
Foundations of differential geometric algebra

Michael Reed (Crucial Flow Research), draft 2021

Abstract. The abbreviated foundations developed in the previous paper
“Differential geometric algebra using Leibniz, Grassmann” can be used
as a universal language for finite element methods based on a discrete
manifold bundle, so an elaborated foundation is desired.

Tools built on these foundations enable computations based on
multi-linear algebra and spin groups using the geometric algebra known
as Grassmann algebra or Clifford algebra. This foundation is built on a
direct-sum parametric type system for tangent bundles, vector spaces,
and also projective and differential geometry. Geometric algebra is a
mathematical foundation for differential geometry, which can be used
to simplify the Maxwell equations to a single wave equation due to
the geometric product. Introduction of geometric algebra to engineering
science disciplines will be easier with programmable foundations.

In order to devise an expressive and performance oriented language
for efficient discrete differential geometric algebra with the Grassmann
elements, an efficient computer algebra representation was programmed.
With this unifying mathematical foundation, it is possible to improve
efficiency of multi-disciplinary research using geometric tensor calculus
by relying on universal mathematical principles. Tools built on universal
differential geometric algebra provide a natural geometric language for
the Helmholtz decomposition and Hodge-DeRahm co/homology.

Using the new Grassmann.jl package, it is possible to compute anti-
symmetric tensor products and geometric algebra in Julia’s high performance
computing contexts. Abstract nature of the product algebra code generation
enables extension of the product operations by way of Julia’s type system,
with which it is possible to construct customized mixed tensor products from
a vector basis along with dyadics, as well as bivector elements of Lie groups.
Given this mathemaical foundation, finite element methods based on discrete
manifolds can be combined with unified software tools to provide the universal
foundations for complex numbers (flatland geometry), quaternions (rotation
in 3D), linear algebra & bilinear, multilinear determinant, exterior forms
algebra, quantum logic lattice, differential geometry, finite element methods,
conformal / projection, group representation, combinatoric hypergraphs.

2 Michael Reed (Crucial Flow Research), draft 2021

The Grassmann.jl package provides tools for computations based on
multi-linear algebra and spin groups using the extended geometric algebra
known as Leibniz-Grassmann-Clifford-Hestenes algebra. Combinatorial prod-
ucts include exterior, regressive, inner, and geometric; along with the Hodge
star, adjoint, reversal, and boundary operators. The kernelized operations are
built up from composite sparse tensor products and Hodge duality, with high
dimensional support for up to 62 indices using staged caching and precom-
pilation. Code generation enables concise yet highly extensible definitions.
DirectSum.jl multivector parametric type polymorphism is based on tangent
vector spaces and conformal projective geometry. Additionally, the universal
interoperability between different sub-algebras is enabled by AbstractTen-
sors.jl, on which the type system is built.

• DirectSum.jl: Abstract tangent bundle vector space types (unions, in-
tersections, sums, etc.)

• AbstractTensors.jl: Tensor algebra abstract type interoperability with
vector bundle parameter

• Grassmann.jl: ⟨Leibniz+Grassmann-Clifford-Hestenes⟩ differential geo-
metric algebra of multivector forms

• Leibniz.jl: Derivation operator algebras for tensor fields
• Reduce.jl: Symbolic parser generator for Julia expressions using RE-

DUCE algebra term rewriter
Mathematical foundations and some of the nuances in the definitions spe-
cific to the Grassmann.jl implementation are concisely described, along with
the accompanying support packages that provide an extensible platform for
computing with geometric algebra at high dimensions. The design is based
on the TensorAlgebra abstract type interoperability from AbstractTensors.jl
with a VectorBundle type parameter from DirectSum.jl. Abstract vector space
type operations happen at compile-time, resulting in a differential conformal
geometric algebra of hyper-dual multivector forms.

The nature of the geometric algebra code generation enables one to
easily extend the abstract product operations to any specific number field
type (including differential operators with Leibniz.jl or symbolic coefficients
with Reduce.jl), by making use of Julia’s type system. Mixed tensor products
with their coefficients are constructed from these operations to work with
bivector elements of Lie groups [15][24].

1. Direct sum parametric type polymorphism of Grassmann
The DirectSum.jl package is a work in progress providing the necessary tools
to work with an arbitrary Manifold specified by an encoding. Due to the
parametric type system for the generating VectorBundle, the Julia compiler
can fully pre-allocate and often cache values efficiently ahead of run-time.
Although intended for use with the Grassmann.jl package, DirectSum can be
used independently.

Foundations of differential geometric algebra 3

Definition 1 (Vector space Λ1𝑉 = 𝑉 is a field’s 𝕂-module instance). Let 𝑉 be
a 𝕂-module (abelian group with respect to +) with an element 1 ∈ 𝕂 such
that 1𝑉 = 𝑉 by scalar multiplication 𝕂 × 𝑉 → 𝑉 over field 𝕂 satisfying

• 𝑎(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦 distribution of vector addition,
• (𝑎 + 𝑏)𝑥 = 𝑎𝑥 + 𝑏𝑑 distribution of field addition,
• (𝑎𝑏)𝑥 = 𝑎(𝑏𝑥) associative compatibility.

In the software package Grassmann, an underlying generating vector space is
also synonymous with the term <:TensorBundle (an abstract type).

The AbstractTensors package is intended for universal interoperability
of the abstract TensorAlgebra type system. All TensorAlgebra{V} subtypes
have type parameter 𝑉, used to store a TensorBundle value from DirectSum.jl.
By itself, this package does not impose any specifications or structure on
the TensorAlgebra{V} subtypes and elements, aside from requiring 𝑉 to be
a TensorBundle. This means that different packages can create tensor types
having a common underlying TensorBundle structure. For example, this is
mainly used in Grassmann.jl to define various SubAlgebra, TensorTerm and
TensorMixed types, each with subtypes. Externalizing the abstract type helps
extend the dispatch to other packages.

The key to making the interoperability work is that each TensorAlgebra

subtype shares a TensorBundle parameter (with all isbitstype parameters),
which contains all the info needed at compile time to make decisions about
conversions. So other packages need only use the vector space information to
decide on how to convert based on the implementation of a type. If external
methods are needed, they can be loaded by Requires when making a separate
package with TensorAlgebra interoperability.

Additionally, a universal unit volume element can be specified in terms
of LinearAlgebra.UniformScaling, which is independent of 𝑉 and has its in-
terpretation only instantiated by the context of the TensorAlgebra{V} element
being operated on. Universal interoperability of LinearAlgebra.UniformScaling
as a pseudoscalar element which takes on the TensorBundle form of any
other TensorAlgebra element is handled globally. This enables the usage of
I from LinearAlgebra as a universal pseudoscalar element defined at every
point 𝑥 of a Manifold, which is mathematically denoted by 𝐼 = 𝐼(𝑥) and
specified by the 𝑔(𝑥) bilinear tensor field of 𝑇 𝑀. Utility methods such as
scalar, involute, norm, norm2, unit, even, odd are also defined.

Definition 2 (Linear dependence). Let 𝑉 be a vector space over field 𝕂, then
the set {𝑣𝑖}𝑖 is linearly dependent iff ∑𝑛

𝑖=1 𝑘𝑖𝑣𝑖 = 0 for some 0 ≠ 𝑘 ∈ 𝕂𝑛.

Definition 3 (∧-product annihilation). For a linearly dependent set {𝑣𝑖}
𝑛
1 ⊂ 𝑉

𝑣1 ∧ 𝑣2 ∧ ⋯ ∧ 𝑣𝑛 = 0.

Initially, it is enough to understand that ∧ ∶ Λ𝑛𝑉 × Λ𝑚𝑉 → Λ𝑛+𝑚𝑉 is
an operation which is zero for linearly dependent arguments. However, this
idea comes from extending Grassmann’s product 𝑣𝑖 ∧ 𝑣𝑗 = −𝑣𝑗 ∧ 𝑣𝑖 ⟹
𝑣𝑖 ∧ 𝑣𝑖 = 0 = −𝑣𝑖 ∧ 𝑣𝑖 to yield a tool for characterizing linear dependence.

4 Michael Reed (Crucial Flow Research), draft 2021

Definition 4 (Dimension 𝑛-SubManifold in Λ𝑛𝑉). Hence, writing the product
𝑣1 ∧𝑣2 ∧⋯∧𝑣𝑛 ≠ 0 implies a linearly independent set {𝑣𝑖}

𝑛
1 ⊆ 𝑉 isomorphic to

an 𝑛-SubManifold. With the product Λ0Λ𝑛𝑉 ×(𝑣1 ∧𝑣2 ∧⋯∧𝑣𝑛) ≅ 𝕂 it is also
clear that a 1-dimensional basis subspace is induced by any 𝑛-SubManifold.

Example 1. Therefore, 𝕂 = Λ0𝕂 ≅ Λ1𝕂 is a vector space or a 0-SubManifold.

Example 2. Λ𝑛𝑉 is a vector space with Λ1Λ𝑛𝑉 = Λ𝑛𝑉 and Λ0Λ𝑛𝑉 = Λ0𝑉.

Denote 𝑉 ∗ = 𝑉 \ {0} as the set 𝑉 excluding the 0 element in next:

Definition 5 (Direct sum ⊕). To consider a set of linearly independent spaces,
let 𝜋𝑖 ∶ 𝑉 → 𝑉𝑖 be projections with vector space 𝑉𝑖 ⊂ 𝑉, define

𝑉1 ⊕ 𝑉2 ⊕ ⋯ ⊕ 𝑉𝑛 = 𝑉 ⟺ ⋀ ∶ 𝑉 ∗
1 × 𝑉 ∗

2 × ⋯ × 𝑉 ∗
𝑛 → Λ𝑛𝑉 ∗.

DirectSum of a full non-zero product implies an 𝑛-SubManifold.

Definition 6. Grade-𝑚 projection is defined as ⟨Λ𝑉 ⟩𝑚 = Λ𝑚𝑉 such that

Λ𝑉 =
𝑛

⨁
𝑚=0

⟨Λ𝑉 ⟩𝑚 = Λ0𝑉 ⊕ Λ1𝑉 ⊕ ⋯ ⊕ Λ𝑛𝑉 , ⟨Λ𝑉 ⟩𝑚 =
(𝑛

𝑚)

⨁
𝑚=1

𝕂.

Note that dim ⟨Λ𝑉 ⟩𝑚 = (𝑛
𝑚) and hence dim Λ𝑉 = ∑𝑛

𝑚=0 (𝑛
𝑚) = 2𝑛.

Example 3 (Combinatorics of 𝒫(𝑉) and hypergraphs ⊆ 𝒫(𝑉)\ {∅}). Let
𝑣1, 𝑣2, 𝑣3 ∈ ℝ3, then the power set of elements is:

𝒫(ℝ3) = {∅, {𝑣1} , {𝑣2} , {𝑣3} , {𝑣1, 𝑣2} , {𝑣1, 𝑣3} , {𝑣2, 𝑣3} , {𝑣1, 𝑣2, 𝑣3}}
Form a direct sum over the elements of 𝒫(𝑉) with ∧ to define Λ𝑉, e.g.

Λ(ℝ3) = Λ0(ℝ3) ⊕ Λ1(ℝ3) ⊕ Λ2(ℝ3) ⊕ Λ3(ℝ3)

Λ0ℝ
⏞𝑣∅ ⊕

Λ1(ℝ3)

⏞⏞⏞⏞⏞𝑣1 ⊕ 𝑣2 ⊕ 𝑣3 ⊕
Λ2(ℝ3)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑣1 ∧ 𝑣2) ⊕ (𝑣1 ∧ 𝑣3) ⊕ (𝑣2 ∧ 𝑣3) ⊕
Λ3(ℝ3)

⏞⏞⏞⏞⏞(𝑣1 ∧ 𝑣2 ∧ 𝑣3)

Definition 7 (Vector bundle of SubManifold). Let 𝑀 = 𝑇 𝜇𝑉 ∈ Vect𝕂 be a
TensorBundle<:Manifold of rank 𝑛,

𝑇 𝜇𝑉 = (𝑛, ℙ, 𝑔, 𝜈, 𝜇), ℙ ⊆ ⟨𝑣∞, 𝑣∅⟩ , 𝑔 ∶ 𝑉 × 𝑉 → 𝕂
The type TensorBundle{n,ℙ,g,𝜈, 𝜇} uses byte-encoded data available at pre-
compilation, where ℙ specifies the basis for up and down projection, 𝑔 is
a bilinear form that specifies the metric of the space, and 𝜇 is an integer
specifying the order of the tangent bundle (i.e. multiplicity limit of Leibniz-
Taylor monomials). Lastly, 𝜈 is the number of tangent variables. The dual
space functor (⋅)′ ∶ Vectop

𝕂 → Vect𝕂 is an involution which toggles a dual
vector space with inverted signature with property 𝑉 ′ = Hom(𝑉 , 𝕂) and
having Basis generators

⟨𝑣1, … , 𝑣𝑛−𝜈, 𝜕1, … , 𝜕𝜈⟩ = 𝑀 ↔ 𝑀 ′ = ⟨𝑤1, … , 𝑤𝑛−𝜈, 𝜖1, … , 𝜖𝜈⟩
where 𝑣𝑖, 𝑤𝑖 are a basis for the vectors and covectors, while 𝜕𝑗, 𝜖𝑗 are a basis
for differential operators and tensor fields.

Foundations of differential geometric algebra 5

Example 4 (Case of 3rd order tangent bundle operator composition).
𝑇 3(ℝ0) = 𝜕∅ ⊕ 𝜕1 ⊕ 𝜕2 ⊕ 𝜕3 ⊕ (𝜕1 ∘ 𝜕2) ⊕ (𝜕1 ∘ 𝜕3) ⊕ (𝜕2 ∘ 𝜕3) ⊕ (𝜕1 ∘ 𝜕2 ∘ 𝜕3)
In order to shorten the notation, the operation symbol is left out:

{𝑣1, 𝑣2, 𝑣3, 𝑣12, 𝑣13, 𝑣23, 𝑣123} , {𝜕1, 𝜕2, 𝜕3, 𝜕12, 𝜕13, 𝜕23, 𝜕123}

The direct sum operator ⊕ can be used to join spaces (alternatively +),
and the dual space functor ' is an involution which toggles a dual vector
space with inverted signature. In addition to the direct-sum operation, several
other operations are supported, such as ∪, ∩, ⊆, ⊇ for set operations. Due
to the design of the TensorBundle dispatch, these operations enable code
optimizations at compile-time provided by the bit parameters.

⋃ 𝑇 𝜇𝑖𝑉𝑖 = (|ℙ| + max {𝑛𝑖 − |ℙ𝑖|}𝑖 , ⋃ ℙ𝑖, ∪𝑔𝑖, max {𝜈𝑖}𝑖 , max {𝜇𝑖}𝑖)

⨁ 𝑇 𝜇𝑖𝑉𝑖 = (|ℙ| + ∑(𝑛𝑖 − |ℙ𝑖|), ⋃ ℙ𝑖, ⊕𝑖𝑔𝑖, max {𝜈𝑖}𝑖 , max {𝜇𝑖}𝑖)
These are roughly the formulas used for those operations. Note differences
between the operations ⋃ and ⨁, which are similar

Calling manifolds with sets of indices constructs the subspace repre-
sentations. Given M(s::Int...) one can encode SubManifold{length(s),M,s}

with induced orthogonal space 𝑍, such that computing unions of submani-
folds is done by inspecting the parameter 𝑠 ∈ 𝑉 ⊆ 𝑊 and 𝑠 ∉ 𝑍. Here, calling
a Manifold with a set of indices produces a SubManifold representation.

𝑇 𝑒𝑉 ⊂ 𝑇 𝜇𝑊 ⟺ ∃𝑍 ∈ Vect𝕂(𝑇 𝑒(𝑉 ⊕ 𝑍) = 𝑇 𝑒≤𝜇𝑊, 𝑉 ⟂ 𝑍).
Operations on Manifold types is automatically handled at compile time.

Definition 8 (Shirokov’s permutations). Consider 𝜎𝑗(𝜔) = ∑𝑛
𝑘=0(−1)(𝑘

2𝑗−1) ⟨𝜔⟩𝑘,

𝜎1(𝜔) ≡ 𝜔, 𝜎2(𝜔) ≡ �̃�, 𝜎12 = 𝜎2(𝜎1(𝜔)) ≡ �̃�

Proposition 1 (𝔖𝑗 = ⟨𝜎1, 𝜎2, … , 𝜎𝑗⟩ is a group). Group 𝔖2 = {1, 𝜎1, 𝜎2, 𝜎12}

is a set of automorphisms: grade involution 𝜔 = 𝜎1(𝜔) =
𝑛

∑
𝑘=0

(−1)(𝑘
1) ⟨𝜔⟩𝑘,

reverse �̃� = 𝜎2(𝜔) =
𝑛

∑
𝑘=0

(−1)(𝑘
2) ⟨𝜔⟩𝑘 =

𝑛
∑
𝑘=0

(−1)(𝑘−1)𝑘/2 ⟨𝜔⟩𝑘 is an anti-

automorphism with 𝜎2(𝑣𝑖 ∧ 𝑣𝑗) = 𝜎2(𝑣𝑗) ∧ 𝜎2(𝑣𝑖), and Clifford conjugate �̃� is
the composition of grade involution and reverse anti-automorphism.

Definition 9 (Real ℜ̃𝜔 = (𝜔 + �̃�)/2 and imaginary ̃ℑ𝜔 = (𝜔 − �̃�)/2). Real
and imaginary define ℤ2-grading projections such that Λ𝑉 = ℜ̃Λ𝑉 ⊕ ̃ℑΛ𝑉;
where ℜ̃Λ𝑉 is real part and ̃ℑΛ𝑉 is imaginary part.

Definition 10 (Even ℜ𝜔 = (𝜔+𝜔)/2 and odd ℑ𝜔 = (𝜔−𝜔)/2). The projection
ℜΛ𝑉 is even grade and ℑΛ𝑉 is odd grade with ℤ2-grading Λ𝑉 = ℜΛ𝑉 ⊕ℑΛ𝑉.

ℤ2-grading projections: 𝜎𝑗(ℜ)𝜔 = (𝜔+𝜎𝑗(𝜔))/2 and 𝜎𝑗(ℑ)𝜔 = (𝜔−𝜎𝑗(𝜔))/2.
The direct sum of a TensorBundle and its dual 𝑉 ⊕ 𝑉 ′ represents the

full mother space, which is yet another ℤ2-grading [23] of a vector space.

6 Michael Reed (Crucial Flow Research), draft 2021

� �
collect(V) # all SubManifold vector basis elements

collect(SubManifold(V')) # all covector basis elements

collect(SubManifold(V+V')) # all mixed basis elements� �
Since TensorBundle choices are fundamental to TensorAlgebra opera-

tions, the universal interoperability between TensorAlgebra{V} elements with
different associated TensorBundle choices is naturally realized by applying the
union morphism to operations, e.g. ⋀ ∶ Λ𝑝1𝑉1 × ⋯ × Λ𝑝𝑔𝑉𝑔 → Λ∑𝑘 𝑝𝑘 ⋃𝑘 𝑉𝑘.
Some of the method names like +, −, ∗, ⊗, ⊛, ⊙, ⊠, ⋆ for TensorAlgebra ele-
ments are shared across different packages, with interoperability.� �
function op(::TensorAlgebra{V},::TensorAlgebra{V}) where V

well defined operations if V is shared

end # but what if V ≠ W in the input types?

function op(a::TensorAlgebra{V},b::TensorAlgebra{W}) where {V,W}

VW = V ∪ W # VectorSpace type union

op(VW(a),VW(b)) # makes call well-defined

end # this option is automatic with interop(a,b)� �
Suppose we are dealing with a new subtype in another project. To define
additional specialized interoperability for further methods, it is necessary to
define dispatch that catches well-defined operations for equal TensorBundle

choices and a fallback method for interoperability, along with a TensorBundle

morphism. Thus, interoperability is a situation of defining one additional
fallback method for the operation and also a new TensorBundle compatibility
morphism, satisfying a union morphism law� �
op(a,b) |> Manifold == Manifold(a) ∪ Manifold(b)

b(a) |> Manifold == Manifold(a) ∪ Manifold(b)� �
The metric signature of the SubManifold{V,1} elements of a vector space

𝑉 can be specified with the V"..." constructor by using + and - to specify
whether the SubManifold{V,1} element of the corresponding index squares to
+1 or -1. For example, S"+++" constructs a positive definite 3-dimensional
TensorBundle, so constructors such as S"..." and D"..." are convenient.� �
julia> ℝ^3 == S"+++" == Manifold(3)

true� �
It is possible to specify an arbitrary DiagonalForm having numerical values for
the basis including degeneracy D"1,1,1,0", although the Signature format has
a more compact representation if limited to +1 and -1. It is also possible to
change the diagonal scaling, such as with D"0.3,2.4,1". Further development
will result in more metric types, including non-diagonal metric tensors.

Foundations of differential geometric algebra 7

Declaring an additional point at infinity is done by specifying it in the
string constructor with ∞ at the first index (i.e. Riemann sphere S"∞+++").
The hyperbolic geometry can be declared by ∅ subsequently (i.e. hyperbolic
projection S"∅+++"). Additionally, the null-basis based on the projective split
for confromal geometric algebra would be specified with ∞∅ initially (i.e. 5D
CGA S"∞∅+++"). These two declared basis elements are interpreted in the
type system. The tangent(V,𝜇,𝜈) map can be used to specify 𝜇 and 𝜈.

The index number 𝑛 of the TensorBundle corresponds to the total num-
ber of generator elements. However, V"∞∅+++" is of type TensorBundle{5,3}

with 5 generator elements, it can be internally recognized in the direct sum al-
gebra as being an embedding of a 3-index TensorBundle{3,0} with additional
encoding of the null-basis (origin and point at infinity) in the parameter ℙ of
the TensorBundle{n,ℙ} type. The tangent map takes 𝑉 to its tangent space
and can be applied repeatedly for higher orders, such that tangent(V,μ,ν)

can be used to specify 𝜇 and 𝜈.� �
julia> V = tangent(ℝ^3)

T1⟨+++₁⟩

julia> tangent(V')

T2⟨----1⟩'

julia> V+V'

T1⟨+++---₁1⟩*� �
The elements of the Basis can be generated in many ways using the

SubManifold elements created by the @basis macro,� �
julia> using Grassmann; @basis ℝ'⊕ℝ^3 #' equivalent to basis"-+++"

(⟨-+++⟩, v, v1, v2, v3, v4, v12, v13, v14, v23, v24, v34, v123, v124, v134, v234, v1234)� �
The macro @basis V declares a local basis in Julia. As a result of this macro,
all of the SubManifold{V,G} elements generated by that TensorBundle become
available in the local workspace with the specified naming. The first argu-
ment provides signature specifications, the second argument is the variable
name for the TensorBundle, and the third and fourth argument are prefixes
of the SubManifold vector names (and covector basis names). By default, 𝑉 is
assigned the TensorBundle and 𝑣 is the prefix for the SubManifold elements.

It is entirely possible to assign multiple different bases with different
signatures without any problems. The @basis macro arguments are used to
assign the vector space name to 𝑉 and basis elements to 𝑣, but other assigned
names can be chosen so that their local names do not interfere: Alternatively,
if you do not wish to assign these variables to your local workspace, the
versatile constructors of DirectSum.Basis{V} can be used to contain them,
which is exported to the user as the method Λ(V).

8 Michael Reed (Crucial Flow Research), draft 2021

The Grassmann SubManifold elements 𝑣𝑘 ∈ Λ1𝑉 and 𝑤𝑘 ∈ Λ1𝑉 ′ are
linearly independent vector and covector elements of 𝑉, while the Leibniz
Operator elements 𝜕𝑘 ∈ 𝐿1𝑉 are partial tangent derivations and 𝜖𝑘 ∈ 𝐿1𝑉 ′

are dependent functions of the tangent manifold. An element of a mixed-
symmetry TensorAlgebra{V} is a multilinear mapping that is formally con-
structed by taking the tensor products of linear and multilinear maps,

(⨂
𝑘

𝜔𝑘)(𝑣1, … , 𝑣∑𝑘 𝑝𝑘
) = ∏

𝑘
𝜔𝑘(𝑣1, … , 𝑣𝑝𝑘

).

Higher grade elements correspond to SubManifold subspaces, while higher
order function elements become homogenous polynomials and Taylor series.

To help provide a commonly shared and readable indexing to the user,
some extended dual index print methods with full alphanumeric characters:� �
julia> DirectSum.printindices(stdout,DirectSum.indices(UInt(2^62-1)),false,"v")

v1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

julia> DirectSum.printindices(stdout,DirectSum.indices(UInt(2^62-1)),false,"w")

w1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz� �
An application of this is in the Grassmann package, where dual indexing is
used.

Definition 11 (Mixed-symmetry basis). Combining the linear basis generating
elements with each other using the multilinear tensor product yields a graded
(decomposable) SubManifold ⟨𝑣𝑝1

⊗ ⋯ ⊗ 𝑣𝑝𝑘
⟩𝑘, where rank 𝑘 is determined by

the sum of basis index multiplicities in the tensor product decomposition. The
Grassmann anti-symmetric exterior basis is denoted by 𝑣𝑖1…𝑖𝑔

∈ Λ𝑔𝑉 with its
dual 𝑤𝑖1⋯𝑖𝑔 ∈ Λ𝑔𝑉, while the Leibniz symmetric basis are 𝜕𝜇1

𝑖1
… 𝜕𝜇𝑔

𝑖𝑔
∈ 𝐿𝑔𝑉

with corresponding 𝜖𝜇1
𝑖1

… 𝜖𝜇𝑔
𝑖𝑔

∈ 𝐿𝑔𝑉 adjoint elements. The algebra partitions
into symmetric and anti-symmetric tensor equivalence classes. For any pair,

𝜔 ⊗ 𝜂 = −𝜂 ⊗ 𝜔⏟⏟⏟⏟⏟⏟⏟
anti-symmetric

or 𝜔 ⊗ 𝜂 = 𝜂 ⊗ 𝜔⏟⏟⏟⏟⏟⏟⏟
symmetric

.

Combined, this space produces the full Leibniz tangent algebra and
the Grassmann exterior algebra with 2𝑛 elements. The mixed index algebra
is partitioned into both symmetric and anti-symmetric tensor equivalence
classes. Any mixed tensor SubManifold pair 𝜔, 𝜂 satisfies either� �
julia> Λ(ℝ^3)

DirectSum.Basis{⟨+++⟩,8}(v, v1, v2, v3, v12, v13, v23, v123)

julia> Λ(tangent(ℝ^2))

DirectSum.Basis{T1⟨++₁⟩,8}(v, v1, v2, ∂₁, v12, ∂₁v1, ∂₁v2, ∂₁v12)

julia> Λ(tangent((ℝ^0)',3,3))

DirectSum.Basis{T3⟨123⟩',8}(w, ϵ₁,ϵ₂ ,ϵ₃ ,ϵ₁₂ ,ϵ₁₃ ,ϵ₂₃ ,ϵ₁₂₃)� �

Foundations of differential geometric algebra 9

Typically the 𝑘 in a product (𝜕𝑝1
⊗ ⋯ ⊗ 𝜕𝑝𝑘

)
(𝑘)

is referred to as the
order of the element if it is fully symmetric, which is overall tracked separately
from the grade such that 𝜕𝑘 ⟨𝑤𝑗⟩𝑟

= ⟨𝜕𝑘𝑤𝑗⟩𝑟
and (𝜕𝑘)(𝑟)𝜔𝑗 = (𝜕𝑘𝑤𝑗)(𝑟).

A higher-order composite tensor element is an oriented-multi-set 𝑋 such
that 𝑣𝑋 = ⨂𝑘 𝑣⊗𝜇𝑘

𝑖𝑘
with the indices 𝑋 = ((𝑖1, 𝜇1), … , (𝑖𝑔, 𝜇𝑔)) and |𝑋| =

∑𝑘 𝜇𝑘 is tensor rank. Anti-symmetric indices Λ𝑋 ⊆ Λ𝑉 have two orientations
and higher multiplicities of them result in zero values, so the only interesting
multiplicity is 𝜇𝑘 ≡ 1. The Leibniz-Taylor algebra is a quotient polynomial
ring 𝐿𝑉 ≅ 𝑅[𝑥1, … , 𝑥𝑛]/{∏𝜇+1

𝑘=1 𝑥𝑝𝑘
} so that 𝜕𝜇+1

𝑘 is zero. Typically the 𝑘 in

a product (𝜕𝑝1
⊗ ⋯ ⊗ 𝜕𝑝𝑘

)
(𝑘)

is referred to as the order of the element if it is
fully symmetric, which is overall tracked separately from the grade such that
𝜕𝑘⟨𝑣𝑗⟩𝑟 = ⟨𝜕𝑘𝑣𝑗⟩𝑟 and (𝜕𝑘)(𝑟)𝜔𝑗 = (𝜕𝑘𝑣𝑗)(𝑟).

Grassmann’s exterior product is an anti-symmetric tensor product

𝑣𝑖 ∧ 𝑣𝑗 = −𝑣𝑗 ∧ 𝑣𝑖 ⟹ 𝑣𝑖 ∧ 𝑣𝑖 = 0 = −𝑣𝑖 ∧ 𝑣𝑖,

which generalizes the multilinear determinant transposition property

𝑣𝜔1
∧ ⋯ ∧ 𝑣𝜔𝑚

∧ 𝑣𝜂1
∧ ⋯ ∧ 𝑣𝜂𝑛

= (−1)𝑚𝑛𝑣𝜂1
∧ ⋯ ∧ 𝑣𝜂𝑛

∧ 𝑣𝜔1
∧ ⋯ ∧ 𝑣𝜔𝑚

.

Hence for graded elements it is possible to deduce that

𝜔 ∈ Λ𝑚𝑉 , 𝜂 ∈ Λ𝑛𝑉 ∶ 𝜔 ∧ 𝜂 = (−1)𝑚𝑛𝜂 ∧ 𝜔.

Remark. Observe that the anti-symmetric property implies that 𝜔 ⊗ 𝜔 = 0,
while the symmetric property neither implies nor denies such a property.
Grassmann remarked [13] in 1862 that the symmetric algebra of functions is
by far more complicated than his anti-symmetric exterior algebra. The first
part of the book focused on anti-symmetric exterior algebra, while the more
complex symmetric function algebra of Leibniz was subject of the second mul-
tivariable part of the book. Elements 𝜔𝑘 in the space Λ𝑉 of anti-symmetric
algebra are often studied as unit quantum state vectors in a unitary proba-
bility space, where ∑𝑘 𝜔𝑘 ≠ ⨂𝑘 𝜔𝑘 is entanglement.

� �
julia> indices(Λ(3).v12)

2-element Array{Int64,1}:

1

2� �
Grassmann’s exterior algebra doesn’t invoke the properties of multi-sets,

as it is related to the algebra of oriented sets; while the Leibniz symmetric
algebra is that of unoriented multi-sets. Combined, the mixed-symmetry alge-
bra yields a multi-linear propositional lattice. The formal sum of equal grade
elements is an oriented Chain and with mixed grade it is a MultiVector simpli-
cial complex. Thus, various standard operations on the oriented multi-sets are
possible including ∪, ∩, ⊕ and the index operation 𝑋 ⊖𝑌 = (𝑋 ∪𝑌)\(𝑋 ∩𝑌),
which is symmetric difference operation ⊻.

10 Michael Reed (Crucial Flow Research), draft 2021

� �
julia> typeof(V) # dispatch by vector space

SubManifold{⟨-+++⟩,4,0x000000000000000f}

julia> typeof(v13) # extensive type info

SubManifold{⟨-+++⟩,2,0x0000000000000005}

julia> 2v1 + v3 # vector Chain{V,1} element

2v1 + 0v2 + 1v3 + 0v4

julia> 5 + v2 + v234 # MultiVector{V} element

5 + 1v2 + 1v234� �
Definition 12 (Simplex{V,G,B,T}, e.g. 5𝑣1, 7𝑣34, 8𝑣123). Value of type 𝑇 as-
sociated with a grade 𝐺 Submanifold 𝐵 of 𝑉 element of Λ𝐺𝑉.� �
struct Simplex{V,G,B,T} <: TensorTerm{V,G}

v::T end� �
Definition 13 (Chain{V,G,T}, e.g. 3𝑣1 + 4𝑣2 or 1𝑣12 + 1𝑣13 + 1𝑣23). Grade
𝐺 subspaces of dimension (𝑛

𝐺) with type 𝑇 coefficients are elements of Λ𝐺𝑉.� �
@computed struct Chain{V,G,K} <: TensorGraded{V,G}

v::Values{binomial(mdims(V),G),K} end� �
Definition 14 (MultiVector{V,T}). Full 2𝑛 dimensional representation of Λ𝑉
over type 𝑇 are a generalization of (mixed) oriented hypergraphs.� �
@computed struct MultiVector{V,K} <: TensorMixed{V}

v::Values{1<<mdims(V),K} end� �
The parametric type formalism in Grassmann syntax design is highly

expressive to enable the pre-allocation of geometric algebra computations for
specific sparse-subalgebras, including the representation of rotational groups,
Lie bivector algebras, and affine projective geometry.

In order to work with a TensorAlgebra{V}, it is necessary for some com-
putations to be cached. This is usually done automatically when accessed.
Staging of precompilation and caching is designed so that a user can smoothly
transition between very high dimensional and low dimensional algebras in a
single session, with varying levels of extra caching and optimizations.

It is possible to reach Simplex elements with up to 𝑛 = 62 vertices,
requiring full alpha-numeric labeling with lower-case and capital letters.� �
julia> Λ(62).v32a87Ng

-1v2378agN� �

Foundations of differential geometric algebra 11

The 62 indices require full alpha-numeric labeling with lower-case and capital
letters. This now allows users to reach up to 4, 611, 686, 018, 427, 387, 904
dimensions with Julia using Grassmann. Then the volume element is� �
v1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ� �
Full MultiVector allocations are only possible for 𝑁 ≤ 22, sparse operations
are available at higher dimensions. While DirectSum.Basis{V} is a container
for the TensorAlgebra generators of 𝑉, the Basis is only cached for 𝑁 ≤ 8.
For the range of dimensions 8 < 𝑁 ≤ 22, the SparseBasis type is used.� �
julia> Λ(22)

DirectSum.SparseBasis{⟨++++++++++++++++++++++⟩,4194304}(v, ..., v1234567890abcdefghijkl)� �
This is the largest SparseBasis that can be generated with Julia, due to array
size limitations.

To reach higher dimensions with 𝑁 > 22, the DirectSum.ExtendedBasis

type is used. It is suficient to work with a 64-bit representation (which is
the default). And it turns out that with 62 standard keyboard characters,
this fits. At 22 dimensions and lower there is better caching, with further
extra caching for 8 dimensions or less. Thus, the largest Hilbert space that
is fully reachable has 4,194,304 dimensions, but we can still reach out to
4,611,686,018,427,387,904 dimensions with the ExtendedBasis built in. It is
still feasible to extend to a further super-extended 128-bit representation us-
ing the UInt128 type (but this will require further modifications of internals
and helper functions). To reach into infinity even further, it is theoretically
possible to construct ultra-extensions also using dictionaries. Full MultiVector
elements are not representable when ExtendedBasis is used, but the perfor-
mance of the Basis and sparse elements should be just as fast as for lower
dimensions for the current SubAlgebra and TensorAlgebra types. The sparse
representations are a work in progress to be improved with time.

2. Geometric algebraic product structure
For the oriented sets of the Grassmann exterior algebra, the parity of (−1)Π is
factored into transposition compositions when interchanging ordering of the
tensor product argument permutations [3]. The symmetrical algebra does not
need to track this parity, but has higher multiplicities in its indices. Symmet-
ric differential function algebra of Leibniz trivializes orientation into a single
class of index multi-sets, while Grassmann’s exterior algebra is partitioned
into two oriented equivalence classes by anti-symmetry. Full tensor algebra
can be sub-partitioned into equivalence classes in multiple ways based on the
element symmetry, grade, and metric signature composite properties. Both
symmetry classes can be characterized by the same geometric product.

12 Michael Reed (Crucial Flow Research), draft 2021

Definition 15. The geometric algebraic product is the Π oriented symmetric
difference operator ⊖ (weighted by the bilinear form 𝑔) and multi-set sum ⊕
applied to multilinear tensor products ⊗ in a single operation: Λ𝑉 ×Λ𝑉 → Λ𝑉

orient parity

⏞⏞⏞⏞⏞(−1)Π(𝑋,𝑌)

intersect metric
⏞⏞⏞⏞⏞⏞⏞det [𝑔Λ(𝑋∩𝑌)](

(𝑋∪𝑌)\(𝑋∩𝑌)

⏞⏞⏞⏞⏞⨂
𝑘∈Λ(𝑋⊖𝑌)

𝑤𝑖𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Λ1-anti-symmetric, Λ𝑔-mixed-symmetry

) ⊗ (
multi-set sum

⏞⏞⏞⏞⏞⏞⏞⨂
𝑘∈𝐿(𝑋⊕𝑌)

𝜖⊗𝜇𝑘
𝑖𝑘

⏟⏟⏟⏟⏟⏟⏟
𝐿𝑔-symmetric

)

For any 𝑣𝑖 ∈ Λ1𝑉, we define 𝑣2
𝑖 = 𝑣𝑖𝑣𝑖 = 𝑔𝑖𝑖, so typically the diagonal

metric 𝑔 of the algebra is often defined by relations like these.

Example 5 (Squaring a vector in S”+–”). 𝑣2
1 = 𝑣1𝑣1 = 1, 𝑣2

2 = 𝑣2𝑣2 = −1

If 𝑣𝑖, 𝑣𝑗 ∈ Λ1𝑉 are orthogonal, then 𝑣𝑖𝑣𝑗 = −𝑣𝑗𝑣𝑖 for the basis, and then
geometric product and exterior product are interchangeable.

Example 6. S”++” ∶ 𝑣2
12 = 𝑣12𝑣12 = 𝑣1𝑣2𝑣1𝑣2 = −𝑣1𝑣1𝑣2𝑣2 = −1 ⋅ 1 = −1

S”+–” ∶ 𝑣2
12 = 𝑣12𝑣12 = 𝑣1𝑣2𝑣1𝑣2 = −𝑣1𝑣1𝑣2𝑣2 = −1 ⋅ −1 = 1

Example 7. S”+++” ∶ (𝑣1 +𝑣123)𝑣12 = (𝑣1 +𝑣1 ∧𝑣2 ∧𝑣3)(𝑣1 ∧𝑣2) = 𝑣2 −𝑣3

Definition 16 (Null-basis of projective split). Let 𝑣2
± = ±1 be a basis with

𝑣∞ = 𝑣++𝑣− and 𝑣∅ = (𝑣−−𝑣+)/2 An embedding space ℝ𝑝+1,𝑞+1 carrying the
action from the group 𝑂(𝑝 + 1, 𝑞 + 1) then has 𝑣2

∞ = 0, 𝑣2
∅ = 0, 𝑣∞ ⋅ 𝑣∅ = −1,

and 𝑣2
∞∅ = 1 with Minkowski plane 𝑣∞∅ having these product properties

𝑣∞∅𝑣∞ = −𝑣∞, 𝑣∞∅𝑣∅ = 𝑣∅,
𝑣∞𝑣∅ = −1 + 𝑣∞∅, 𝑣∅𝑣∞ = −1 − 𝑣∞∅

Definition 17. Symmetry properties of the tensor algebra can be characterized
in terms of the geometric product by two averaging operations, which are the
symmetrization ⊙ and anti-symmetrization ⊠ operators:

𝑗

⨀
𝑘=1

𝜔𝑘 = 1
𝑗!

∑
𝜎∈𝑆𝑃

∏
𝑘

𝜔𝜎(𝑘),
𝑗

⊠
𝑘=1

𝜔𝑘 = ∑
𝜎∈𝑆𝑃

(−1)Π(𝜎)

𝑗!
∏

𝑘
𝜔𝜎(𝑘)

These products satisfy various MultiVector properties, including the
associative and distributive laws.

Definition 18 (Exterior product). Let 𝑤𝑘 ∈ Λ𝑝𝑘𝑉, then for all 𝜎 ∈ 𝑆∑ 𝑝𝑘
define an equivalence relation ∼ such that

⋀
𝑘

𝜔𝑘(𝑣1, … , 𝑣𝑝𝑘
) ∼ (−1)Π(𝜎)(⨂

𝑘
𝜔𝑘)(𝑣𝜎(1), … , 𝑣𝜎(∑ 𝑝𝑘))

if and only if ∏𝑘 𝜔𝑘 = ⊠𝑘 𝜔𝑘 holds. It has become typical to use the ∧
product symbol to denote products of such elements as ⋀ Λ𝑉 ≡ ⨂ Λ𝑉 / ∼
modulo anti-symmetrization.

Foundations of differential geometric algebra 13

Definition 19 (Symmetric Leibniz differentials). Let 𝜕𝑘 = 𝜕
𝜕𝑥𝑘

∈ 𝐿𝑔𝑉 be
Leibnizian symmetric tensors, then there is an equivalence relation ≍ which
holds for each 𝜎 ∈ 𝑆𝑝

(𝜕𝑝 ∘ … ∘ 𝜕1)𝜔 ≍ (⨂
𝑘

𝜕𝜎(𝑘))𝜔 ⟺ ∏
𝑘

𝜕𝑘 = ⨀
𝑘

𝜕𝑘,

along with each derivation 𝜕𝑘(𝜔𝜂) = 𝜕𝑘(𝜔)𝜂 + 𝜔𝜕𝑘(𝜂).
Multiplication with an 𝜖𝑖 element is used help signify tensor fields so

that differential operators are automatically applied in the Basis algebra as
𝜕𝑗(𝜔 ⊗ 𝜖𝑖) ≠ (𝜕𝑗 ⊗ 𝜔)𝜖𝑖.

� �
julia> using Reduce, Grassmann; @mixedbasis tangent(ℝ^2,3,2);

julia> (∂1+∂12) * (:(x1^2*x2^2)*ϵ1 + :(sin(x1))*ϵ2)

0.0 + (2 * x1 * x2 ^ 2)∂₁ϵ1 + (cos(x1))∂₁ϵ2 + (4 * x1 * x2)∂₁₂ϵ1� �
Definition 20 (Reversed product). A commonly occuring product is ⟨�̃�𝜔⟩.

|𝜔|2 = ⟨�̃�𝜔⟩ , |𝜔| = √⟨�̃�𝜔⟩, ||𝜔|| = Euclidean |𝜔|.

Remark. In general
√

𝜔 = 𝑒(log 𝜔)/2 is valid for invertible 𝜔.
Definition 21 (Inverse). A simple way to calculate inverses is 𝜔−1 = �̃�(�̃�𝜔)−1 =
�̃�/|𝜔|2, with 𝜂/𝜔 = 𝜂𝜔−1 and 𝜂\𝜔 = 𝜂−1𝜔. Shirokov [25] recently developed
a more sophisticated theory for calculating inverses based on 𝔖𝑗 groups.

� �
julia> 1/v34, inv(v34) == ~v34/abs2(v34)

(-1.0v34, true)� �
Definition 22 (Sandwich product). The sandwich is defined as 𝜂 ⊘ 𝜔 = 𝜔\𝜂𝜔.
Alternatively, the reversed definition is 𝜂 ⊘𝜔 = 𝜂𝜔/𝜂 or in Julia 𝜂 >>>𝜔.� �
julia> (2v3+5v4) ⊘ v3 == inv(v3)*(2v3+5v4)*involute(v3)

true� �
Since ⟨(�̃� + 𝜔)(𝜔 + �̃�)⟩ = (𝜔 + �̃�)2, it follows |ℜ𝜔|2 = (ℜ𝜔)2. Similarly,

⟨(�̃� − 𝜔)(𝜔 − �̃�)⟩ = −(𝜔+�̃�)2 implies |ℑ𝜔|2 = −(ℑ𝜔)2. Due to the ℤ2-grading
induced by 𝜔 = ℜ𝜔 + ℑ𝜔, it is possible to partition real and imaginary by

⟨�̃�⟩𝑟 / ∣⟨𝜔⟩𝑟∣ = √⟨�̃�⟩2
𝑟 /∣ ⟨𝜔⟩𝑟 ∣2 = √⟨�̃�⟩𝑟 / ⟨𝜔⟩𝑟 = √(−1)(𝑟−1)𝑟/2 ∈ {1,

√
−1} ,

which is a unique partitioning completely independent of the metric space
and manifold of the algebra [18].

�̃�𝜔 = |𝜔|2 = |ℜ𝜔 + ℑ𝜔|2 = |ℜ𝜔|2 + |ℑ𝜔|2 + 2ℜ(ℜ𝜔ℑ𝜔)
Similar to real, imag, even, and odd; the radial and angular components in
a multivector exponential are partitioned but with parity of their metric.

14 Michael Reed (Crucial Flow Research), draft 2021

Definition 23 (Poincare-Hodge complement ⋆). Let 𝜔 = 𝑤𝑖1
∧ ⋯ ∧ 𝑤𝑖𝑝

and
⋆𝜔 = �̃�𝐼, then ⋆ ∶ Λ𝑝𝑉 → Λ𝑛−𝑝𝑉.

Remark. While ⋆𝜔 is complementright of 𝜔, the complementleft would be 𝐼�̃�
and !𝜔 denotes the non-metric variant the complement. The ⋆ symbol was
added to the Julia language as unary operator on Julia’s v1.2 release.

John Browne has discussed Grassmann duality principle in book [6], stating
that every theorem (involving either of the exterior and regressive products)
can be translated into its dual theorem by replacing the ∧ and ∨ operations
and applying Poincare duality (homology). First applying this Grassmann du-
ality principle to the ∧ product alone, let {𝜔𝑘}𝑘 ∈ Λ𝑝𝑘𝑉 , 𝑃 = ∑𝑘 𝑝𝑘, then it is
possible to obtain the co-product ⋁ ∶ Λ𝑝1𝑉1×⋯×Λ𝑝𝑔𝑉𝑔 → Λ𝑃−(𝑔−1)#𝑉 ⋃𝑘 𝑉𝑘.
Grassmann’s original notation implicitly combined ∧, ∨, ⋆.

Join ∧ ↦ ∪ union, meet ∨ ↦ ∩ intersection, complement ⋆ ↦ ⟂ yield
an orthocomplementary propositional lattice in quantum logic:

(⋆ ⋁
𝑘

𝜔𝑘)(𝑣1, … , 𝑣𝑛) = (⋀
𝑘

⋆𝜔𝑘)(𝑣1, … , 𝑣𝑛) DeMorgan’s Law.

However, this is only completely true for Euclidean algebras. In general, the
original Grassmann (OG) complement must be used in DeMorgan’s Law,
while tensor contractions utilize the Hodge complement’s metric.

Definition 24 (Original Grassmann complement |). This operation is the same
as ⋆ but is always Euclidean (𝑔 ≡ 1). In Julia it is also the ! method.

Interior contractions 𝜂 ⋅ 𝜔 = 𝜂 ∨ ⋆𝜔 need both ⋆ and | complements. Of
fundamental importance is the complement of a complement axiom:

Theorem 1. Let 𝜔 ∈ Λ𝑚𝑉, then ⋆ ⋆ 𝜔 = (−1)𝑚(𝑛−𝑚)𝜔|𝐼|2.

Proof. Let 𝜔 ∈ Λ𝑚𝑉, then rewrite the expressions

⋆ ⋆ 𝜔 = ̃̃𝜔𝐼𝐼 = (−1)𝑚(𝑚−1)/2𝜔𝐼𝐼
= (−1)𝑚(𝑚−1)/2(−1)(𝑛−𝑚−1)(𝑛−𝑚)/2𝜔𝐼2

= (−1)𝑚(𝑛−𝑚)(−1)𝑛(𝑛−1)/2𝜔𝐼2

= (−1)𝑚(𝑛−𝑚)𝜔 ̃𝐼𝐼 = (−1)𝑚(𝑛−𝑚)𝜔|𝐼|2

Hence, the result follows since (−1)𝑛(𝑛−1)/2𝐼𝐼 = ̃𝐼𝐼 = 𝐼 ⋅ 𝐼 = |𝐼|2. �

Corollary 1 (Euclidean complement of a complement axiom). Let 𝜔 ∈ Λ𝑚(ℝ𝑛),
then ⋆ ⋆ 𝜔 = (−1)𝑚(𝑛−𝑚)𝜔 since |𝐼|2 = 1.

Lemma. Let 𝜔 ∈ Λ𝑚𝑉, then 𝐼 ∨ 𝜔 = 𝜔.

Proof. 𝐼 ∨ 𝜔 = |−1((|𝐼) ∧ |𝜔) = |−1(1 ∧ |𝜔) = |−1(|𝜔) = 𝜔. �

Corollary 2. Obviously, �̃�𝐼 = 𝐼 ⋅ 𝜔 since 𝐼 ⋅ 𝜔 = 𝐼 ∨ ⋆𝜔 = ⋆𝜔 = �̃�𝐼.

Theorem 2. Let 𝜔 ∈ Λ𝑚𝑉, then (𝜔 ∨ ⋆𝜔)𝐼 = 𝜔 ∧ ⋆𝜔.

Foundations of differential geometric algebra 15

Proof. It is straight forward to check based on properties of |, ⋆, ∧, ∨ that
𝜔 ∨ ⋆𝜔 = 𝜔 ∨ (�̃�𝐼) = |−1((|𝜔) ∧ |(�̃�𝐼))

= 𝑔(𝜔, 𝐼)(−1)𝑚(𝑛−𝑚)|−1((|𝜔) ∧ 𝜔)
= 𝑔(𝜔, 𝐼)|−1(𝜔 ∧ (|𝜔)) = (𝜔 ∧ ⋆𝜔)/𝐼

From this the result follows, after multiplying by 𝐼 pseudoscalar. �

Theorem 3. 𝜂 ∧ ⋆𝜔 = (�̃� ∨ ⋆ ̃𝜂)𝐼 = (�̃� ⋅ ̃𝜂)𝐼 ⟺ 𝜂 ⋅ 𝜔 = 𝜂 ∨ ⋆𝜔 = (�̃� ∧ ⋆ ̃𝜂)/𝐼.

Theorem 4. Let 𝜂, 𝜔 ∈ Λ𝑚𝑉, then ̃𝜂 ⋅ �̃� = 𝜂 ⋅ 𝜔.

Proof. Let 𝜂, 𝜔 ∈ Λ𝑚𝑉, then ̃𝜂 ⋅ �̃� = ((−1)𝑚(𝑛−𝑚))2(𝜂 ⋅ 𝜔) = 𝜂 ⋅ 𝜔. �

Corollary 3 (Absolute value |𝜔|2 = 𝜔 ⋅ 𝜔).
(𝜔 ⋅ 𝜔)𝐼 = �̃� ∧ ⋆�̃� = �̃� ⋆ �̃� = �̃�𝜔𝐼 = |𝜔|2𝐼 ⟺ 𝜔 ⋅ 𝜔 = �̃�𝜔

The expressions can also be reversed: 𝜔 ∧ ⋆𝜔 = 𝜔 ⋆ 𝜔 = 𝜔�̃�𝐼 = |𝜔|2𝐼.
However, when 𝜂 ∈ Λ𝑟𝑉 and 𝜔 ∈ Λ𝑠𝑉 are of unequal grade, then there
exist several possible variations of graded contraction operations. Of course,
the most natural option for the interior contraction is Grassmann’s right
contraction also written 𝜂|𝜔 = 𝜂 ∨ ⋆𝜔. However, many authors such as Dorst
[8] prefer the Conventional contraction, which is one of the other variations.

Contraction left(𝜂, 𝜔) right(𝜂, 𝜔)

Grassmann ⟨𝜔⟩𝑠 ∨ ⋆ ⟨𝜂⟩𝑟 = ⟨ ̃𝜂𝜔⟩𝑠−𝑟 ⟨𝜂⟩𝑟 ∨ ⋆ ⟨𝜔⟩𝑠 = ⟨ ̃𝜂𝜔⟩𝑟−𝑠
Reversed ⟨�̃�⟩𝑠 ∨ ⋆ ⟨ ̃𝜂⟩𝑟 = ⟨𝜂�̃�⟩𝑠−𝑟 ⟨ ̃𝜂⟩𝑟 ∨ ⋆ ⟨�̃�⟩𝑠 = ⟨𝜂�̃�⟩𝑟−𝑠
Conventional ⟨𝜔⟩𝑠 ∨ ⋆ ⟨ ̃𝜂⟩𝑟 = ⟨𝜂𝜔⟩𝑠−𝑟 ⟨ ̃𝜂⟩𝑟 ∨ ⋆ ⟨𝜔⟩𝑠 = ⟨𝜂𝜔⟩𝑟−𝑠
Unconventional ⟨�̃�⟩𝑠 ∨ ⋆ ⟨𝜂⟩𝑟 = ⟨ ̃𝜂�̃�⟩𝑠−𝑟 ⟨𝜂⟩𝑟 ∨ ⋆ ⟨�̃�⟩𝑠 = ⟨ ̃𝜂�̃�⟩𝑟−𝑠� �

julia> (v1 + v2) ⋅ (1.5v2 + v3)

1.5v� �
For the null-basis, complement operations are different:

⋆𝑣∞ = ⋆(𝑣+ + 𝑣−) = (𝑣− + 𝑣+)𝑣1...𝑛 = 𝑣∞1...𝑛

⋆2𝑣∅ = ⋆(𝑣− − 𝑣+) = (𝑣+ − 𝑣−)𝑣1...𝑛 = −2𝑣∅1...𝑛

This Hodge complement satisfies ⟨𝜔 ∨ ⋆𝜔⟩ 𝐼 = 𝜔 ∧ ⋆𝜔, which is naturally a
result of using the geometric product in the definition, but with the usage of
the null-basis applied. If null-basis are used as indices, then complementing
them is a more tricky exercise than for standard indices. Not only is the
Hodge complement of the null-basis different, but the metric independent
complement of the null-basis is yet again different than normal indices,

!𝑣∞ =!(𝑣+ + 𝑣−) = (𝑣− − 𝑣+)𝑣1...𝑛 = 2𝑣∅1...𝑛

!2𝑣∅ =!(𝑣− − 𝑣+) = (𝑣+ + 𝑣−)𝑣1...𝑛 = −𝑣∞1...𝑛

For that variation of complement, ||𝜔||2𝐼 = 𝜔 ∧ !𝜔 holds.

16 Michael Reed (Crucial Flow Research), draft 2021

Definition 25. Let ∇ = ∑𝑘 𝜕𝑘𝑣𝑘 be a vector field and 𝜖 = ∑𝑘 𝜖𝑘(𝑥)𝑤𝑘 ∈ Ω1𝑉
be unit sums of the mixed-symmetry basis. Elements of Ω𝑝𝑉 are known as
differential 𝑝-forms and both ∇ and 𝜖 are tensor fields dependent on 𝑥 ∈ 𝑊. A
differential form is 𝑑𝑥𝑘 = 𝜖𝑘(𝑥)𝑤𝑘, so that 𝜖𝑘 = 𝑑𝑥𝑘/𝑤𝑘 and 𝜕𝑘𝜔(𝑥) = 𝜔′(𝑥).
The space 𝑊 does not have to equal 𝑉, as Ω𝑝𝑉 could have 𝕂 = 𝐿𝑊 coefficients.

Definition 26. Differential 𝑑 ∶ Ω𝑝𝑉 → Ω𝑝+1𝑉, co-differential 𝛿 ∶ Ω𝑝𝑉 → Ω𝑝−1𝑉
⋆𝑑𝜔 = ⋆(∇ ∧ 𝜔) = ∇ × 𝜔, 𝜔 ⋅ ∇ = 𝜔 ∨ ⋆∇ = 𝜕𝜔 = −𝛿𝜔.

These two maps have the special properties 𝑑 ∘ 𝑑 = 0 and 𝜕 ∘ 𝜕 = 0 for any
form 𝜔 and vector field ∇. In topology there is boundary operator 𝜕 defined
by 𝜕𝜖 = 𝜖 ⋅ ∇ = ∑𝑘 𝜕𝑘𝜖𝑘 and is commonly discussed in terms the limit
𝜖(𝑥) ⋅ ∇𝜔(𝑥) = limℎ→0

𝜔(𝑥+ℎ𝜖)−𝜔(𝑥)
ℎ , which is the directional derivative [27].

Example 8 (Vorticity curl of vector-field). In 3-dimensions, curl is defined as
⋆𝑑(𝑑𝑥1 + 𝑑𝑥2 + 𝑑𝑥3) = (𝜕2 − 𝜕3)𝑑𝑥1 + (𝜕3 − 𝜕1)𝑑𝑥2 + (𝜕1 − 𝜕2)𝑑𝑥3.

Example 9 (Boundary of 3-simplex). Faces of simplex (oriented):
𝜕(𝑤1234) = −𝜕4𝑤123 + 𝜕3𝑤124 − 𝜕2𝑤134 + 𝜕1𝑤234.

� �
julia> tangent(ℝ^3)(∇)

0v12 + 0v13 +∂₁ 1v1 + 0v23 +∂₁ 1v2 +∂₁ 1v3

julia> @basis tangent(ℝ^3,2,3); ⋆d(v1+v2+v3)

0 -∂₂ 1v1 +∂₃ 1v1 +∂₁ 1v2 -∂₃ 1v2 -∂₁ 1v3 +∂₂ 1v3

julia> ∂(Λ(tangent(ℝ^4,2,4)).v1234)

0.0 -∂₄ 1v123 +∂₃ 1v124 -∂₂ 1v134 +∂₁ 1v234� �
As a result of Grassmann’s exterior & interior products, the Hodge-

DeRahm chain complex from cohomology theory is

0
𝑑

⇄
𝜕

Ω0(𝑀)
𝑑

⇄
𝜕

Ω1(𝑀)
𝑑

⇆
𝜕

⋯
𝑑

⇄
𝜕

Ω𝑛(𝑀)
𝑑

⇄
𝜕

0,

having dimensional equivalence brought by the Grassmann-Poincare-Hodge
complement duality,

ℋ𝑛−𝑝𝑀 ≅ ker(𝑑Ω𝑛−𝑝𝑀)
im(𝑑Ω𝑛−𝑝+1𝑀)

, dim ℋ𝑝𝑀 = dim ker(𝜕Ω𝑝𝑀)
im(𝜕Ω𝑝+1𝑀)

The rank of the grade 𝑝 boundary incidence operator is

rank ⟨𝜕 ⟨𝑀⟩𝑝+1⟩
𝑝

= min {dim ⟨𝜕 ⟨𝑀⟩𝑝+1⟩
𝑝

, dim ⟨𝑀⟩𝑝+1}

Invariant topological information can be computed using ranks of homology
groups, where 𝑏𝑝(𝑀) = dim ℋ𝑝𝑀

𝑏𝑝(𝑀) = dim ⟨𝑀⟩𝑝+1 − rank ⟨𝜕 ⟨𝑀⟩𝑝+1⟩
𝑝

− rank ⟨𝜕 ⟨𝑀⟩𝑝+2⟩
𝑝+1

are Betti numbers with Euler characteristic 𝜒(𝑀) = ∑𝑝(−1)𝑝𝑏𝑝.

Foundations of differential geometric algebra 17

Theorem 5 (Integration by parts & Stokes). Let ∇ ∈ Ω1𝑉 be a Leibnizian
vector field operator, then 𝑑, −𝜕 are Hilbert adjoint Hodge-DeRahm operators

∫
𝑀

𝑑𝜔 ∧ ⋆𝜂 + ∫
𝑀

𝜔 ∧ ⋆𝜕𝜂 = 0, ⟨𝑑𝜔 ∨ ⋆𝜂⟩ = ⟨𝜔 ∨ ⋆ − 𝜕𝜂⟩ .

Proof. 𝜕𝜔 = 𝜔⋅∇ = |−1(|𝜔∧⋆|∇) = (−1)𝑛(−1)𝑛𝑘 ⋆𝑑⋆𝜔. Then substitute this
into ∫

𝑀
𝜔 ∧ (−1)𝑚𝑘+𝑚+1 ⋆ ⋆𝑑 ⋆ 𝜂 = (−1)𝑘𝑚+𝑚+1(−1)(𝑚−𝑘+1)(𝑘−1) ∫

𝑀
𝜔 ∧ 𝑑 ⋆ 𝜂,

apply identity (−1)𝑘𝑚+𝑚+1(−1)(𝑚−𝑘+1)(𝑘−1) = (−1)𝑘 and (−1)𝑘 ∫
𝑀

𝜔∧𝑑⋆𝜂 =
∫
𝑀

𝑑(𝜔 ∧ ⋆𝜂) − (−1)𝑘−1𝜔 ∧ 𝑑 ⋆ 𝜂 = ∫
𝑀

𝑑𝜔 ∧ ⋆𝜂. Stokes identity can be proved
by relying on a variant of the common factor theorem by Browne [6]. �

Theorem 6 (Clifford-Dirac-Laplacian). The Dirac operator [11] or Laplacian
square root is (∇2) 1

2 𝜔 = ±∇𝜔 = ±∇ ∧ 𝜔 ± ∇ ⋅ 𝜔 = ±𝑑𝜔 ± 𝜕𝜔.
∇2𝜔 = ∇ ∧ (𝜔 ⋅ ∇) + (∇ ∧ 𝜔) ⋅ ∇) = ∓(∓𝜔∇)∇).

Elements 𝜔 are harmonic if ∇𝜔 = 0 and both closed 𝑑𝜔 = 0 and coclosed
𝛿𝜔 = 0, such that ℋ𝑝𝑀 = {∇𝜔 = 0 ∶ 𝜔 ∈ Ω𝑝𝑀}. Note: ∇𝜔 ≠ 𝜔∇ yet ∇2𝜔 =
𝜔∇2 = 𝑑𝜕𝜔 + 𝜕𝑑𝜔

Example 10. S”∞∅+++”(∇^2) ↦ −2𝜕∞∅ + 𝜕2
1 + 𝜕2

2 + 𝜕2
3

Theorem 7 (Hodge-DeRahm). Ω𝑝𝑀 = ℋ𝑝𝑀 ⊕im(𝑑Ω𝑝−1𝑀)⊕im(𝜕Ω𝑝+1𝑀).

Definition 27 (Faraday bivector 𝑑𝐴 with 𝑑𝑑𝐴 = 0).
𝐸𝑣𝑡 + ⋆(𝐵𝑣𝑡) = (∇𝑉 − 𝜕𝑡𝐴)𝑣𝑡 + ⋆((⋆𝑑𝐴)𝑣𝑡) = 𝑑𝐴,

where 𝐸 is electric field, 𝐵 magnetic field, 𝐴 is vector potential.

Example 11 (Maxwell’s equations rewritten).

𝑑𝑑𝐴 = 0 ⟺ {𝜕𝐵 = 0 Gauss’s law
⋆𝑑𝐸 = −𝜕𝑡𝐵 Faraday’s law

⋆𝑑 ⋆ 𝑑𝐴 = 𝐽 ⟺ {𝜕𝐸 = 𝜌 Gauss’s law
⋆𝑑𝐵 = 𝐽 + 𝜕𝑡𝐸 Ampere’s law

Maxwell’s equations simplify to a single spacetime wave equation
∇(𝐸𝑣𝑡 + ⋆(𝐵𝑣𝑡)) = ∇𝑑𝐴 = ⋆𝑑 ⋆ 𝑑𝐴 = ∇2𝐴 = 𝐽

Theorem 8 (First grade sandwich product). Reflection by hyperplane ⋆∇ has
isometry 𝜔 ⊘ ∇ = −∇\𝜔∇.

Proof. Let ∇ ∈ Λ1𝑉, then 𝜔 = (∇\∇)𝜔 = ∇\(𝑑𝜔 + 𝜕𝜔) where ∇ ∥ 𝜕𝜔 and
∇ ⟂ 𝑑𝜔. Let’s reflect across the hyperplane ⋆∇,

∇\(𝑑𝜔 − 𝜕𝜔) = ∇\(𝑑𝜔 − 𝜕𝜔)(∇\∇)
= −∇2\(𝑑𝜔 + 𝜕𝜔)∇ = −∇\𝜔∇.

Hence, reflection by hyperplane ⋆∇ has isometry 𝜔 ⊘ ∇ which for ∇ = 𝑣𝑗 is
the map ℝ𝑛 → ℝ1 × ⋯ × ℝ𝑗 ⋯ × ℝ𝑛. �

18 Michael Reed (Crucial Flow Research), draft 2021

Theorem 9 (Cartan-Dieudonne). Every isometry of 𝑉 → 𝑉 is the composite
of at most 𝑘 reflections across non-singular hyperplanes [3] [26]. Hence there
exist vectors ∇𝑗 such that

(((𝜔 ⊘ ∇1) ⊘ ∇2) ⊘ ⋯) ⊘ ∇𝑘 = 𝜔 ⊘ (∇1∇2 ⋯ ∇𝑘)
for any isometry element of the orthogonal group 𝑂(𝑝, 𝑞).

Note that elements under transformations of this group preserve inner
product relations. The even grade operators make up the rotational group,
where each bivector isometry is a composition of two reflections [3] [7].

Exponential map and Lie group parameter special cases: consider the
differential equation 𝜕𝑖𝜖𝑗 = 𝜖𝑗 ⊘𝜔, solution: 𝜖𝑗(𝑥) = 𝜖𝑗(0)⊘𝑒𝑥𝑖𝜔 where 𝜃 = 2𝑥𝑖
is Lie group parameter. Then for a normalized 𝜔,

𝑒𝜃𝜔 = ∑
𝑘

(𝜃𝜔)𝑘

𝑘!
=

⎧{
⎨{⎩

cosh 𝜃 + 𝜔 sinh 𝜃, if 𝜔2 = 1,
cos 𝜃 + 𝜔 sin 𝜃, if 𝜔2 = −1,
1 + 𝜃𝜔, if 𝜔2 = 0.

Note that ∇ ⊘ 𝑒𝜃𝜔/2 = ∇𝑒𝜃𝜔 is a double covering when using the complex
numbers in the Euclidean plane.

Remark. The sandwich must be with reversion on the left side, otherwise the
rotation is clockwise and opposite of the phase parameter convention used
by Euler’s formula. For example, observe the resultant direction of rotation

𝑒 𝜋
4 𝑣12𝑣1𝑒 𝜋

4 𝑣12 = −𝑣2

which means it is rotating in the wrong direction opposite of Euler, while

𝑒 𝜋
4 𝑣12𝑣1𝑒 𝜋

4 𝑣12 = 𝑣2

is compatible with Euler’s convention. So, the sandwich must be applied with
its reversion on the left side–if the standard Euler rotation direction is desired.
However, many authors follow the opposite convention of clockwise instead.

Theorem 10 (Leibniz-Taylor series). Let 𝜕𝑋 = ∏𝑘 𝜕𝜇𝑘
𝑘 be defined so that size

of its index multi-set is constrained to |𝑋| = ∑𝑘 𝜇𝑘, then 𝑒𝜕𝜖𝜔(𝑥) is

𝑒𝜕𝜖𝜔(𝑥) =
𝜇

∑
𝑗=0

(𝜕𝜖)𝑗

𝑗!
𝜔(𝑥) =

𝜇

∑
𝑗=0

∑
|𝑋|=𝑗

∏
𝑘

(𝜕𝑘𝜖𝑘(𝑥))𝜇𝑘

𝜇𝑘!
𝜔(𝑥).

The multivariate product rule is encoded into the geometric algebraic
product when using mixed-symmetry.� �
using Grassmann, Makie

basis"2" # Euclidean

streamplot(vectorfield(exp(π*v12/2)),-1.5..1.5,-1.5..1.5)

streamplot(vectorfield(exp((π/2)*v12/2)),-1.5..1.5,-1.5..1.5)

streamplot(vectorfield(exp((π/4)*v12/2)),-1.5..1.5,-1.5..1.5)

streamplot(vectorfield(v1*exp((π/4)*v12/2)),-1.5..1.5,-1.5..1.5)

@basis S"+-" # Hyperbolic

streamplot(vectorfield(exp((π/8)*v12/2)),-1.5..1.5,-1.5..1.5)

streamplot(vectorfield(v1*exp((π/4)*v12/2)),-1.5..1.5,-1.5..1.5)� �

Foundations of differential geometric algebra 19

(a) 𝑥 ⊘ 𝑒𝜋𝑣12/2, ℝ2 (b) 𝑥 ⊘ 𝑒 𝜋
2 𝑣12/2, ℝ2

(c) 𝑥 ⊘ 𝑒 𝜋
4 𝑣12/2, ℝ2 (d) 𝑥 ⊘ (𝑣1 ⊖ 𝑒 𝜋

4 𝑣12/2), ℝ ⊕ ℝ

(e) 𝑥 ⊘ 𝑒 𝜋
8 𝑣12/2, ℝ ⊕ ℝ′ (f) 𝑥 ⊘ (𝑣1 ⊖ 𝑒 𝜋

4 𝑣12/2), ℝ ⊕ ℝ′

20 Michael Reed (Crucial Flow Research), draft 2021

𝑣1 ⊘ exp (𝜃√
2 𝑣12), 𝜃 ∈ [− 𝜋

4 , 𝜋
4]

Example 12 (Eccentric geometric product). Consider the elliptic algebra

𝑣1, 𝑣2 ∈ Λ1D"1,2"` ∶ 𝑣12𝑣12 = −2, 𝑣12√
2

𝑣12√
2

= −1.

The numbers start growing faster on one axis, so due to the spatial dilation
the exponential 𝜃 parameter is also dilated by an eccentricity factor.

𝑣1 ⊘ exp (𝜃√
2

𝑣12) , |𝑣12| =
√

2, 𝑣12
|𝑣12|

= 𝑣12√
2

.

This elliptic clock is
√

2 faster than a standard circular clock, since bivector
𝑣12 has a greater norm than 1 by that factor, it is fixed by normalization.
Example 13 (Approximation to Earth’s geoid metric geometric algebra). The
radius of the Earth along the equator is 𝑟𝐸 = 6378137 m, but the Earth is
not a perfect sphere; it is better approximated by an ellipse with flattening
parameter 𝑓 = Geophysics.flattening(Earth) and this eccentricity factor

1.0067395 ≈ 1
(1 − 𝑓)2 , 𝑓 ≈ 1

298.257223563
using the metric D"1,1.0067395", the radius along the North can be computed
an error of about 1.6179573236741 × 10−7 with normalization |𝑣12| = 1

1−𝑓

(𝑟𝐸𝑣1) ⊘ exp (𝜋
4

(1 − 𝑓)𝑣12) ≈ 6356752.304𝑒6.

This result demonstrates that it is feasible to do nuanced calculations with
Earth’s elliptical geoid approximation by adjusting the metric tensor for
tuned geometric algebra bivector exponentiation.

Foundations of differential geometric algebra 21

Take the real part and imaginary part to transform into eigenvalues:

𝜔 = ℜ𝜔 + ℑ𝜔 ↦ ℜ𝜔 ± √(ℑ𝜔)2 = ℜ𝜔 ± √−|ℑ𝜔|2 = 𝜆
Let Ω be a linear operator, 𝜆𝑖 are non-repeating eigenvalues of Ω and 𝑣𝑖 are
the corresponding eigenvectors such that Ω𝑣𝑖 = 𝜆𝑖𝑣𝑖 with action of Ω on 𝑣𝑖.

Theorem 11 (Normalized eigenblade theorem). Let Ω, 𝜆𝑖, 𝑣𝑖 be as above,
⋆(Ω − 𝜆𝑖) ⋆ 𝑣𝑖 = 𝑣𝑖 ∏

𝑗≠𝑖
(𝜆𝑖 − 𝜆𝑗).

Proof. Apply (Ω − 𝜆𝑖) as an outermorphism operator to the 𝑣𝑗 to see that

⋆(Ω − 𝜆𝑖) ⋆ 𝑣𝑖 = ⋆(Ω − 𝜆𝑖) ⋀
𝑗≠𝑖

𝑣𝑗

= ⋆ ⋀
𝑗≠𝑖

(Ω − 𝜆𝑖)𝑣𝑗 = ⋆ ⋀
𝑗≠𝑖

(𝜆𝑗 − 𝜆𝑖)𝑣𝑗

= ⋆ ⋀
𝑗≠𝑖

𝑣𝑗 ∏
𝑗≠𝑖

(𝜆𝑖 − 𝜆𝑗) = 𝑣𝑖 ∏
𝑗≠𝑖

(𝜆𝑖 − 𝜆𝑗)

Hence, a normalized eigenblade ⋆𝑣𝑖 is naturally proportional to the outer-
morphism operating on the eigenblade by an eigenvalue product factor. �

Theorem 12 (Eigenblade normalization conjecture). Let Ω, 𝜆𝑖, 𝑣𝑖 be as above
and also let 𝑒𝑗 be an element of an orthogonal basis, then

Proj ⋆ (Ω − 𝜆𝑖) ⋆ 𝑣𝑖 = Proj ⋆ (Ω − 𝜆𝑖) ⋆ 𝑒𝑗.
Unfortunately, the margins are currently too narrow to contain this proof.

In spirit of the recent investigations [22][4] into eigenblades, the following
are adaptations of the Lagrange-Sylverster theorem to Grassmann algebra.

Theorem 13 (Analogue of Frobenius covariant). Let Ω, 𝜆𝑖, 𝑣𝑖 be as above,

Proj ⋆ (Ω − 𝜆𝑖) ⋆ 𝑣𝑖 = Proj ⋆ ∏
𝑗≠𝑖

(Ω − 𝜆𝑖)𝑣𝑗

𝜆𝑖 − 𝜆𝑗
= ∏

𝑗≠𝑖

Ω − 𝜆𝑖𝐼
𝜆𝑖 − 𝜆𝑗

Proof. By Theorem 11 observe ⋆(Ω−𝜆𝑖)⋆𝑣𝑖 is proportional to eigenvectors 𝑣𝑖
by a product factor based on eigenvalues. Given the established Langrange-
Sylvester theorem in the matrix algebra literature [28], the result follows. �

Theorem 14 (Analogue of Lagrange-Sylvester). Let Ω, 𝜆𝑖, 𝑣𝑖, 𝑒𝑗 be as above,

Ω =
𝑛

∑
𝑖=1

Proj ⋆ (Ω − 𝜆𝑖) ⋆ 𝑒𝑖 =
𝑛

∑
𝑖=1

Proj ⋆
𝑛

⋀
𝑗=1
𝑗≠𝑖

(Ω − 𝜆𝑖)𝑒𝑗 =
𝑛

∑
𝑖=1

𝑛
∏
𝑗=1
𝑗≠𝑖

Ω − 𝜆𝑖𝐼
𝜆𝑖 − 𝜆𝑗

Proof. Take the expression from Theorem 13 and apply Theorem 12. �

Example 14 (Exercise: what are the solutions to this equation?).
⋆(Ω − 𝜆𝑖) ⋆ 𝑣𝑖

∏
𝑗≠𝑖

(𝜆𝑖 − 𝜆𝑗)
=

⋆(Ω − 𝜆𝑖) ⋆ 𝑒𝑗

√|𝜆𝑖|𝑛−1 ∏
𝑗≠𝑖

√𝜆𝑖 − 𝜆𝑗

22 Michael Reed (Crucial Flow Research), draft 2021

Dyadic tensors (matrices) are represented in Grassmann’s algebra by
nested Chain{V,1,Chain{V,1}} elements, existing in a 22𝑛-dimensional mother
algebra from direct sum of the 𝑛-dimensional vector space and its dual vector
space. The dyadic product of the vector basis and covector basis elements
form the 𝑛2-dimensional bivector subspace of the full (2𝑛)!

2(2𝑛−2)! -dimensional
bivector sub-algebra of that space. Note that Λ(ℝ3) gives the vector basis,
and Λ(ℝ3)' gives the covector basis:� �
julia> Λ(ℝ3)

DirectSum.Basis{⟨⟩×××,8}(v, v1, v2, v3, v12, v13, v23, v123)

julia> Λ(ℝ3)'

DirectSum.Basis⟨⟩{---',8}(w, w1, w2, w3, w12, w13, w23, w123)� �
The @mixedbasis command yields a local vector and covector basis. The sum
w1+2w2 is interpreted as a covector element of the dual vector space, which
can be evaluated as a linear functional when a vector argument is input.� �
julia> L = (v1+2v2)∧(3w1+4w2)

0v12 + 3v1w1 + 4v1w2 + 6v2w1 + 8v2w2 + 0w12

julia> L(v1+v2)

7v1 + 14v2 + 0w1 + 0w2� �
The element 𝐿 is a linear form which can be evaluated as a computation equiv-
alent to a matrix multiplication. Thus it is possible to express the Frobenius
covariant projectors within the mother algebra formalism. However, since this
requires a higher dimensional geometric algebra implementation, the natural
efficient alternative is a nested Chain{V,1,Chain{V,1}} algebra.� �
julia> L = DyadicChain((1v1+2v2)⊗(3v1+4v2))

(3v1 + 6v2)v1 + (4v1 + 8v2)v2

julia> L(v1+v2)

7v1 + 14v2� �
This leads naturally to a design choice where a matrix is represented as a
nested data structure as a vector of column vectors of the matrix. For pur-
poses of discrete differential geometry, there are many cases where this nested
data structure is advantageous when applying exterior products to various
combinations of nested elements. Although the initial goal with geometric
algebra was to eliminate the traditional matrix representations in favor of
a multilinear foundation, matrix formalisms can be found to exist naturally
within nested Chain algebra or in a bivector subspace of the mother algebra.

Due to convenience, it is found that this nested approach is the most
computationally practical in terms of programming design; thus, the mother
algebra alternative remains as more of a theoretical interest.

Foundations of differential geometric algebra 23

Definition 28. [𝑝1…𝑛] is a nested vector (𝑝1)𝑣1 + ⋯ + (𝑝𝑛)𝑣𝑛 with 𝑝𝑖 ∈ Λ1𝑉.

To help with the unification with matrix formalisms, additional methods
such as the double dot ∶ were implemented, to help compute the norm.

Example 15 (Triangle in projective coordinates). Let 𝑣1, 𝑣2, 𝑣3 be given point

vertices of a triangle in the 𝑣23 plane of ℝ3, so
⎧{
⎨{⎩

0 ∶ 𝑝0 = 1𝑣1 + 0𝑣2 + 0𝑣3,
𝑥 ∶ 𝑝1 = 1𝑣1 + 1𝑣2 + 0𝑣3,
𝑦 ∶ 𝑝2 = 1𝑣1 + 0𝑣2 + 1𝑣3

Then 𝑝012 = 𝑝0 ∧ 𝑝1 ∧ 𝑝2 = 𝑣123 = 𝐼 is a trivector volume, while
[𝑝012] = 𝑝0𝑣1 + 𝑝1𝑣2 + 𝑝2𝑣3 = (𝑣1)𝑣1 + (𝑣1 + 𝑣2)𝑣2 + (𝑣1 + 𝑣3)𝑣3

is a dyadic tensor. Subtract base point [𝑝000] to get vector frame [⃗𝑝12−0]
⃗𝑝12−0 = (𝑝1 − 𝑝0) ∧ (𝑝2 − 𝑝0) = (𝑝0 − 𝑝2) ∧ (𝑝1 − 𝑝2) = ⃗𝑝01−2

The volume (area) equivalence class of any triangle is the bivector
| ⋆ ⃗𝑝12−0| = | ⋆ ⃗𝑝02−1| = | ⋆ ⃗𝑝01−2|.

Theorem 15 (Linear system with Grassmann products). Let 𝑝0, … , 𝑝𝑛 ∈ Λ1𝑉,

[𝑝1...𝑛] ∨ ⋆
𝑛

∑
𝑖=1

𝑝1...(𝑖−1) ∧ 𝑝0 ∧ 𝑝(𝑖+1)...𝑛

𝑝1...𝑛
𝑣𝑖 = 𝑝0.

Proof. Given a dyadic tensor product [𝑝1...𝑛]⋅𝑥 = 𝑝0, let’s solve for 𝑥 explicitly
𝑝0 ∧ 𝑝1…(𝑖−1) ∧ 𝑝(𝑖+1)…𝑛 = ([𝑝1…𝑛] ⋅ 𝑥) ∧ 𝑝1…(𝑖−1) ∧ 𝑝(𝑖+1)…𝑛

= (𝑥𝑖𝑝𝑖) ∧ 𝑝1…(𝑖−1) ∧ 𝑝(𝑖+1)…𝑛

Hence 𝑥 =
𝑛

∑
𝑖=1

𝑝1...(𝑖−1) ∧ 𝑝0 ∧ 𝑝(𝑖+1)...𝑛

𝑝1...𝑛
𝑣𝑖 and the result follows. �

This means that using only exterior products enables efficiently solving
the linear system by allocating {𝑝1...𝑖 ∧ 𝑝𝑖+1}𝑛−1

𝑖=0
and {𝑝𝑛−𝑖 ∧ 𝑝(𝑛−𝑖+1)...𝑛}

𝑛−1

𝑖=0
and then taking exterior products with 𝑝0 also.

𝑝0 ∈ 𝑝1...𝑛 ⟺ ∀𝑖 ∶ 𝑝1..𝑛 = 𝑝1...(𝑖−1) ∧ 𝑝0 ∧ 𝑝(𝑖+1)...𝑛

Since exterior products are oriented, it is sufficient to check the orientation of
the hyperplanes with respect to the reference point for determining whether
𝑝0 is a point contained in the simplex 𝑝1...𝑛. Thus, it is sufficient to check
the orientation of all the same exterior products as for the linear system,
while calculating a linear inv is only a partial application of this principle
and requires also allocating a transposed dyadic result:

[𝑝1...𝑛]−1 = (
𝑛

∑
𝑖=1

⋆
𝑝1...(𝑖−1) ∧ 𝑝(𝑖+1)...𝑛

((−1)𝑖)𝑛−1𝑝1...𝑛
𝑣𝑖)

𝑇

Programming the A\b method is straight forward with some Julia language
metaprogramming in the Grassmann.jl package. Benchmarks with Grassmann

in Julia indicated a 3× faster performance than StaticArrays.SMatrix for
applying A\b to bundles of dyadic elements at the time of testing.

24 Michael Reed (Crucial Flow Research), draft 2021

When the dyadic chain triangle (or simplex) example is extended to
a bundle of simplices, in Grassmann the nested usage of pure ChainBundle

parametric types is the preferred design choice for larger re-usable global cell
geometries, from which local dyadics can be selected. It is typical to represent
a discrete manifold with a set of finite element hyperedges over a bundle of
points. The set of points 𝑃 = {𝑝𝑖}

𝑛𝑝
𝑖=1 ⊂ Λ1𝑉 is a ChainBundle and the set of

triangles (or tetrahedra or (𝑚 − 1)-simplices) is 𝑇 = {𝑡𝑖}
𝑛𝑡
𝑖=1 ⊂ Λ𝑚𝑃. Hence,

the natural data structure for a ChainBundle is Vector{Chain}. For points
it is Vector{Chain{V,1}} and for hyperedges it is Vector{Chain{P}}, so the
underlying structure can be nested (especially for finite element hyperedges).

Example 16 (Grassmann element bundles). Icosahedron 𝑃 ⊂ Λ1ℝ12, 𝑇 ⊂ Λ3𝑃
𝑝1 ∶ 1𝑣1 + 0𝑣2 + 1𝑣3 + 𝜑𝑣4
𝑝2 ∶ 1𝑣1 + 𝜑𝑣2 + 0𝑣3 + 1𝑣4
𝑝3 ∶ 1𝑣1 + 1𝑣2 + 𝜑𝑣3 + 0𝑣4
𝑝4 ∶ 1𝑣1 + 0𝑣2 + 1𝑣3 − 𝜑𝑣4
𝑝5 ∶ 1𝑣1 − 𝜑𝑣2 + 0𝑣3 + 1𝑣4
𝑝6 ∶ 1𝑣1 + 1𝑣2 − 𝜑𝑣3 + 0𝑣4
𝑝7 ∶ 1𝑣1 + 0𝑣2 − 1𝑣3 + 𝜑𝑣4
𝑝8 ∶ 1𝑣1 + 𝜑𝑣2 + 0𝑣3 − 1𝑣4
𝑝9 ∶ 1𝑣1 − 1𝑣2 + 𝜑𝑣3 + 0𝑣4
𝑝10 ∶ 1𝑣1 + 0𝑣2 − 1𝑣3 − 𝜑𝑣4
𝑝11 ∶ 1𝑣1 − 𝜑𝑣2 + 0𝑣3 − 1𝑣4
𝑝12 ∶ 1𝑣1 − 1𝑣2 − 𝜑𝑣3 + 0𝑣4

𝜕(hull)
↦

𝑡1 ∶ −𝑝{1,5,7}
𝑡2 ∶ +𝑝{5,7,12}
𝑡3 ∶ +𝑝{6,8,10}
𝑡4 ∶ +𝑝{6,10,12}
𝑡5 ∶ +𝑝{2,6,7}
𝑡6 ∶ +𝑝{6,7,12}
𝑡7 ∶ −𝑝{1,2,7}
𝑡8 ∶ +𝑝{4,8,10}
𝑡9 ∶ −𝑝{2,6,8}

𝑡10 ∶ −𝑝{4,10,11}

𝑡11 ∶ +𝑝{10,11,12}
𝑡12 ∶ +𝑝{2,3,8}
𝑡13 ∶ −𝑝{3,4,8}
𝑡14 ∶ +𝑝{1,2,3}
𝑡15 ∶ +𝑝{1,5,9}
𝑡16 ∶ +𝑝{5,9,11}
𝑡17 ∶ +𝑝{5,11,12}
𝑡18 ∶ +𝑝{4,9,11}
𝑡19 ∶ −𝑝{1,3,9}
𝑡20 ∶ +𝑝{3,4,9}

⟹

Cyclic permute points {(0, ±1, ±𝜑)} ↦ 𝜕(icosahedron hull)

One of the goals of Grassmann is to provide a fundamental toolkit from
which to build finite element models, so syntax such as P[T[i]] can be used
to assemble the local dyadic tensor with the indices of simplex 𝑡𝑖 from point
cloud 𝑃. Similarly, P[T] will assemble an entire bundle of dyadics. This nested
ChainBundle data structure is ideal for efficiently interfacing finite element
Chain hyperedges over the dyadic paradigm with Grassmann exterior algebra.

Foundations of differential geometric algebra 25

To build on the ChainBundle functionality of Grassmann, the numerical
analysis package Adapode is being developed to provide utilities for finite
element method assemblies. Syntax for Poisson (−∇⋅(𝑎∇𝑢) = 𝑓) or transport
(−𝜖∇2𝑢+𝑏 ⋅∇𝑢 = 𝑓) equations with finite element methods can be expressed
in terms of methods like volume(T) using exterior products or gradienthat

by applying the dyadic inverse exterior linear methods above. This kind of
Grassmann element assembly is ideal for applying geometric algebra locally on
per element basis and combining it with a global manifold topology.� �
function solvepoisson(T,E,c,f,κ,gD=0,gN=0)

m = volumes(T)

b = assemblefunction(T,f,m)

A = assemblestiffness(T,c,m)

R,r = assemblerobin(E,κ,gD,gN)

return (A+R)\(b+r)

end

function solvetransport(T,E,c,ϵ=0.1)

m = volumes(T)

g = gradienthat(T,m)

A = assemblestiffness(T,ϵ,m,g)

b = assembleload(T,m)

C = assembleconvection(T,c,m,g)

return solvedirichlet(A+C,b,e)

end� �
Example 17 (Nedelec edges, scalar potential, full potential). More compli-
cated models in given mesh geometries of any dimension can also be simu-
lated; this foundation makes for a hands on computational interface.

26 Michael Reed (Crucial Flow Research), draft 2021

In terms of directed graphs, reversal of bivectors can be un-
derstood as the reversal of the directed edges of the graph.

𝑣123 + ⋆𝑣123 in ℝ7 𝑣12 + 𝑣34 + 𝑣35 𝑣21 + 𝑣43 + 𝑣53

With a discrete hypergraph 𝑀, in a finite element global calculation it is
necessary to consider both boundary elements Λ𝑛−1𝑀 and volume elements
Λ𝑛𝑀 of varying dimension, yet the global manifold is of constant dimension.
However, in the Wolfram Physics Project there is a measured variation of
dimension in their topology which takes away the manifold assumption. If the
hyperedges themselves become quantities of fractional grade, then this may
yet still be unexplored territory. Yet as long as the space is being represented
by a finite element set of hyperedges, some of the formulas and principles of
differential geometric algebra should still apply in a similar way as before.

In the figures below, different possible discrete bivector topologies are
examined in a projective Riemann sphere [2] based on two rotation bivectors.
First the space is projected up ↑ ∶ 𝜔 ↦ (2𝜔+𝑣∞(𝜔2−1))/(𝜔2+1) and then the
rotation is applied before rejecting back down ↓ ∶ 𝜔 ↦ ((𝜔∧𝑏)𝑣∞)/(1−𝑣∞ ⋅𝜔).

Foundations of differential geometric algebra 27

3. Conclusion

Geometric algebra has a long and somewhat obscure history [10] [3] yet it
was practiced and developed further into a full foundation [21] [17] [16] [20]
[5]. One of the more active areas in geometric algebra research is in computer
graphics [9] [1] with the Javascript library ganja.js [19] [14] being especially
notable as it is compatible to use with Grassmann.jl (and the python clifford
project) for making hybrid visualization computattions. Another interesting
development is the usage of hypergraph rewriting with the ZX-Calculus in
the Wolfram Physics Project [12] as this is a type of quantum logic formalism
isomorphic to what the multilinear geometric algebra can express.

Grassmann.jl and its accompanying support packages provide extensible
platforms for fully generalized computing with geometric algebra at high
dimensions. All of the types and operations in this paper are implemented
using only a few thousand lines of code with Julia’s type polymorphism code
generation, which has been refined is being optimized for research over time.

Thus, computations involving geometric algebra, anti-symmetric tensor
products, rotational algebras, and Lie bivector groups are possible with a
full trigonometric suite. Conformal geometric algebra is possible with the
Minkowski plane 𝑣∞∅, based on the null-basis. Multivalued quantum logic
is enabled by the ∧, ∨, ⋆ Grassmann lattice. Mixed-symmetry algebra based
on Leibniz differential algebra and Grassmann exterior calculus, having the
geometric algebraic product chain rule, yields automatic differentiation and
Hodge-DeRahm co/homology as unveiled by the algebra. Most importantly,
the Dirac-Clifford product yields generalized Hodge-Laplacian and the Betti
numbers with Euler characteristic χ. Geometric algebra unifies this all.

Grassmann algebra is a unifying mathematical foundation. Improving
efficiency of multi-disciplinary research using differential geometric algebra by
relying on universal mathematical principles is possible. Transforming super-
ficial knowledge into deeper understanding is then achieved with the unified
foundations widely applicable to the many different sub-disciplines related
to geometry and mathematical physics. Software tooling will help overcome
present challenges, such as geometric algebra not yet being standardized or
taught in schools & universities or used at scale for industrial engineering sci-
ence unification. Thus, the Grassmann.jl software enables ascending future
steps to teach geometric algebra in schools/universities, use it in research and
development practices, and deploy it in industrial applications. Differential
geometric algebra is the future of unifying math & engineering pipelines.

Acknowledgements: Many thanks for discussions with Utensil Song,
Steven De Keninck, Alexander Arsenovic, Hugo Hadfield, David Hestenes,
Chris Doran, Charles Gunn, Eric Wieser; project supporters Alan Reed,
Micah Fitch, Zack Li, Karl Wessel, Oliver Evans, Hongying Li, Petr Krysl,
Saketh Rama, Michael Ewert; the helpful Julia community (e.g. Jameson
Nash, Kristoffer Carlsson, Nathan Smith, etc); and thanks for my family.

28 Michael Reed (Crucial Flow Research), draft 2021

References
[1] Joan Lasenby Anthony Lasenby and Richard Wareham. A covariant approach

to geometry using geometric algebra.
[2] Alex Arsenovic. Applications of conformal geometric algebra to transmission

line theory. IEEE, 2017.
[3] Emil Artin. Geometric Algebra. Interscience, 1957.
[4] Mauricio Belon. Robust quaternion estimation with geometric algebra. 2019.
[5] Alan Bromborsky. An Introduction to Geometric Algebra and Calculus. 2016.
[6] John Browne. Grassmann Algebra, Volume 1: Foundations. Barnard, 2011.
[7] F. Sommen Chris Doran, David Hestenes and N. van Acker. Lie groups as spin

groups. J. Math. Phys., 1993.
[8] Leo Dorst. The inner products of geometric algebra. Applications of Geometric

Algebra in Computer Science and Engineering, 2002.
[9] Leo Dorst. A guided tour to the plane-based geometric algebra pga. 2020.

[10] D. Fearnly-Sander. Hermann grassmann & the creation of linear algebra. 1979.
[11] Garling. Clifford Algebras: An Introduction. 2011.
[12] Jon. Gorard. Zx-calculus and extended hypergraph rewriting systems. 2020.
[13] Hermann Grassmann. Extension Theory (Ausdehnungslehre 1862). AMS, 2000.
[14] Charles G. Gunn. Geometric algebra for computer graphics (siggraph). 2019.
[15] D. Hestenes. Tutorial on geometric calculus. Adv. Appl. Clifford Algebras, 2013.
[16] David Hestenes. New tools for computational geometry and screw theory.
[17] Eckhard Hitzer. Introduction to clifford’s geometric algebra. Control, Measure-

ment, and System Integration, 2011.
[18] Lachlan Gunn Derek Abbott James Chappell, Ashar Iqbal. Functions of mul-

tivector variables. 2011.
[19] Stephen De Keninck. Non-parametric realtime rendering of subspace objects

in arbitrary geometric algebras. 2019.
[20] Chris Doran & Anthony Lasenby. Geometric Algebra for Physicists. 2003.
[21] P. Lounesto. Marcel riesz’s work on clifford algebras.
[22] Terence Tao Xining Zhang Peter B. Denton, Stephen J. Parke. Eigenvectors

from eigenvalues: A survey of a basic identity in linear algebra. arXiv, 2019.
[23] D. Miralles R. A. Mosna and J. Vaz Jr. Z2-gradings of clifford algebras and

multivector structures. arXiv, 2003.
[24] Siavash Shahshahani. An Intro. Course on Differentiable Manifolds. 2016.
[25] Dmitry S. Shirokov. On determinant, other characteristic polynomial coeffi-

cients, and inverses in clifford algebras of arbitrary dimension. arXiv, 2020.
[26] Ernst Snapper and Robert J. Troyer. Affine Metric Geometry. Academic, 1971.
[27] Garret Sobczyk. New Foundations in Mathematics: The Geometric Concept of

Number. Springer, 2013.
[28] Michael E. Starzak. Math. Methods in Chemistry and Physics. Plenum, 1989.

Michael Reed (Crucial Flow Research), draft 2021

