y . Then

∀(x :X)

(
∀(y :Y ) R(x, y)

)
⇐⇒ ∀(y :Y )

(
∀(x :X) R(x, y)

)
.

Proof Declare f as a proof of the left-hand proposition. Then the operation

y : Y, x : X |−−→ f(x, y)

proves the right-hand proposition by 0.35. Since the operation

y : Y, x : X |−−→ R(x, y)

is a relation from Y to X, the proof is completed by interchanging the roles of
X and Y . This is called a proof by symmetry.

6.21 / interchange of antecedents
Let P , Q and R be propositions. Then

P =⇒ (Q =⇒ R) is equivalent to Q =⇒ (P =⇒ R).

6.22 / interchange of existential quantifiers
Let X and Y be types and R a relation from X to Y . Then

∃ (x :X)

(
∃ (y :Y ) R(x, y)

)
⇐⇒ ∃ (y :Y )

(
∃ (x :X) R(x, y)

)
.

Proof Either implication is proved by two applications of 5.9, followed by two
applications of 5.8. Hence the result by symmetry.

6.23 / interchange of distinct quantifiers
Let X and Y be types and R a relation from X to Y . Then

∃ (x :X)

(
∀(y :Y ) R(x, y)

)
=⇒ ∀(y :Y )

(
∃ (x :X) R(x, y)

)
.

Proof Choose a witness a of the antecedent. Declare y as an object of type Y .
It follows from 5.4 that R(a, y) is true, so ∃ (x :X) R(x, y) is true by 5.8. Hence
the result by 5.3.
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6.24 / the classical axiom of choice
Let F be a type family indexed by X and R is a relation on F . Then

∀(x :X)

(
∃ (y :Fx) R(x, y)

)
=⇒ ∃ (f :

∏
X(F ))

(
∀(x :X) R

(
x, f(x)

))
Proof Declare p as a proof of the antecedent. Let f denote the operation

x : X |−−→ σ1

(
p(x)

)
Then f is a selection of F . Declare x as an object of type X. Then σ2

(
p(x)

)
proves R

(
x, f(x)

)
by 5.9. Hence the result by 5.3 and 5.8.
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MATHEMATICAL INDUCTION

ITERATION AND ADDITION

7.1 / the principle of mathematical induction
Let P be a sequence of propositions such that

P 0 and ∀(x :N) (P x =⇒ P x+1)

are true. Then P x is true for all natural numbers x.

Proof Define a proof p of the result recursively by the identities

p0 ≡ 3P 0 and px+1 ≡ 3
(
P x =⇒ P x+1

)
(px).

Definition An application of 7.1 is called a proof by induction on x. Its basis,
inductive hypothesis, and inductive step are the propositions

P 0, P x, and ∀(x :N) (P x =⇒ P x+1),

respectively. Thus a proof by induction is accomplished by proving its basis and
its inductive step.

7.2 / corollary
If x is a natural number, then x = s x(0).

Proof By induction on x. The basis follows from 2.3. If x = s x(0), then

x+ 1 = s(x) = s
(
s x(0)

)
= s x+1(0).

7.3 / corollary
Let P be a sequence of propositions. If P 0 and ∀(x :N) P x+1 are true, then P x

is true for all natural numbers x.

Proof By 7.1, 6.8, and 5.3.
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7.4 / lemma
Let f be an operation from X to X. Then f ◦ f n ≡ f n ◦ f for all natural
numbers n.

Proof By induction. The base case follows from 1.20. Declare n as a natural
number and suppose that f ◦ f n ≡ f n ◦ f . Then

f ◦ f n+1 ≡ f ◦ f ◦ f n ≡ f ◦ f n ◦ f ≡ f n+1 ◦ f.

by 1.21 and the inductive hypothesis.

7.5 / theorem
Let f be an operation from X to X. Then fm+n ≡ fm ◦ f n for all natural
numbers m and n.

Proof By induction. Declare m and n as natural numbers, and suppose that
fm+n ≡ fm ◦ f n. According to 7.4 and 1.21,

f ◦ fm+n ≡ f ◦ fm ◦ f n ≡ fm ◦ f ◦ f n.

definition Let f be a numerical recursor. It is said that f is commutative
(resp. associative) if the identity

f(x, y) = f(y, x)
(

resp. f
(
f(x, y)

)
= f(x) ◦ f(y)

)
is satisfied for all natural numbers x and y.

7.6 / corollary
Addition of natural numbers is commutative.

Proof Declare x and y as natural numbers. By 2.4 and 7.2,

x+ y = s y ◦ s x(0) = s y+x(0) = y + x.

7.7 / corollary
Let f be an operation from X to X. Then fm ◦ f n ≡ f n ◦ fm for all natural
numbers m and n.

7.8 / corollary
Addition of natural numbers is associative.

Proof Declare x, y, and z as natural numbers. By 2.9 and 1.21,

x+ (y + z) = sx ◦ s y ◦ s z(0) = (x+ y) + z.

Notation The natural number x+ (y + z) is denoted by x+ y + z.
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CUTOFF SUBTRACTION AND FINITE TYPES

definition If m and n are natural numbers, then pdm(n) is denoted by
m .− n and called the cutoff difference of m and n. The operation

x, y : N |−−→ y .− x

is a numerical recursor, called cutoff subtraction.

remark If n is a natural number, then n .− 0 = n and n .− 1 = pd(n).

7.9 / theorem
For all natural numbers x, y, and z,

1 x .− (y + z) = (x .− y) .− z

2 (x+ y) .− y = x

3 (x+ z) .− (y + z) = x .− y.

Proof The first identity is an application of 7.4. For the second, declare x as a
natural number. The proof is by induction on y, where(

x+ (y + 1)
) .− (y + 1) =

((
(x+ y) + 1

) .− 1
) .− y = (x+ y) .− y

by 7.5 7.7.1, and 2.3. Therefore 7.7.2 follows from 5.3. It follows that

(x+ z) .− (y + z) =
(
(x+ z) .− z

) .− y = x .− y,

which completes the proof.

7.10 / corollary
Let x and y be natural numbers. If x+ z = y, then x = y .− z.

7.11 / additive cancellation
Let x, y, and z be natural numbers. If x+ z = y + z, then x = y.

7.12 / theorem
If x is a natural number, then 0 .− x = 0 = x .− x.

Proof The first identity is proved by induction, where

0 .− (x+ 1) = (0 .− 1) .− x = 0 .− x

by 7.5, 7.1.1, and 2.3. The second follows from 7.7.2, since x ≡ 0 + x.
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definition Let m be a natural number. The image of the operation

x : N |−−→ m .− x

is denoted by Fm and called the finite type generated by m. It is a subtype of
the natural number type. An object of type Fm is called a segment of m.

remark Let m and n be natural numbers. It follows from 5.11 that m is a
segment of n if and only if m = n .− x for some natural number x.

THE STANDARD ORDERING OF THE NATURAL NUMBERS

definition Let x and y be natural numbers. The proposition

∃ (m :N) (x+m = y) is denoted by x ≤ y or by y ≥ x.

If x ≤ y, then x is said to be less than or equal to y, and y is said to be greater
than or equal to x. The relation

m, n : N |−−→ m ≤ n

is called the standard ordering of natural numbers.

Definition If x ≥ 1, then x is called a positive number.

7.13 / theorem
If x and y are natural numbers, then x ≤ x+ y.

7.14 / corollary
If x is a natural number, then 0 ≤ x and x ≤ x.

Proof By 7.13.

7.15 / theorem
Let x and y be natural numbers. Then x ≤ y if and only if x+ (y .− x) = y.

Proof By 7.10.

7.16 / theorem
Let x and y be natural numbers. If x ≤ y, then x = y .− (y .− x).

Proof By 7.15 and 7.10.
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7.17 / corollary
Let x, y, and z be natural numbers. Then x ≤ y if and only if x+ z ≤ y + z.

Proof By 7.15, using 7.6, 7.8, 7.9.3, and 7.11.

7.18 / lemma
Let x, y, and z be natural numbers. If x ≤ y and y ≤ z, then x ≤ z and

(z .− y) + (y .− x) = z .− x.

Proof According to 7.15 and 7.8,

z = y + (z .− y) =
(
x+ (y .− x)

)
+ (z .− y)

Therefore z ≤ x by 7.8, and the result follows from 7.15, 7.11, and 7.6.

7.19 / corollary
Let x and y be natural numbers. If x ≤ y and y ≤ x, then x = y.

Proof Suppose that x ≤ y and y ≤ x. Then

y .− x = (x .− x) .− (x .− y) = 0

by 7.18, 7.10, and 7.12. Therefore x = y by 7.15.

7.20 / lemma
If x is a natural number, then x .− 1 ≤ x.

Proof By induction on x, using 7.12 and 7.13.

7.21 / corollary
Let x and y be natural numbers. Then x .− y ≤ x.

Proof By induction on y. The base step is trivial. To prove the inductive step,
declare y as a natural number and suppose that x .− y ≤ x. Since

x .− (y + 1) = (x .− y) .− 1 ≤ x .− y

by 7.20, the result follows from 7.18 and the inductive hypothesis.

7.22 / the finite type theorem
Let x and y be natural numbers. Then x : Fy if and only if x ≤ y.

Proof By 7.15 and 7.16.
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Definition If x ≤ y, then the natural number y .− x is denoted by y − x and
called the difference of y and x.

definition Subtraction of natural numbers is the operation

x : N, y : Fx |−−→ x− y.

7.23 / theorem
Let x and y be natural numbers. If x ≤ y, then

x+ (y − x) = y and x = y − (y − x).

Proof By 7.15 and 7.16.

7.24 / corollary
Let x, y, and z be natural numbers. If x ≤ y and y ≤ z, then y − x ≤ z − x.

Proof Immediate from 7.18.

7.25 / theorem
Let x, y and z be natural numbers. If z ≤ y, then

(x+ y)− z = x+ (y − z).

Proof Since z ≤ x+ y by 7.13, 7.6, and 7.17, it follows that

z +
(
(x+ y)− z

)
= x+ y = x+

(
z + (y − z)

)
= z +

(
x+ (y − z)

)
by 7.23, 7.6, and 7.8. Hence the result by 7.11.

7.26 / corollary
Let m, n, and x be natural numbers. If m ≤ x ≤ m+ n, then

m+ n = x+
(
n− (x−m)

)
.

Proof Since x−m ≤ n by 7.24 and 7.9.2, it follows from 7.23 and 7.8 that

m+ n = m+
(
(x−m) +

(
n− (x−m)

))
= x+

(
n− (x−m)

)
.
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FINITE SEQUENCES

EXTENSION OF A FINITE SEQUENCE

definition For natural numbers m and n, the type +n [Fm ] is denoted by

Im(n) or [m :: m+ n ]

and called the finite interval from m to m + n. It has left endpoint m, right
endpoint m+ n, and length n.

Remark The natural number x has type Im(n) if and only if x = n+ (m− y)

for some segment y of m.

8.1 / corollary
Let m, n, and x be natural numbers. Then x has type Im(n) if and only if

n ≤ x ≤ n+m.

Proof By 7.25 and 7.6.

Notation Let F be a type family indexed by Im(n). Then
n+m∏
i=n

Fi :=
∏

i : Im(n)

Fi and
n+m∐
i=n

Fi :=
∐

i : Im(n)

Fi.

8.2 / corollary
If m is a natural number, then Im(0) = Fm and I0(m) = {m}.

Proof By 0.24, using 8.1, 7.14, 7.18, and 3.3.

Remark Note that [0 :: m ] := Im(0) and [m :: m ] := I0(m).

definition Let m, n, and x be natural numbers. Definex
x

(
Im(n)

)
:= +x

∣∣ Im(n) and
yx(Im(n+ x)

)
:= pdx

∣∣ Im(n+ x)

The former is called an upward shift by n, and the latter a downward shift by n.
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definition Let f be an operation from X to Y and g an operation from Y

to X. If g ◦ f ≡ 1X , then g is said to cancel f .

8.3 / theorem
Let m, n, and x be natural numbers. Then the operationsx

x

(
Im(n)

)
and

yx(Im(n+ x)
)

cancel each other.

Proof Declare y as a segment of m. By 7.6, 7.8, 7.25, and 7.9.2,((
(n+ x) + (m− y)

)
− x
)
+ x = (n+ x) + (m− y),((

n+ (m− y)
)
+ x
)
− x = n+ (m− y).

8.4 / lemma
Let f be an operation from X to Y and g an operation from Y to X. Suppose
that g cancels f . Then the image of g is X.

Proof Declare x as an object of type X. Then x is a value of g, since

x ≡ g
(
f (x)

)
.

8.5 / corollary
Let m, n, and x be natural numbers. Then

im
x
x

(
Im(n)

)
= Im(n+ x)

)
and im

yx(Im(n+ x)
)
= Im(n).

Proof By 8.4 and 8.3.

definition Let A be a subtype of X and f and g operations on X. If

f(x) ≡ g(x)

for all x of type A, then f is said to agree with g on A.

8.6 / extension of a finite sequence
Let m be a natural number and C a type family indexed by Fm+1. Let f be a
selection of C

∣∣ Fm and cm+1 an object of type Cm+1. Construct an operation

ext (f, cm+1) :

m+1∏
i=0

Ci

that agrees with f on Fm and has the value cm+1 at m+ 1.
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Proof Let D be the type sequence

x : N |−−→ C
(
(m+ 1) .− x

)
and g the selection of D defined recursively by the identities

g(0) = cm+1 and g(x+ 1) = f(m .− x).

Define ext
(
f, cm+1

)
as the finite sequence

x : Fm+1 |−−→ g
(
(m+ 1)− x

)
.

Denote it by h. Then h(0) = cm+1 by 7.12. Since

m− x = (m+ 1)− (x+ 1)

by 7.9.3, it follows from 7.23 that h agrees with f on Fm.

8.7 / corollary
Let m be a natural number, C a type family indexed by Fm+1, and f a selection
of C. Then f = ext

(
f
∣∣ Fm, f(m+ 1)

)
.

Proof Declare x as a natural number. Then

f
(
(m+ 1) .− x

)
= ext

(
f
∣∣ Fm, f(m+ 1)

)(
(m+ 1) .− x

)
by induction on x, using 8.6, 7.12, and 7.9.3.

8.8 / corollary
Let l and m be natural numbers and Z a type family indexed by Im+1(n). Let x
be a selection of Z

∣∣ Im(n) and y an object of type Zn+m+1. Construct an object

(x, y) :

n+m+1∏
i=n

Zi

that agrees with x on Im(n) and has the value y at n+m+ 1.

Proof Define (x, y) as the operation

ext
(
x ◦

x
n

(
Fm

)
, y
)
◦
yn(Im+1(n)

)
.

It has the required properties by 8.6 and 8.3.

8.9 / corollary
Let l and m be natural numbers, Z a type family indexed by Im+1(n), and z a
selection of Z. Then z =

(
z
∣∣ Im(n), zn+m+1

)
.
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Proof By 8.3, it is sufficient to show that

z ◦
x
n

(
Fm+1

)
= ext

((
z
∣∣ Im(n) ◦

x
n

(
Fm

))
, zn+m+1

)
.

Hence the result by 8.7 and 8.8.

definition Let m be a positive number. An object of type [1 :: m ] is called
an m-index. An operation defined on [1 :: m ] is called an m-tuple. If X is a
type, then the type [1 :: m ] −−→ X is denoted by Xm.

8.10 / corollary
Let n be a positive number, X a type, and A a subtype of X. Then An ⊆ Xn.

Proof By 5.7.

notation Let x be an object of type X. The constant operation κ {1}(x) is
denoted by (x). It has type X 1 by 1.9.

8.11 / lemma
Let X be a type and P a predicate on X. Then :

1 ∀(x :X) P (x) ⇐⇒ ∀(y :X1) P (y1)

2 ∃ (x :X) P (x) ⇐⇒ ∃ (y :X1) P (y1).

Proof By 5.3 and 5.8.

8.12 / lemma
Let n be a natural number, X a type, and P a predicate defined on Xn+1. Then :

1 ∀(x :Xn)

(
∀(y :X) P (x, y)

)
⇐⇒ ∀(z :Xn+1) P (z)

2 ∃ (x :Xn)

(
∃ (y :X) P (x, y)

)
⇐⇒ ∃ (z :Xn+1) P (z).

Proof By 8.8, 5.3, and 5.8.

ORDERED PAIRS

definition A one-tuple (resp. two-tuple, three-tuple) is called an ordered
singleton (resp. ordered pair, ordered triple).

notation Let Z be an ordered pair of types, z1 an object of type Z1, and
z2 an object of type Z2. The ordered pair ((z1), z2) is denoted by (z1, z2).
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Remark It follows from 8.8 that (z1, z2) is a selection of (Z1, Z2).

8.13 / theorem
Let Z be an ordered pair of types. If z is a selection of Z, then z ≡ (z1, z2).

Proof By 8.9.

definition Let Z1 and Z2 be types. Define

Z1 × Z2 :=

2∏
i=1

Zi and Z1 + Z2 :=

2∐
i=1

Zi.

The former is called the Cartesian product of Z1 and Z2, and the latter is called
the coproduct of Z1 and Z2.

8.14 / theorem
Suppose that X and Y are types. If x is an object of type X and y is an object
of type Y , then (x, y) is an object of type X × Y .

Proof By 8.8.

8.15 / theorem
Let X and Y be types.

1 The term [1, x ] has type X + Y if and only if x has type X

2 The term [2, y ] has type X + Y if and only if y has type Y

Proof By 0.27 and 4.6.

8.16 / the fibonacci sequence
Construct a numerical sequence F such that

F0 = 0, F1 = 1, and Fx+2 = Fx + Fx+1

for all natural numbers x.

Proof Define a sequence G in N× N recursively by the identities

G0 = (0, 1) and Gx+1 =
(
Gx,2, Gx,1 +Gx,2

)
,

and define F := π1 ◦G. Declare x as a natural number. Then

Fx = Gx,1, Fx+1 = Gx,2

Fx+2 = Gx+1,2 = Gx,1 +Gx,2 = Fx + Fx+1.
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BINARY QUANTIFICATION

CONJUNCTION AND DISJUNCTION

definition Let P 1 and P 2 be propositions. The proposition

∀ [1 :: 2](P 1, P 2)

is denoted by P 1 ∧ P 2 and called the conjunction of P 1 and P 2.

9.1 / theorem
Let P 1 and P 2 be propositions. Then the proof type of P 1 ∧ P 2 is

�(P 1)× �(P 2).

Remark A proof of P 1 ∧ P 2 is an ordered pair (p1, p2), where p1 proves P 1

and p2 proves P 2.

9.2 / the conjunction theorem
The proposition P 1 ∧ P 2 is true if and only if P 1 and P 2 are both true.

Proof By 8.13 and 8.14.

9.3 / theorem
Let P , Q1, and Q2 be propositions. Then P =⇒ (Q1 ∧Q2) is equivalent to

(P =⇒ Q1) ∧ (P =⇒ Q2).

Proof By 6.18.1.

9.4 / exportation
Let P 1, P 2, and Q be propositions. Then

P 1 =⇒ (P 2 =⇒ Q) is equivalent to (P 1 ∧ P 2) =⇒ Q

Proof of necessity Declare f as a proof of the left-hand proposition and x as a
proof of P 1 ∧ P 2. Then f(x1, x2) is a proof of Q.

66



binary quantification 67

Proof of sufficiency Declare g as a proof of the right-hand proposition, y as a
proof of P 1, and z as a proof of P 2. Then g(y, z) is a proof of Q.

9.5 / theorem
Let P and Q be propositions. The proposition(

P =⇒ Q
)
∧
(
Q =⇒ P

)
is true if and only if P is equivalent to Q.

Definition The proposition given in 9.5 is denoted by P ⇐⇒ Q and called the
biconditional of P and Q.

definition Let P 1 and P 2 be propositions. The proposition

∃ [1 :: 2](P 1, P 2)

is denoted by P 1 ∨ P 2 and called the disjunction of P 1 and P 2.

Notation The proposition P 1 ∨ P 2 is interpreted as the statement P 1 or P 2.

9.6 / theorem
Let P 1 and P 2 be propositions. Then the proof type of P 1 ∨ P 2 is

�(P 1) + �(P 2).

Remark A proof of P 1 ∨P 2 is an assembly which consists of a two-index i and
a proof of P i.

9.7 / disjunctive generalization
Let P 1 and P 2 be propositions.

1 If P 1 is true, then P 1 ∨ P 2 is true.

2 If P 2 is true, then P 1 ∨ P 2 is true.

Proof By 8.15.

9.8 / case analysis
Let P 1, P 2, and Q be propositions. Then (P 1 ∨ P 2) =⇒ Q is equivalent to

(P 1 =⇒ Q) ∧ (P 2 =⇒ Q)

Proof By 6.18.2.
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9.9 / lemma
Let P , Q, and R be propositions. If P implies Q, then

1 P ∧R =⇒ Q ∧R and R ∧ P =⇒ R ∧Q

2 P ∨R =⇒ Q ∨R and R ∨ P =⇒ R ∨Q.

Proof By 6.4 and 6.14.

9.10 / corollary
Let P , Q, and R be propositions. If P is equivalent to Q, then

1 P ∧R ⇐⇒ Q ∧R and R ∧ P ⇐⇒ R ∧Q

2 P ∨R ⇐⇒ Q ∨R and R ∨ P ⇐⇒ R ∨Q.

Proof By 9.5, 9.2, and 9.9.

THE LOGIC OF BINARY QUANTIFICATION

9.11 / idempotent laws
Let P be a proposition.

1 P ∧ P ⇐⇒ P

2 P ∨ P ⇐⇒ P .

Proof By 6.10.

9.12 / commutative laws
Let P and Q be propositions.

1 P ∧Q ⇐⇒ Q ∧ P

2 P ∨Q ⇐⇒ Q ∨ P .

Proof By 9.2, 9.7, and 9.8.

Remark The next two theorems are proved in the same way.

9.13 / associative laws
Let P , Q, and R be propositions.

1 P ∧ (Q ∧R) ⇐⇒ (P ∧Q) ∧R

2 P ∨ (Q ∨R) ⇐⇒ (P ∨Q) ∨R.
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9.14 / lemma
Let P and Q be propositions.

1 P ∧ (P ∨Q) ⇐⇒ P

2 P ∨ (P ∧Q) ⇐⇒ P .

9.15 / theorem
Let X be a type and P 1 and P 2 predicates on X.

1 ∀(x :X)

(
P 1(x) ∧ P 2(x)

)
⇐⇒

(
∀(x :X) P 1(x)

)
∧
(
∀(x :X) P 2(x)

)
2 ∃ (x :X)

(
P 1(x) ∨ P 2(x)

)
⇐⇒

(
∃ (x :X) P 1(x)

)
∨
(
∃ (x :X) P 2(x)

)
.

Proof By 6.20 and 6.22, respectively.

9.16 / corollary
Assume that P and Q are predicates on a type X.

1 ∀(x :X)

(
P (x) ⇐⇒ Q(x)

)
implies ∀(x :X) P (x) ⇐⇒ ∀(x :X) Q(x)

2 ∀(x :X)

(
P (x) ⇐⇒ Q(x)

)
implies ∃ (x :X) P (x) ⇐⇒ ∃ (x :X) Q(x).

Proof By 9.15.1, 9.9, and 6.14.

9.17 / corollary
Let X be an inhabited type, P a predicate on X, and Q a proposition.

1 Q ∧
(
∀(x :X) P (x)

)
⇐⇒ ∀(x :X)

(
Q ∧ P (x)

)
2 Q ∨

(
∃ (x :X) P (x)

)
⇐⇒ ∃ (x :X)

(
Q ∨ P (x)

)
.

Proof By 9.15 and 6.10.

9.18 / distributive laws
Let P , Q, and R be propositions.

1 P ∧
(
Q ∧R

)
⇐⇒

(
P ∧Q

)
∧
(
P ∧R

)
2 P ∨

(
Q ∨R

)
⇐⇒

(
P ∨Q

)
∨
(
P ∨R

)
.

9.19 / theorem
Let X be a type and P and Q predicates on X. Then

1 ∃ (x :X)

(
P (x) ∧Q(x)

)
implies

(
∃ (x :X) P (x)

)
∧
(
∃ (x :X) Q(x)

)
.

2
(
∀(x :X) P (x)

)
∨
(
∀(x :X) Q(x)

)
implies ∀(x :X)

(
P (x) ∨Q(x)

)
.
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Proof By 6.23.

9.20 / corollary
Let X be a type, P a predicate on X, and Q a proposition.

1 Q ∧
(
∃ (x :X) P (x)

)
is equivalent to ∃ (x :X)

(
Q ∧ P (x)

)
2 Q ∨

(
∀(x :X) P (x)

)
implies ∀(x :X)

(
Q ∨ P (x)

)
.

Proof of 1 Declare p as a proof of the left-hand proposition. Then
(
p1, σ2(p2)

)
is a proof of Q ∧ P

(
σ1(p2)

)
. Hence the result by 5.8 and 6.23.

Proof of 2 By 6.23, using 6.7, 9.9, and 6.5.

9.21 / distributive laws
Let P , Q, and R be propositions. Then

1 P ∧ (Q ∨R) ⇐⇒ (P ∧Q) ∨ (P ∧R)

2 P ∨ (Q ∧R) ⇐⇒ (P ∨Q) ∧ (P ∨R).

Proof The first equivalence follows from 9.20.1. The proposition(
(P ∨Q) ∧ P

)
∨
(
(P ∨Q) ∧R

)
is equivalent to the right-hand side of 2 by 1 and 9.10. It is equivalent to(

(P ∧ P ) ∨ (Q ∧ P )
)
∨
(
(P ∧R) ∨ (Q ∧R)

)
in the same way, using 9.12. Hence the result by 9.11, 9.14, and 9.13.

9.22 / quantification over a subtype
Let A be a subtype of X and P a predicate on X.

1 ∀(x :A) P (x) is equivalent to ∀(x :X)

(
(x : A) =⇒ P (x)

)
2 ∃ (x :A) P (x) is equivalent to ∃ (x :X)

(
(x : A) ∧ P (x)

)
.

9.23 / theorem
Let X be a type, B a subtype of X, and A a subtype of B. Then

1 ∀(x :B) P (x) =⇒ ∀(x :A) P (x)

2 ∃ (x :A) P (x) =⇒ ∃ (x :B) P (x)

Proof By 5.3 and 5.8, respectively.
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CONSTRUCTING SUBTYPES

DEFINING A SUBTYPE BY A PREDICATE

definition Let X be a type and P a predicate on X. The type{
x : X

∣∣ P (x)
}

:= σ1

(
�
(
∃ (x :X) P (x)

))
is called the type defined for x of type X by the proposition P (x). It is also
denoted by X

∣∣ P .

Remark It follows from 3.2 that X
∣∣ P is a subtype of X.

10.1 / theorem
Let x be an object of type X and P a predicate on X. Then x has type X

∣∣ P if
and only if P (x) is true.

Proof The condition is necessary by 5.9 and sufficient by 5.8 and 4.4.

10.2 / corollary
If A is a subtype of X, then A =

{
x : X

∣∣ x : A
}

.

10.3 / corollary
Let P and Q be predicates on the type X.

1 X
∣∣ P ⊆ X

∣∣Q if and only if ∀(x :X)

(
P (x) =⇒ Q(x)

)
2 X

∣∣ P = X
∣∣Q if and only if ∀(x :X)

(
P (x) ⇐⇒ Q(x)

)
.

Proof By 10.1.

10.4 / corollary
Let X be a type and A and B subtypes of X.

1 A ⊆ B if and only if ∀(x :X)

(
x : A =⇒ x : B

)
2 A = B if and only if ∀(x :X)

(
x : A ⇐⇒ x : B

)
.
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Proof By 10.2 and 10.3.

10.5 / corollary
If n is a natural number, then Fn =

{
x : N

∣∣ x ≤ n
}
.

Proof By 7.18.

Remark This result can be generalized using 8.6.

POWER TYPES

definition Let X be a type of order m. An object of type

Pm(X) :=
{
A : Um

∣∣A ⊆ X
}

is called a subtype of X of order m.

10.6 / theorem
Let X be a type of order m. Then Pm(X) is a type of order m+ 1.

Proof Declare A as a type of order m. Then the term A ⊆ X has type Vm+1

by 0.33 and 0.31. Since Um has type Um+1 by 0.1.1, it follows that∐
(A :Um)

�(A ⊆ X) : Um+1

by 0.26 and 0.32. Hence the result by 0.22.

definition If X is a type, then Pν(X) is a higher-order type. It is denoted
by P (X) and called the type of subtypes of X or the power type of X.

Definition Let K be a type. An operation A : K −−→ P (X) is called a family
of subtypes of X indexed by K.

Notation If A is assumed to be a family of subtypes of X indexed by K, then
it is understood that K and X are types.

10.7 / lemma
Let X and Y be types. Then X ⊆ Y if and only if P (X) ⊆ P (Y ).

Proof By 3.8 and 3.9.
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INTERSECTIONS AND UNIONS OF SUBTYPES

definition Let A be a family of subtypes of X indexed by K. The types⋂
κ :K

Aκ :=
⋂

(κ :K) Aκ :=
{
x : X

∣∣ ∀(κ :K) (x : Aκ)
}

⋃
κ :K

Aκ :=
⋃

(κ :K) Aκ :=
{
x : X

∣∣ ∃ (κ :K) (x : Aκ)
}

are called the intersection of A and the union of A, respectively.

remark The next two theorems are corollaries of 6.18.

10.8 / the intersection lemma
Let K and X be types, A a family of subtypes of X indexed by K, and B a
subtype of X. Then B ⊆ Aκ for all κ of type K if and only if

B ⊆
⋂
κ :K

Aκ.

10.9 / the union lemma
Let K and X be types, A a family of subtypes of X indexed by K, and B a
subtype of X. Then Aκ ⊆ B for all κ of type K if and only if⋃

κ :K

Aκ ⊆ B.

10.10 / lemma
Let A be a family of subtypes of X indexed by K. If λ has type K, then⋂

κ :K

Aκ ⊆ Aλ ⊆
⋃
κ :K

Aκ and
⋂

κ :{λ}

Aκ = Aλ =
⋃

κ :{λ}

Aκ.

Proof The first proposition follows from 10.4.1, 5.4, and 5.9. The second is a
corollary of the first by 10.8, 10.9, and 3.3.

10.11 / theorem
Let A and B be families of subtypes of X indexed by K. If Aκ ⊆ Bκ for all κ
of type K, then ⋂

κ :K

Aκ ⊆
⋂
κ :K

Bκ and
⋃
κ :K

Aκ ⊆
⋃
κ :K

Bκ.

Proof By 10.4.1 and 6.14.
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10.12 / corollary
Let A be a family of subtypes of X indexed by K and J a subtype of K. Then⋂

κ :K

Aκ ⊆
⋂
κ :J

Aκ and
⋃
κ :J

Aκ ⊆
⋃
κ :K

Aκ.

Proof By 10.4.1 and 9.23.

definition Let A be a family of subtypes of X. If

B ⊆
⋃
κ :K

Aκ,

then A is said to cover B, and is called a covering of B.

Remark By the union lemma, A covers X if and only if X is the union of A.

10.13 / theorem
Let A be a family of subtypes of X indexed by K and J a family of subtypes of
K indexed by L. If J covers K, then⋂

κ :K

Aκ =
⋂
λ :L

( ⋂
κ :Jλ

Aκ

)
1

⋃
κ :K

Aκ =
⋃
λ :L

( ⋃
κ :Jλ

Aκ

)
.2

Proof of 1 Declare λ as an object of type L. It follows from 10.12 that⋂
κ :K

Aκ ⊆
⋂
κ :Jλ

Aκ, so
⋂
κ :K

Aκ ⊆
⋂
λ :L

( ⋂
κ :Jλ

Aκ

)
by 10.8. Suppose that x has the right-hand type in 1. Declare κ as an object
of type K. Choose λ of type L such that κ has type Jλ. Then by 10.10,

x :
⋂

µ :Jλ

Aµ ⊆ Aκ.

Proof of 2 Declare λ as an object of type L. It follows from 10.12 that⋃
κ :Jλ

Aκ ⊆
⋃
κ :K

Aκ, so
⋃
λ :L

( ⋃
κ :Jλ

Aκ

)
⊆

⋃
κ :K

Aκ

by 10.9. Suppose that x has the left-hand type in 2. Choose κ of type K and
λ of type L such that x has type Aκ and κ has type Jλ. Then by 10.10,

x :
⋃
κ :Jλ

Aκ ⊆
⋃
λ :L

( ⋃
κ :Jλ

Aκ

)
.
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10.14 / theorem
Let f be an operation from X to Y and A a subtype of X. Then

f [A ] =
⋃
a :A

f [a ] and X =
⋃
x :X

{x}.

Proof The first identity follows from 10.4.2 and 3.10. The second follows from
the first, using 3.11 and 3.12.

Notation The type f [A ] is denoted by
{
f(a)

∣∣ a : A
}
.

10.15 / corollary
Suppose that A is a family of subtypes of X indexed by L and f is an operation
from K to L. Then⋂

λ :f [K ]

Aλ =
⋂
κ :K

Af(κ) and
⋃

λ :f [K ]

Aλ =
⋃
κ :K

Af(κ).

Proof According to 10.14, the operation

κ : K |−−→ f [κ ]

is a covering of L. Hence the result by 10.14 and 10.13.

10.16 / theorem
Let f be an operation from X to Y and A a family of subtypes of X indexed by
the type K. Then

f

[ ⋂
κ :K

Aκ

]
⊆

⋂
κ :K

f [Aκ ]1

f

[ ⋃
κ :K

Aκ

]
=

⋃
κ :K

f [Aκ ].2

Proof of 1 Let B denote the intersection of A. If κ has type K, then

f [B ] ⊆ f [Aκ ]

by 10.10 and 3.14. Hence the result by 10.8.

Proof of 2 By 10.13 and 10.14.

notation Suppose that A is a family of subtypes of X indexed by In(m),
where l and m are natural numbers. Then

m+n⋂
i=m

Ai :=
⋂

i : In(m)

Ai and
m+n⋃
i=m

Ai :=
⋃

i : In(m)

Ai.
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definition Suppose that A1 and A2 are subtypes of X. The types

A1 ∩A2 :=

2⋂
i=1

Ai and A1 ∪A2 :=

2⋃
i=1

Ai

are called the intersection and union of A1 and A2, respectively.

10.17 / theorem
Let A1 and A2 subtypes of X and x an object of type X.

1 x has type A1 ∩A2 if and only if x has types A1 and A2

2 x has type A1 ∪A2 if and only if x has type A1 or A2.

Proof By 10.4.

remark The laws for quantifiers proved in chapters 6 and 9 can be restated
as identities for intersections and unions.

10.18 / theorem
Let x be a natural number. Then x = 0 or x ≥ 1.

Proof Since x+ 1 ≥ 1, the result follows from 7.3 and 9.7.

10.19 / corollary
Let m be a natural number. Then Fm = Fm .−1 ∪ {m}.

Proof By 7.21, 10.9, and 7.19, it is sufficient to prove that Fm ⊆ Fm .−1 ∪ {m}.
Suppose that x has type Fm. Choose a natural number y such that

x = m .− y.

If y = 0, then x = m. If y ≥ 1, then y = z + 1 for some natural number z, so

x = m .− (z + 1) = (m .− 1) .− z ≤ m .− 1.

by 7.9 and 7.20. Therefore the result follows from 11.5 and 9.8.

definition An object of type F1 is called a binary digit, or simply a bit. A
sequence with domain F1 is called a binary sequence.

10.20 / corollary
If x is a binary digit, then x = 0 or x = 1.

Proof By 10.19, 8.1, and 3.3.
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THE INVERSE IMAGE OF AN OPERATION

definition Let f be an operation from X to Y . If B is a subtype of Y , then

f −1 [B ] :=
{
x : X

∣∣ f(x) : B}
is called the inverse image of B through f .

10.21 / theorem
Let f be an operation from X to Y and B a family of subtypes of Y indexed by
the type K. Then

1 f −1

[ ⋂
κ :K

Bκ

]
=

⋂
κ :K

f −1 [Bκ ]

2 f −1

[ ⋃
κ :K

Bκ

]
=

⋃
κ :K

f −1 [Bκ ].

Definition Let y be an object of type Y . The inverse image of {y} through f

is denoted by f −1 [y ] and called the inverse image of y through f .

Remark Therefore x has type f −1 [y ] if and only if f(x) = y.

10.22 / corollary
Let f be an operation from X to Y and B a subtype of Y . Then

f −1 [B ] =
⋃
b :B

f −1 [b ].

Proof By 10.14 and 10.21.

10.23 / theorem
If f is an operation from X to Y and B is a subtype of Y , then

f
[
f −1 [B ]

]
⊆ B.

Proof If x has type f −1 [B ], then f(x) has type B.

10.24 / theorem
If f is an operation from X to Y and A is a subtype of X, then

A ⊆ f −1
[
f [A ]

]
.

Proof According to 3.10, if x has type A, then f(x) has type f [A ].
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10.25 / corollary
Let f be an operation from X to Y . Suppose that A is a subtype of X and B is
a subtype of Y . Then A ⊆ f −1 [B ] if and only if f [A ] ⊆ B.

Proof By 10.23, 10.24, and 3.9.

10.26 / corollary
Let f be an operation from X to Y . Then f −1 [Y ] = X.

Proof By 10.25 and 0.24, since f −1 [Y ] ⊆ X and f [X ] ⊆ Y .

10.27 / theorem
Let f be an operation from X to Y and B2 a subtype of Y . If B1 ⊆ B2, then

f −1 [B1 ] ⊆ f −1 [B2 ].

Proof If x has type X and f(x) has type B1, then f(x) has type B2.
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NEGATIVE PROPOSITIONS

ABSURDITIES AND CONTRADICTIONS

definition The proposition 0 = 1 is denoted by ⊥ and called falsity. A proof
of ⊥ is called an absurdity.

11.1 / ex falso quodlibet
Let P be a proposition. Then ⊥ implies P .

Proof Declare x as an absurdity. Then 0 = 1. It follows from 0.6 that 1 = 2,
and therefore [1, x ] = [2, x ]. Since [1, x ] proves ⊥∨Q, it follows from 8.15 that
x proves Q.

definition Let P be a proposition. The conditional P =⇒ ⊥ is called the
negation of P and denoted by ¬P . It is interpreted as the statement

• It is not the case that P .

If the negation of P is true, then P is said to be false.

example Let x and y be natural numbers. Then the symbol

x ̸= y denotes ¬ (x = y).

The proposition ⊥ is false by 6.4. In other words, 1 ̸= 0.

11.2 / modus tollens
Let P and Q be propositions. If Q is false and P implies Q, then P is false.

Proof By 6.5.

example Let x be a natural number. If x + 1 = 0, then 1 = 0 by 7.6, 7.9,
and 7.12. Therefore x+ 1 ̸= 0 by 11.2.

definition If P is a proposition, then P ∧ ¬P is called a contradiction.

79
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11.3 / theorem
Let P be a proposition. Then P ∧ ¬P is false.

Proof If x proves P ∧ ¬P , then x2(x1) is an absurdity.

Intuition Every contradiction is false.

notation The propositional universe Vν is denoted by V.

11.4 / the law of non-contradiction
The proposition ∃ (x :V) (x ∧ ¬x) is false.

notation Let x and y be objects of type X. Then

{x, y} := {x} ∪ {y}.

11.5 / the completeness theorem
Let P be a proposition. Then P is either true or false.

Proof Let the symbol A denote the binary sequence

i : F1 |−−→
{
j : F1

∣∣ P ∨ (i = j)
}
.

Then each binary digit i has type Ai. Declare X as an object of type {A0, A1}.
Choose a proof pX of (X = A0) ∨ (X = A1) and let f denote the operation

X : {A0, A1} |−−→ σ1(pX).

For each binary digit i, the binary digit f(Ai) has type Ai. Therefore

(11.6) P ∨
((

f(A0) = 0
)
∧
(
f(A1) = 1

))
is true by 9.21.2. It follows from 9.7 and 10.3 that P implies A0 = F1 = A1.
Therefore P implies f(A0) = f(A1). If f(A0) = 0 and f(A1) = 1, then

f(A0) = f(A1) =⇒ 0 = 1

Hence the result by 9.9.2 and 11.2, using (11.6).

Remark This proof is due to Goodman and Myhill [1978 ], who expanded on
the ideas of Diaconescu [1975 ].

11.7 / the law of excluded middle
The proposition ∀(x :V) (x ∨ ¬x) is true.
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THE LAWS FOR NEGATION

11.8 / theorem
Let P and Q be equivalent propositions. Then P is false if and only if Q is false.

Proof By 11.2 and 9.12.1.

11.9 / disjunctive syllogism
Let P and Q be propositions. If P ∨Q is true and P is false, then Q is true.

Proof Suppose that P is false. Then both P and Q imply Q, by 11.1 and 6.4.
Therefore P ∨Q implies Q by 9.8. Hence the result by 9.4 and 9.12.

11.10 / double negation
Let P be a proposition. Then P is true if and only if P is not false.

Proof If P is true, then P is not false by 11.3 and 9.4. If P is not false, then
P is true by 11.5 and 11.9.

11.11 / the law of contraposition
Let P and Q be propositions. Then P =⇒ Q is equivalent to ¬Q =⇒ ¬P .

Proof By 11.2, 11.8, and 11.10.

Definition If P and Q are propositions, then the conditional ¬Q =⇒ ¬P is
called the contrapositive of P =⇒ Q.

11.12 / de morgan’s laws
Let X be a type and P a predicate on X.

1 ¬ ∀(x :X) P (x) ⇐⇒ ∃ (x :X) ¬P (x)

2 ¬ ∃ (x :X) P (x) ⇐⇒ ∀(x :X) ¬P (x).

Proof The first equivalence follows from 6.17.1 and 6.18.2. The second follows
from the first, using 11.10 and 11.8.

11.13 / corollary
Let P and Q be propositions.

1 ¬ (P ∧Q) ⇐⇒ ¬P ∨ ¬Q

2 ¬ (P ∨Q) ⇐⇒ ¬P ∧ ¬Q.
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11.14 / lemma
Let P and Q be propositions. Then P =⇒ Q is equivalent to Q ∨ ¬P .

Proof The proposition Q ∨ ¬P implies P =⇒ Q by 9.8, using 6.8 and 11.1.
The converse follows from 11.5 and 9.9.2.

11.15 / corollary
Let P and Q be propositions. Then ¬ (P =⇒ Q) is equivalent to P ∧ ¬Q.

Proof By 11.14, 11.13, and 9.12.1.

11.16 / corollary
Let X be a type and P and Q predicates on X. Then ∃ (x :X)

(
P (x) =⇒ Q(x)

)
is equivalent to

∀(x :X) P (x) =⇒ ∃ (x :X) Q(x).

Proof By 11.8 and 11.10, it is sufficient to prove that these two propositions
have equivalent negations. Hence the result by 11.12, 11.15, and 9.15.

11.17 / corollary
Let X be an inhabited type, P a predicate on X, and Q a proposition.

1 ∃ (x :X)

(
P (x) =⇒ Q

)
is equivalent to ∀(x :X) P (x) =⇒ Q.

2 ∃ (x :X)

(
Q =⇒ P (x)

)
is equivalent to Q =⇒ ∃ (x :X) P (x).

Proof By 11.16 and 6.10.

11.18 / lemma
Let X be a type, P a predicate on X, and Q a proposition. Then

Q ∨
(
∀(x :X) P (x)

)
is equivalent to ∀(x :X)

(
Q ∨ P (x)

)
.

Proof By 6.19.1, 11.11, 11.12, and 11.13, it is sufficient to prove that

¬Q ∧ ∃ (x :X) ¬P (x) implies ∃ (x :X)

(
¬Q ∧ ¬P (x)

)
.

Hence the result by 9.20.1.

VOID TYPES AND COMPLEMENTS

definition Let X be a type. The type ∅X defined for x of type X by the
proposition 0 = 1 is called the void subtype of X.
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Remark In other words, x has type ∅X if and only if 0 = 1.

11.19 / theorem
If x is an object of type X, then the proposition x : ∅X is false.

definition Let X be a type. If X = ∅Y for some type Y , then X is said to
be void. Therefore ∅X is void.

11.20 / corollary
Let X be a type and P a predicate on X. The proposition ∀(x :∅X) P (x) is true,
and ∃ (x :∅X) P (x) is false.

Proof By 5.3 and 5.8 respectively, using 11.19 and 11.1.

11.21 / corollary
If A is a subtype of X, then ∅X ⊆ A.

Proof By 11.20 and 5.5.

11.22 / corollary
Let X be a type. If A ⊆ ∅X , then A = ∅X .

Proof By 11.21 and 0.24.

11.23 / corollary
If f is an operation from X to Y , then

f [∅X ] = ∅Y and f −1 [∅Y ] = ∅X .

Proof Let x be an object of type X. Then f(x) has type ∅Y if and only if x
has type ∅X . Hence the result by 11.22 and 11.19.

11.24 / corollary
If A is a family of subtypes of X indexed by K, then⋂

(κ :∅K) Aκ = X and
⋃

(κ :∅K) Aκ = ∅X .

Proof By 11.22 and 11.20.

definition Let A be a subtype of X. The type

X −A :=
{
x : X

∣∣ ¬ (x : A)
}

is called the complement of A in X.
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11.25 / theorem
Let X be a type. Then X − (X −A) = A.

Proof By 11.10.

11.26 / corollary
Let X be a type. Then X −X = ∅X and X −∅X = X.

Proof The first identity holds by 11.3, and the second by 11.25.

11.27 / theorem
Let A2 be a subtype of X. If A1 ⊆ A2, then X −A2 ⊆ X −A1.

Proof By 11.2.

11.28 / theorem
Let X be a type and A a family of subtypes of X indexed by K. Then

X −
⋂
κ :K

Aκ =
⋃
κ :K

(X −Aκ)1

X −
⋃
κ :K

Aκ =
⋂
κ :K

(X −Aκ).2

Proof By 11.12.

11.29 / theorem
Let f be an operation from X to Y and B a subtype of Y . Then

f −1 [Y −B ] = X − f −1 [B ]

Proof Declare x as an object of type X. Then x has type X − f −1 [B ] if and
only if f(x) does not have type B.
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EQUATING MATHEMATICAL OBJECTS

EQUIVALENCE RELATIONS

definition Let X be a type and R a relation on X.

• If the proposition R(x, x) is true for all x of type X, then R is said to be
reflexive.

• If R(x, y) implies R(y, x) for all x and y of type X, then R is said to be
symmetric.

• If R(x, y) ∧ R(y, z) implies R(x, z) for all x, y, and z of type X, then R

is said to be transitive.

A relation that is reflexive, symmetric, and transitive is called an equivalence
relation, or simply an equivalence.

example The identity relation of a type is an equivalence relation by 0.5.
The subtyping relation is reflexive by 3.8 and transitive by 3.9. The standard
ordering of the natural numbers is reflexive by 7.14 and transitive by 7.18.

example The logical relations are defined by the following table:

logical relation name

x, y : V |−−→ x =⇒ y logical implication

x, y : V |−−→ x ⇐⇒ y logical equivalence

x, y : V |−−→ x ∧ y logical conjunction

x, y : V |−−→ x ∨ y logical disjunction

table 10. The logical relations.

Logical equivalence is an equivalence relation by 6.12. Implication is reflexive
by 6.4 and transitive by 6.5. Conjunction and disjunction are symmetric by
9.12. Conjunction is transitive by 9.2.
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intuition Equivalence relations are used to equate mathematical objects.

definition Let R be a relation on X and A a subtype of X. The operation

x, y : A |−−→ R(x, y)

is denoted by R
∣∣A and called the restriction of R to A.

12.1 / lemma
Suppose that A is a subtype of X and R is an equivalence relation on X. Then
R
∣∣A is an equivalence relation.

Proof By 9.23.1, using 8.10 through 8.12. For example, to prove that R
∣∣A is

symmetric, declare Y as a subtype of X. Then R
∣∣Y is symmetric if and only if

∀(x :Y 2)

(
R(x1, x2) =⇒ R(x2, x1)

)
,

by 8.11 and 8.12. Thus R
∣∣A is symmetric by 8.10 and 9.23.

definition Let F be a type family indexed by X and R a relation on F .
The product of R is defined as the relation

f, g :
∏
x :X

Fx |−−→ ∀(x :X) Rx

(
f(x), g(x)

)
Notation The product of R is denoted by

∏
X (R) or

∏
(x :X)Rx.

12.2 / theorem
Let F be a type family indexed by X and R a relation on F . Suppose that Rx is
an equivalence relation for all x of type X. Then

∏
(x :X)Rx is an equivalence

relation.

Proof of reflexivity Declare f as an operation from X to Y and x as an object
of type X. Then the proposition Rx

(
f(x), f(x)

)
is true, since Rx is reflexive.

Proof of symmetry Declare f and g as operations from X to Y . By 6.14.1,

∀(x :X) Rx

(
f(x), g(x)

)
=⇒ ∀(x :X) Rx

(
g(x), f(x)

)
since Rx is symmetric. In other words, S(f, g) implies S(g, f).

Proof of transitivity Declare f , g, and h as operations from X to Y . Then the
proposition S(f, g) ∧ S(g, h) is equivalent to

∀(x :X)

(
Rx

(
f(x), g(x)

)
∧Rx

(
g(x), h(x)

))
by 9.15. This proposition implies S(f, h) by 6.141, since Rx is transitive.
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notation Let m be a number and X a type of order m. Define Em(X) as{
R : X −−→ Vm

∣∣ R is an equivalence relation
}
.

MATHEMATICAL EQUATIONS

definition Let m be a number. A set of order m is an object of type

Setm :=
∐

(X :Um)
Em(X).

Remark In other words, a set is an assembly consisting of a type X and an
equivalence relation on X.

definition Let A be a set. The proposition a : σ1(A) is written a ∈ A. If
a ∈ A, then a is said to be an element of A, or to belong to A, or to be in A,
and the set A is said to include a.

Definition The relation σ2(A) is called equality on A, or equality of elements
of A. Let a and b be elements of A. The proposition

(σ2(A)
)
(a, b) is denoted by a =A b

and called an equation. If a =A b, then a is said to equal b in A. If the set A is
understood, then a is said to equal b, written a = b.

example Let X be a type. The assembly consisting of X and the identity
relation on X is a set, called the identity set of X.

example The identity set of the natural number type is denoted by N and
called the set of natural numbers.

Notation For natural numbers x and y, the symbol x = y means that x ≡ y.
In other words, x and y are equal elements of N.

example The following are examples of higher-order sets.

1 The identity set of U is denoted by U and called the set of types.

2 Let E denote logical equivalence. The assembly [V, E ] is denoted by V
and called the set of propositions.

Notation For types X and Y , the symbol X = Y means that X ≡ Y . In other
words, X and Y are equal in the set of types.
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example Let A be a set and X a subtype of σ1(A). Then the assembly

ϑA (X) :=
[
X, σ2(A)

∣∣X ]
is a set by 12.1. It is called the subset X of A or simply the set X, if the set A

is understood.

Remark By 4.7 and 0.18, the set σ1(A) is identical to A.

12.3 / theorem
Let A be a set, X a subtype of σ1(A) and x1 and x2 objects of type X. Then
x1 =A x2 if and only if x1 is equal to x2 in the set X.

MATHEMATICAL FUNCTIONS

definition Suppose that A and B are sets and f : σ1(A) −−→ σ1(B). If

a1 = a2 implies f(a1) = f(a2)

for all elements a1 and a2 of A, then f is said to be a function from A to B, or
a family of elements of B indexed by A.

notation If f is assumed to be a function from A to B, then the terms A

and B are understood to be sets.

12.4 / theorem
Let X be a type, B a set, and f an operation from X to σ1(B). Then f is a
function from the identity set of X to B.

12.5 / constant functions
Let A and B be sets. If b belongs to B, then κA(b) is defined as the constant
operation κ σ1(A)(b), which is a function from A to B.

Definition The function κA(b) is said to be constant.

12.6 / canonical inclusion
Let A be a set If X is a subtype of σ1(A), then the identity operation 1X is a
function from the set ϑA (X) to A.

Proof By 12.3.
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Definition The function 1X is called the canonical inclusion of X into A. The
canonical inclusion of σ1(A) into A is denoted by 1A and called the identity
function of A.

12.7 / composition of functions
Let f be a function from A to B and g a function from B to C. Then g ◦ f is
a function from A to C.

Proof By 6.5.

THE CANONICAL PRODUCT OF A FAMILY OF SETS

definition Let A be a family of sets indexed by the set X. The assembly

∏
x∈X

Ax :=

[ ∏
x∈X

σ1(Ax),
∏
x∈X

σ2(Ax)

]

is a set by 12.2. It is called the canonical product of A.

Notation The canonical product of A may be written as
∏

X (A).

Definition The following statements are defined to have the same meaning:

• For every element x of X, let fx be an element of Ax

• Suppose that
∏

X (A) includes the term x ∈ X |−−→ fx.

12.8 / theorem
Let X be a set, A a family of sets indexed by X, and f and g elements of the
canonical product of A. Then f = g if and only if f(x) = g(x) for each element
x of X.

definition Suppose that A and B are sets, F is the type of functions from
A to B, and P is the set ∏

x∈A

κA (B, x).

Then F ⊆ σ1(P ). The set of functions from A to B is defined as ϑP (F ) and
denoted by the symbol A −−→ B.

Notation If f and g are functions from A to B, then the symbol f = g means
that f equals g in the set A −−→ B. Therefore f equals g in P by 12.3.
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12.9 / theorem
Let f and g be functions from A to B. Then f = g if and only if f(a) = g(a)

for every element a of A.

notation Let A and B be sets. The proposition that f belongs to the set
A −−→ B is denoted by the symbol f : A −−→ B.

definition Let X be a set and A a family of sets indexed by X. If x is an
element of X, then the evaluation operator

evx :

(∏
X
(σ1 ◦A)

)
−−→ σ1(Ax)

constructed in 1.10 is denoted by πx. It is called the canonical projection with
coordinate x.

Remark If f belongs to
∏

X (A), then πx(f) = f(x). By 6.18.1,

πx :
∏

X
(A) −−→ Ax.

definition Let A be a set and P a predicate on σ1(A). The proposition

∃ ! (x∈A) P (x) := ∃ (x∈A)

(
P (x) ∧ ∀(y∈A)

(
P (y) =⇒ (x =A y)

))
is interpreted as the statement “There exists a unique element x of A such that
P (x) is true.”

12.10 / theorem
Let X and Y be sets and A a family of sets indexed by Y . For every element y
of Y , let fy be a function from X to Ax. There is a unique function

φ : X −−→
∏

Y
(A)

such that πy ◦ φ = fy for every element y of Y .

Proof of uniqueness If the function

φ̃ : X −−→
∏

Y
(A)

satisfies πy ◦ φ̃ = fy for every element y of Y , then

φ̃x(y) = fy(x)

for every element x of X and every element y of Y .
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Proof of existence Define φ as the operation

x ∈ X, y ∈ Y |−−→ fy(x)

Let x1 and x2 be elements of X and y an element of Y . If x1 = x2, then

fy(x1) = fy(x2),

since fy is a function. Therefore φx1 = φx2 .

SUBSETS AND PIECEWISE DEFINITION

definition Let f be a function from A to B. If the proposition

f(a1) = f(a2) implies a1 = a2

for all elements a1 and a2 of A, then f is called an injection of A into B, and
is said to be injective. If there exists an injection of A into B, then A is called
a subset of B.

notation If it is assumed that A is a subset of B, then the terms A and B

are understood to be sets.

12.11 / theorem
If f is an injection of A into B and g is an injection of B into C, then g ◦ f is
an injection of A into C.

12.12 / corollary
If A is a subset of B and B is a subset of C, then A is a subset of C.

definition Let A and B be sets. If σ1(A) ⊆ σ1(B) and the proposition

a1 =A a2 is equivalent to a1 =B a2

for all elements a1 and a2 of A, then A is said to be a proper subset of B.

Remark If A is a proper subset of B, then A is a subset of B.

12.13 / lemma
If A is a set and X a subtype of σ1(A), then ϑA (X) is a proper subset of A.

12.14 / corollary
If A is a set, then A is a proper subset of A.
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definition A function from a set X to the set V of propositions is called a
propositional function on X. If A is a proper subset of X and the predicate

x ∈ X |−−→ x ∈ A

is a propositional function on X, then A is called a saturated subset of X, and
is said to be saturated in X.

12.15 / theorem
Let X be a set, A a saturated subset of X, and x1 and x2 equal elements of X.
If x1 is an element of A, then x2 is an element of A.

definition Let K and X be sets. Let A be a family of proper subsets of X
indexed by K. If

σ1(X) =
⋃

κ∈K

σ1(Aκ),

then A is called a covering of X, and is said to cover X.

Definition If the set Aκ is saturated in X for all κ in K, then A is said to be
saturated, or a covering of X by saturated subsets.

12.16 / the principle of piecewise definition
Let K, X, and Y be sets. Let A be a saturated covering of X indexed by K.
For each element κ of K, let fκ be a function from Aκ to Y . Suppose that

fκ(x) = fλ(x)

for all κ and λ in K and all x in Aκ ∩ Aλ. There is a unique function g from
X to Y such that

g(x) = fκ(x)

for every element κ of K and every element x of Aκ.

Proof of uniqueness Let x be an element of X. Choose an element φ(x) of K
such that x belongs to Aφ(x). If the function g has the stated properties, then

g(x) = f
(
φ(x), x

)
.

Proof of existence Since A is a covering of X, it follows that φ : σ1(X) −−→ Y ,
and therefore g : σ1(X) −−→ σ1(Y ). Assume that x1 and x2 are equal elements
of X. Then x2 belongs to Aφ(x1) by 12.15. Consequently

g(x1) = f
(
φ(x2), x1

)
= g(x2).
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Definition The function g is said to be piecewise defined on A by f .

definition Let X be a set and P a propositional function on X. The set

X
∣∣ P := ϑX

(
σ1(X)

∣∣ P )
is called the subset of X determined by P . It is saturated in X.

notation Let X and Y be sets. Let P 1 and P 2 be propositional functions
defined on X such that

P 1(x) ∨ P 2(x)

is true for all x in X. For every binary digit i, let fi be a function from X
∣∣ P i

to Y . Suppose that

P 1(x) ∧ P 2(x) implies f1(x) = f2(x)

for every element x of X. Then the function g piecewise defined on X by f is
denoted by the symbol

x ∈ X |−−→

f1(x) if P 1(x),

f2(x) if P 2(x).

12.17 / corollary
Let K, X, and Y be sets and A a saturated covering of X indexed by K, where

σ1(Aκ) ∩ σ1(Aλ)

is void for all κ and λ in K. For every element κ of K, let fκ : Aκ −−→ Y.

There is a unique function g : X −−→ Y such that

g(x) = fκ(x)

for every element κ of K and every element x of Aκ.

Proof By 12.16 and 11.20.
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E

MATHEMATICAL STRUCTURES

remark The definitions and postulates given in this appendix are useful for
the formalization of more advanced mathematics.

notation In this chapter, let m denote a number. The symbol W denotes
the constructor with index fourteen.

definition The term W(m) is denoted by Wm. It is called the structural
universe of order m.

notation The structural universe Wν is denoted by W.

0.37 / construction of structural universes
It is postulated that Wm is a type of order m+ 1 and a subtype of Um+1.

Definition An object S of type Wm is called a structural type of order m. An
object X of type S is called a mathematical structure of order m, or simply a
structure of order m.

notation The symbol B denotes the constructor with index fifteen. If X is
a term, then B(X) is denoted by Xb.

0.38 / the base type of a structure
Suppose that S is a structural type of order m and X is a structure of type S.
It is postulated that Xb is a type of order m.

Definition The type Xb is called the base type of X.

0.39 / types as structures
It is postulated that Um is a structural type of order m, and that Xb = X for
all types X of order m.

Intuition Types are the most basic mathematical structures.
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0.40 / addition of structure
Let S be a structural type of order m, where m is a number, and Φ a family of
types of order m indexed by S. It is postulated that∐

S
(Φ) : Wm and that [X,φ ]b = Xb

for all X of type S and all φ of type Φ(X).

Intuition A structure [X,φ ] can be constructed from X by combining it with
an object φ, which is usually an operation.

example Sets are mathematical structures. Indeed, if X is a type and R is
an equivalence relation on X, then the set [X, R ] is a structure by 0.41. Its
base type is X, by 0.41 and 0.40.

0.41 / accumulation of structural types
Let m be a number. It is postulated that Wm is a structural type of order m+ 1
and a subtype of Wm+1.

E.1 / corollary
If S is a structural type of order m, then Sb = S.

Proof By 0.38, since S is a type of order m+ 1 by 0.36.



F

PHILOSOPHICAL IMPLICATIONS

We have developed a type theory from first principles and demonstrated that it
provides a natural method of formalizing ordinary mathematics. At this point,
continuing to formalize mathematics becomes routine. We conclude the book
by speculating about its philosophical implications.

1 / what is mathematics ?

Mathematics is a system of formal definitions. The definitions provide rules for
manipulating symbols, and are chosen for their usefulness in modeling natural
phenomena.

2 / is mathematics a branch of logic ?

No. In fact, logic is a branch of mathematics.

3 / is mathematics invented or discovered ?

The concepts of mathematics are invented, since stating a definition amounts
to inventing a concept. The relationships between the concepts are discovered
by deduction, and expressed as theorems.

4 / what is mathematical truth ?

There are two concepts of truth in mathematics:

• An assertion is true if and only if it it is a theorem.

• A proposition is true if and only if its proof type is inhabited.

These definitions provide a syntactic theory of mathematical truth. The theory
explains the concept of truth as it is used in practice.

5 / is mathematical knowledge certain ?

Mathematical knowledge is expressed by theorems. This knowledge is acquired
by applying the first principles of mathematics, which transcend dispute. Thus
a complete proof cannot be doubted. However, complete proofs are too detailed
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to be useful for communication or understanding. The optimal solution seems
to be machine verification of proofs. This will not bring perfect certainty, since
computers are not infallible. However, it will be close enough.

6 / what is a mathematical object ?

A mathematical object is a term a such that the proposition

∃ (X :U) (a : X)

is true. The mathematical object a is then said to exist. With this definition,
mathematical objects are just useful symbols.



BIBLIOGRAPHY

INSPIRATION AND MAIN INFLUENCES

Bishop, Everett

1967 Foundations of Constructive Analysis. Ishi Press, 2012 edition.

1975 The crisis in contemporary mathematics. Historia Mathematica,
vol. 2,pp. 507-517.

Bourbaki, Nicolas

1970 Theory of Sets. Springer, 2004 edition.

Martin-Löf, Per

1980 Intuitionistic type theory. Notes by Giovanni Sambin [on] a series of
lectures given in Padua, June 1980.

1996 On the meanings of the logical constants and the justifications of the
logical laws. Nordic Journal of Philosophical Logic, vol. 1, pp. 11-60.

The Univalent Foundations Program

2013 Homotopy Type Theory. Institute for Advanced Study.

REFERENCES CONSULTED

Borceux, Francis

1994 Basic Category Theory. Cambridge University Press.

Diaconescu, Radu

1975 Axiom of choice and complementation. Proceedings of the American
Mathematical Society, vol. 51, pp. 176-178.

Goodman, Noah and Myhill, John

1978 Choice implies excluded middle. Mathematical Logic Quarterly,
vol. 24, p. 461.

99



100 bibliography

Hofmann, Martin

1997 Syntax and semantics of dependent types. In Semantics and Logics of
Computation, Cambridge University Press, pp. 79-130.

Kleene, Stephen C.

1952 Introduction to Metamathematics. North Holland, 1971 edition.

Riehl, Emily

2016 Category Theory in Context. Dover Publications.

OTHER INFLUENCES

de Bruijn, Nicolaas G.

1972 Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, vol. 75, pp. 381-392.

Everett, Caleb

2017 Numbers and the Making of Us: Counting and the Course of Human
Cultures. Harvard University Press.


