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Abstract. In this paper we continue the development of the circles of par-

tition by introducing the notion of complex circles of partition. This is an
enhancement of such structures from subsets of the natural numbers as base

sets to the complex area as base and bearing set. The squeeze principle as a

basic tool for studying the possibilities of partitioning of numbers is demon-
strated.

1. Introduction

In our paper [2], motivated in part by the binary Goldbach conjecture and its
variants, we developed a method which we feel might be a valuable resource and a
recipe for studying problems concerning partition of numbers in specified subsets of
N. The method is very elementary in nature and has parallels with configurations
of points on the geometric circle.
Let us suppose that for any n ∈ N we can write n = u + v where u, v ∈ M ⊂ N
then our method associate each of this summands to points on the circle generated
in a certain manner by n > 2 and a line joining any such associated points on the
circle. This geometric correspondence turned out to be useful in our development.
Due to the geometric correspondence we call the combinatorial structure in this
development as the circle of partition, abbreviated as CoP.

Now we repeat the base results of our special method.

Definition 1.1. Let n ∈ N and M ⊆ N. We denote with

C(n,M) = {[x] | x, n− x ∈M}
the Circle of Partition generated by n with respect to the subset M. We will
abbreviate this in the further text as CoP. We call members of C(n,M) as points
and denote them by [x]. For the special case M = N we denote the CoP shortly as
C(n). We denote with ‖[x]‖ := x the weight of the point [x] and correspondingly
the weight set of points in the CoP C(n,M) as ‖C(n,M)‖. Obviously holds

‖C(n)‖ = {1, 2, . . . , n− 1}. (1.1)

Definition 1.2. We denote the line L[x],[y] joining the point [x] and [y] as an axis
of the CoP C(n,M) if and only if x + y = n. We say the axis point [y] is an axis
partner of the axis point [x] and vice versa. We do not distinguish between L[x],[y]

and L[y],[x], since it is essentially the the same axis. The point [x] ∈ C(n,M) such
that 2x = n is the center of the CoP. If it exists then we call it as a degenerated
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axis L[x] in comparison to the real axes L[x],[y]. We denote the assignment of an
axis L[x],[y] to a CoP C(n,M) as

L[x],[y] ∈̂ C(n,M) which means [x], [y] ∈ C(n,M) with x+ y = n.

In the following we consider only real axes. Therefore we abstain from the
attribute real in this section.

Proposition 1.3. Each axis is uniquely determined by points [x] ∈ C(n,M).

Proof. Let L[x],[y] be an axis of the CoP C(n,M). Suppose as well that L[x],[z] is
also an axis with z 6= y. Then it follows by Definition 1.2 that we must have
n = x + y = x + z and therefore y = z. This cannot be and the claim follows
immediately. �

Lemma 1.4. Each point of a CoP C(n,M) except its center has exactly one axis
partner.

Proof. Let [x] ∈ C(n,M) be a point without an axis partner being not the center
of the CoP. Then holds for every point [y] 6= [x] except the center

x+ y 6= n.

This is a contradiction to the Definition 1.1. Due to Proposition 1.3 the case of
more than one axis partners is impossible. This completes the proof. �

Notation. We denote by

ν(n,M) := |{L[x], [y] ∈̂ C(n,M)}| (1.2)

the number of real axes of the CoP C(n,M). It is evident that holds

ν(n,M) =

⌊
k

2

⌋
if C(n,M) has k members.

2. Complex Circles of Partition

At first we define a special subset of the set of the complex numbers to use it as
base set of CoPs.

Definition 2.1. Let M ⊆ N and

CM := {z = x+ iy | x ∈M, y ∈ R} ⊂ C
be a subset of the complex numbers where the real part is from M ⊆ N. Then a
CoP with a special requirement

Co(n,CM) = {[z] | z, n− z ∈ CM ,=(z)2 = <(z) (n−<(z))}
will be denoted as a complex Circle of Partition, abbreviated as cCoP. The
special requirement will be called as the circle condition.

The components x and y we will call as real weight resp. imaginary weight. The
CoP C(n,M) will be called as the source CoP. Since in the case M = N the source
CoP is shortened as C(n) therefore we set

Co(n) := Co(n,CN). (2.1)
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In order to distinguish between points [z] of cCoPs and points z in the complex
plane C we denote the latter as complex points.

Definition 2.2. Let Co(n,CM) be a cCoP and [z] ∈ Co(n,CM) a point of it with
z = x + iy. Then [n − z] with the weight (n − x) − iy denotes the axis partner of
[z].

With it the first requirement of a CoP is fulfilled

||[z]||+ ||[n− z]|| = x+ iy + n− x− iy = n.

Important: For axis partners [z1] and [z2] = [n− z1] holds always

=(z1) = −=(z2). (2.2)

Definition 2.3. Let Co(n,CM) be a cCoP and [z] ∈ C(n,CM) a point of it with
z = x+ iy. Then [z] with the weight x− iy denotes the conjugate point of [z].

Definition 2.4. Let Co(n,CM) be a cCoP and L[z],[n−z] ∈̂ Co(n,CM) an axis of it.
Then

L[z],[n−z]

denotes the conjugate axis of L[z],[n−z]. We don’t differ between axes L[z],[n−z] and
L[n−z],[z].

Definition 2.5. Corresponding with Definition 1.2 we define

νo(n,CM) := |{L[z],[n−z] ∈̂ Co(n,CM)}|

as the number of axes of the cCoP Co(n,CM). Evidently holds

νo(n,CM) =

{
2ν(n,M) resp.

2ν(n,M) + 1
(2.3)

if the CoP C(n,M) contains a degenerated axis.

We will see that the circle condition

=(z)2 = <(z) (n−<(z)) (2.4)

guarantees that all points of a cCoP lie on a circle in the complex plane C.

Theorem 2.6. Let Co(n,CM) be a non-empty cCop. The weights of all its points
are located on a circle in the complex plane C with its center on the real axis at n

2
and a diameter n.

Proof. We consider an arbitrary point [z] ∈ Co(n,CM) and its axis partner [n− z].
We set x := <(z) and y := =(z) 1. With the circle condition (2.4) holds

y2 = x(n− x). (2.5)

By virtue of Definition 2.1 is x ∈ M ⊆ N. Hence holds x > 0. The second
requirement for [z] ∈ Co(n,CM) is n − x ∈ M. Therefore must be 0 < x < n.

1We use this setting also in the sequel.
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Now we search the greatest imaginary part of the complex point zo such that holds
[zo] ∈ Co(n,CM). That means that we search the root of the derivation of (2.5)

dy

dx
=

d

dx

√
x(n− x)

=
1

2

n− 2x√
x(n− x)

=! 0.

Thus we get as root xo = n
2 under the condition that the denominator not becomes

zero. We set for x in (2.5) n
2 and get

y2o =
n

2

(
n− n

2

)
=
(n

2

)2
and hence |yo| = |=(zo)| = n

2 .

Obviously holds =(n − z) = =(z) = −=(z). Therefore the points [z], [z], [n − z]
form a right-angled triangle with the diagonal L[z],[n−z] and the legs 2y and n−2x.
With the Theorem of Pythagoras we get

|L[z],[n−z]|2 = (2y)2 + (n− 2x)2

and with (2.5)

= 4nx− 4x2 + n2 − 4nx+ 4x2

= n2 and hence

|L[z],[n−z]| = n.

Since the sum of z and n − z equals n both points [z], [n − z] are end points of
an axis L[z],[n−z] ∈̂ Co(n,CM) and at once of a diameter of a circle containing the
complex points z, z, n− z because their imaginary parts fullfil the circle condition.
This is a circle with center on the real axis at n

2 and a diameter n. �

Remark 2.7. If the circle condition (2.4) would not be reqired for a cCoP then
besides the complex point pair

(x+ ix(n− x), n− x− ix(n− x))

all other complex point pairs

(x+ iy, n− x− iy)

for y ∈ R would be also points of the cCoP since the sum of the weights results n.

Definition 2.8. The circle in the complex plane C with center on the real axis
at n

2 and a diameter n will be denoted as the embedding circle Cn of the cCoP
Co(n,CM). It holds

Cn = {z ∈ C | 0 ≤ <(z) ≤ n,=(z)2 = <(z)(n−<(z))}.

Additionally let

In := {z ∈ C | 0 ≤ <(z) ≤ n,=(z)2 < <(z)(n−<(z))} and

Xn := C \ (In ∪ Cn)

be the sets of all complex points z ∈ C inside resp. outside of the embedding circle
Cn.
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Obviously holds for a non-empty cCoP Co(m,CM) with m < n

||Co(m,CM)|| ⊂ Cm ⊂ In

and (2.6)

Im ⊂ In and Xn ⊂ Xm.

Corollary 2.9. For all subsets M ⊆ N holds that their cCoPs Co(n,CM) for a fixed
generator n have the same embedding circle Cn.

Lemma 2.10. Let Cm and Cn two embedding circles with m 6= n. Then both circles
have the origin as only common point

Cm ∩ Cn = {0}.

Proof. Let zm ∈ Cm and zn ∈ Cn. We assume that zm = zn as a common complex
point of both circles. Then holds <(zm) = <(zn). For the imaginary parts we get
by virtue of the circle condition (2.4)

=(zm)2 = <(zm) (m−<(zm)) and

=(zn)2 = <(zn) (n−<(zn)) , which is

= <(zm) (n−<(zm)) and as difference

=(zm)2 −=(zn)2 = <(zm)(m− n) = <(zn)(m− n).

Since m 6= n this is only equal zero if <(zm) = <(zn) = 0. Then for the imaginary
part by virtue of the circle condition we get

=(zm)2 = 0(m− 0) = 0(n− 0) = =(zn)2.

Hence the origin is the only common point of Cm and Cn. �

Corollary 2.11 (Big Bang). If m < n then the circle Cm resides fully inside of the
circle Cn except the common origin. Hence the origin is the only common complex
point of all embedding circles with growing diameters, is the ”Big Bang” of all
embedding circles.

Theorem 2.12. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs with m 6=
n. Then both cCoPs have no common point

Co(m,CM) ∩ Co(n,CM) = ∅.

Proof. In virtue of (2.6) and Lemma 2.10 the origin could be the only common
point of both cCoPs. But since M ⊆ N the real weight of a point of any cCoP
cannot be 0. Hence both cCoPs have no common point. �

Proposition 2.13. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs with
n 6= m. They have points [zm] ∈ Co(m,CM) and [zn] ∈ Co(n,CM) with a common
real weight <(zm) = <(zn) = x ∈ M if and only if their source CoPs C(m,M) and
C(n,M) have a common point [x].

Proof. Let [x] be a common point of C(m,M) and C(n,M). Then m− x and n− x
are members of M and m− x− iym and n− x− iyn are members of CM. And then
also their axis partners x+ iym and x+ iyn are members of CM. This means that
with zm = x+ iym and zn = x+ iyn holds

[zm] ∈ Co(m,CM) and [zn] ∈ Co(n,CM)
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with x = <(zm) = <(zn).
This conclusion chain can be inverted and it holds that from x = <(zm) = <(zn)
follows [x] ∈ C(m,M) ∩ C(n,M). �

Corollary 2.14. From Proposition 2.13 follows that a cCoP Co(n,CM) is non–
empty if and only if its source CoP C(n,M) is non–empty.

Proposition 2.15. In the special case M = N all cCoPs Co(n) for integers n ≥ 2
are non–empty.

Proof. The source CoPs of such cCoPs are C(n) by virtue of Definition 1.1. And
these are non-empty for all integers n ≥ 2 by virtue of (1.1). Due to Corollary 2.14
also their cCoPs are non–empty. �

Corollary 2.16. Since the considered points [z] in Theorem 2.6 were arbitrary
holds that all axes of a cCoP Co(n,CM) have equal lengths

|L[z],[n−z]| = n for all points [z] ∈ Co(n,CM).

Now we specify the calculation of the length of a cord between arbitrary points
of a cCoP under the circle condition.

Theorem 2.17. Let Co(n,CM) be a non-empty cCoP and [z1], [z2] ∈ Co(n,CM)
be two arbitrary points of it. Then we get for the length Γ([z1], [z2]) 2 of the cord
L[z1],[z2]

|L[z1],[z2]| = Γ([z1], [z2]) = |
√
x1(n− x2)±

√
x2(n− x1)|,

whereby ′′−′′ will be taken if sign(y1) = sign(y2) and ′′+′′ else.

Proof.

|L[z1],[z2]|
2 = (x1 − x2)2 + (y1 − y2)2

= x21 + x22 − 2x1x2 + y21 + y22 ± 2|y1y2|
and with (2.5)

= x21 + x22 − 2x1x2 ± 2|y1y2|+ nx1 − x21 + nx2 − x22
= nx1 − x1x2 + nx2 − x1x2 ± 2|y1y2|
= x1(n− x2) + x2(n− x1)± 2|y1y2|

= x1(n− x2) + x2(n− x1)± 2
√
x1(n− x1) ·

√
x2(n− x2)

= x1(n− x2) + x2(n− x1)± 2
√
x2(n− x1) ·

√
x1(n− x2)

=
(√

x1(n− x2)±
√
x2(n− x1)

)2
.

Hence the function Γ([z1], [z2]) for the cord length becomes to

Γ([z1], [z2]) = |
√
x1(n− x2)±

√
x2(n− x1)|. (2.7)

�

2See [2, p. 2] Definition 2.2
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In the case that [z2] becomes to [n−z1] the cord L[z1],[z2] becomes to a diameter.
Then holds y2 = −y1 and x2 = n− x1 and therefore

Γ([z1], [n− z1]) = |
√
x1(n− x2) +

√
x2(n− x1)|

= |
√
x1x1 +

√
(n− x1)(n− x1)|

= |x1 + n− x1| = n.

If [z2] is the axis partner of the conjugate point of [z1] then holds that x2 = n−x1
and y2 = y1. Since the signs of both y are equal we get in this case

Γ([z1], [n− z1]) = |
√
x1x1 −

√
x2x2|

= |x1 − x2|.

This result coincides with the cord length in a CoP in virtue of its definition in [2].
A degenerated axis of a CoP becomes to a diameter that is parallel to the imagi-

nary axis. It is a real diameter but with the property that it equals to its conjugate
axis. In this case we get from (2.7) with x2 = x1 = n

2 and y2 = −y1

Γ([z1], [n− z1]) =

∣∣∣∣∣
√(n

2

)2
+

√(n
2

)2∣∣∣∣∣ = n.

3. Interior and Exterior Points of Complex Circles of Partition

Theorem 3.1. Let Co(n,CM) be a non-empty cCoP. Then the distance from every
complex point of ||Co(n,CM)|| to every complex point in In is less than n and from
some complex point in ||Co(n,CM)|| to every complex point in Xn greater than n.

Proof. The diameter of Cn is the longest line from any complex point on this circle
to any complex point inside or on the circle. Hence all complex points of In have
a smaller distance to any complex point on Cn than the diameter. Since (2.6) this
relation is also valid between any complex points of ||Co(n,CM)|| and In. Therefore
their distances are less than the diameter of Cn, which is n.

And vice versa the distances between some complex point of Co(n,CM) and every
complex point in Xn is greater than n since Xn are the complex points outside of
the embedding circle Cn. This completes the proof. �

Corollary 3.2. For two non-empty cCoPs Co(m,CM) and Co(n,CM) with m < n
holds that all distances between points of them are less than n and some are greater
than m.

Definition 3.3. Since In,Xn are defined in Definition 2.8 as all complex points
inside resp. outside of the embedding circle Cn, we call the points z ∈ In∩CM as
interior points with respect to Cn and denote the set of all such points as Int[Cn].

Correspondingly, we call the complex points z ∈ Xn ∩ CM as exterior points
with respect to Cn and denote the set of all these points as Ext[Cn].

Obviously holds

Int[Cn] = In ∩ CM and Ext[Cn] = Xn ∩ CM.
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Definition 3.4. Let Co(n,CM) be a non-empty cCoP and Cn its embedding circle.
Then we call the complex point z ∈ Int[Cn] as an interior point with respect to
the cCoP Co(n,CM) if and only if for all points [w] ∈ Co(n,CM) holds |z − w| < n.
We denote the set of all such points as Int[Co(n,CM)].

Correspondingly, we call the complex point z ∈ Ext[Cn] as exterior point with
respect to Co(n,CM) if and only if for some points [w] ∈ Co(n,CM) holds |z−w| > n
and denote the set of all such points as Ext[Co(n,CM)].

Let no ∈ N be the least generator for all cCoPs. If n > no and Co(n,CM) is an
empty cCoP, then Int[Co(n,CM)] and Ext[Co(n,CM)] are empty by definition.

Corollary 3.5. If Co(n,CM) is a non-empty cCoP then by virtue of Theorem 3.1
holds

Int[Co(n,CM)] = Int[Cn] = In ∩ CM

and (3.1)

Ext[Co(n,CM)] = Ext[Cn] = Xn ∩ CM.

Proposition 3.6. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs. If and
only if m < n holds

Int[Co(m,CM)] ⊂ Int[Co(n,CM)] and Ext[Co(n,CM)] ⊂ Ext[Co(m,CM)].

Proof. Let m < n, then since (3.1) holds

Int[Co(m,CM)] = Im ∩ CM and since (2.6)

⊂ In ∩ CM = Int[Co(n,CM)].

Vice versa holds

Ext[Co(n,CM)] = Xn ∩ CM and since (2.6)

⊂ Xm ∩ CM = Ext[Co(m,CM)].

On the other hand from Int[Co(m,CM)] ⊂ Int[Co(n,CM)] follows Im∩CM ⊂ In∩CM,
which is only with m < n solvable. Analogously follows from Ext[Co(n,CM)] ⊂
Ext[Co(m,CM)] also m < n. �

Proposition 3.7. Let Co(m,CM) and Co(n,CM) be two non-empty cCoPs. If and
only if m < n holds

||Co(m,CM)|| ⊂ Int[Co(n,CM)] and ||Co(n,CM)|| ⊂ Ext[Co(m,CM)].

Proof. Let m < n, then since (2.6) and ||Co(m,CM)|| ⊂ CM holds

||Co(m,CM)|| ⊂ Cm ∩ CM

⊂ (Cm ∩ CM) ∪ Im

⊂ (Cm ∪ In) ∩ CM and since Cm ⊂ In

= In ∩ CM and because of (3.1)

= Int[Co(n,CM)].

In a similar manner ||Co(n,CM)|| ⊂ Ext[Co(m,CM)] can be proved.
On the other hand, the embedding ||Co(m,CM)|| ⊂ Int[Co(n,CM)] implies Im ∩

CM ⊂ In ∩ CM, which is only with m < n solvable. Analogously follows from
Ext[Co(n,CM)] ⊂ Ext[Co(m,CM)] also m < n. �
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Proposition 3.8. Let Co(m,CM) 6= ∅. If [z1], [z2] are axis partners of the cCoP
Co(n,CM) and |L[z1],[z2]| = n > m, then z1, z2 ∈ Ext[Co(m,CM)].

Proof. From the requirement L[z1],[z2] ∈̂ Co(n,CM) with n > m and Proposition
3.6, it follows that

||Co(n,CM)|| ⊂ Ext[Co(m,CM)] and therefore

z1, z2 ∈ Ext[Co(m,CM)].

�

Proposition 3.9. Let Co(m,CM) 6= ∅. If Int[Co(m,CM)] ⊂ Int[Co(n,CM)], then
Co(n,CM) 6= ∅.

Proof. The conditions above with Definition 3.3 implies that Int[Co(m,CM)] 6= ∅
and Int[Co(n,CM)] ⊃ ∅, and hence Co(n,CM) 6= ∅. �

We state a sort of converse of the above result in the following theorem.

Theorem 3.10. Let Co(m,CM), Co(n,CM) 6= ∅. If m < n, then holds for each
point [z] ∈̂ Co(n,CM) that its value z is not a member of Int[Co(m,CM)].

Proof. By virtue of Definition 2.8 holds Cn ∩ In = ∅ and ||Co(n,CM)|| ⊂ Cn, it
follows easily that In∩||Co(n,CM)|| = ∅. Since for each point [z] ∈ Co(n,CM) holds
z 6∈ In and because of m < n holds additionally Im ⊂ In and hence

z 6∈ In ⊃ Im ⊃ Im ∩ CM = Int[Co(m,CM)].

�

4. The Squeeze Principle

Since we don’t differ between axes L[z],[n−z] and L[n−z],[z] (see Definition 2.4) in
this section we consider only axis L[z1],[z2] with

<(z1) < <(z2).

Lemma 4.1 (Axial Points Ordering Principle). Let M ⊆ N and Co(n,CM) and
Co(n+ t,CM) with t > 0 be non–empty cCoPs with integers n, t of the same parity
and axes L[z1],[z2] ∈̂ Co(n,CM) and L[w1],[w2] ∈̂ Co(n+ t,CM). It holds

<(z1) < <(w1) and <(z2) < <(w2) (4.1)

if and only if holds

<(z1) < <(w1) < <(z1) + t. (4.2)

Proof. We note that the left inequalities are equal. Hence we have to show that
the right ones are equivalent. At first we assume (4.1). From the right inequation
and the existence of L[w1],[w2] ∈̂ Co(n+ t,CM) we get

<(z2) < <(w2) = n+ t−<(w1) −→ <(w1) < n+ t−<(z2) = <(z1) + t.

This is the right side of (4.2).
If on the other hand the right side of (4.2) holds then we get together with

<(w1) = n+ t−<(w2)

<(w1) = n+ t−<(w2) < <(z1) + t = n−<(z2) + t −→ <(z2) < <(w2).

This is the right inequation of (4.1). �
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Corollary 4.2. Obviously holds for the size of the limitation interval (4.3)

(<(z1) + t)−<(z1) = t.

This is independent from the choice of the axes L[z1],[z2] and L[w1],[w2].

Lemma 4.3 (The squeeze principle). Let B ⊂ M ⊆ N and Co(n,CM) and Co(n +
t,CM) with t ≥ 4 be non–empty cCoPs with integers n, t, s of the same parity. If
there exist an axis L[z1],[z2] ∈̂ Co(n,CM) with z2 ∈ CB and an axis L[w1],[w2] ∈̂ Co(n+
t,CM) with w1 ∈ CB such that

<(z1) < <(w1) < <(z1) + t (4.3)

then there exists an axis L[w1],[z2] ∈̂ Co(n + s,CB) with 0 < s < t. Hence also
Co(n+ s,CM) is not empty.

Proof. From the existence of the axis L[z1],[z2] ∈̂ Co(n,CM) follows <(z2) = n−<(z1).
With the left side of the requirement (4.3) we get

<(z2) > n−<(w1). (4.4)

From the right inequality of (4.3) follows

<(w1) < <(z1) + t = n−<(z2) + t −→ <(z2) < n+ t−<(w1)

and we get

n−<(w1) < <(z2) < n+ t−<(w1) | +<(w1)

n < <(z2) + <(w1) < n+ t

n < n+ s < n+ t.

By virtue of the requirements z2, w1 ∈ CB and n + s = <(z2) + <(w1) there is an
axis L[w1],[z2] ∈̂ Co(n+ s,CB) and hence holds Co(n+ s,CB) 6= ∅. And from B ⊂M
follows immediately CB ⊂ CM and therefore holds also Co(n + s,CM) 6= ∅. This
completes the proof. �

Lemma 4.3 can be viewed as a basic tool-box for studying the possibility of
partitioning numbers of a particular parity with components belonging to a special
subset of the integers. It works by choosing two non-empty cCoPs with the same
base set and finding further non-empty cCoPs with generators trapped in between
these two generators. This principle can be used in an ingenious manner to study
the broader question concerning the feasibility of partitioning numbers with each
summand belonging to the same subset of the positive integers. We formulate the
following lemma as a special case of Lemma 4.3.

Lemma 4.4 (Special squeeze principle). Let n, t, s ∈ 2N and P be the set of all odd
primes. If t ≥ 4 and there exist an axis L[z1],[z2] ∈̂ Co(n) with z2 ∈ CP and an axis

L[w1],[w2] ∈̂ Co(n+ t) with w1 ∈ CP such that

<(z1) < <(w1) < <(z1) + t

then there exists an axis L[w1],[z2] ∈̂ Co(n+ s,CP) with 0 < s < t.

Proof. Since holds P ⊂ N and by virtue of Proposition 2.15 all cCoPs Co(n) with
even n ≥ 2 are non–empty the requirements of Lemma 4.3 are fulfilled. �
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Since n, t, s ∈ 2N for t = 4 due to 0 < s < t only s = 2 is possible. If there
exists an axis L[z1],[z2] ∈̂ Co(n) with z2 ∈ CP such that z1 + 2 ∈ CP then exists an

axis L[z1+2],[z2+2] ∈̂ Co(n+ 4) with z1 + 2 ∈ CP and it holds <(z1) < <(z1 + 2) and
<(z2) < <(z2 + 2). Hence the special squeeze principle becomes to the following
Theorem.

Theorem 4.5. Let m be an integer ≥ 3 and P like in Lemma 4.4. If there exist
an axis

L[z1],[z2] ∈̂ C
o(2m) (4.5)

with z2 ∈ CP such that holds

z1 + 2 ∈ CP (4.6)

then there exists an axis L[z1+2],[z2] ∈̂ Co(2m+ 2,CP) 6= ∅.

Proof. From (4.5) we have <(z1) + <(z2) = 2m. Hence holds

<(z1 + 2) + <(z2) = <(z1) + <(z2) + 2 = 2m+ 2.

Due to (4.6) and the requirement z2 ∈ CP there is an axis

L[z1+2],[z2] ∈̂ C
o(2m+ 2,CP).

�

It is well known that for all odd primes p ≥ 5 holds

p ≡ ±1(mod 6).

On the other hand all cCoPs with base set CP are empty for odd generators 2m−1.
Therefore there remain for generators of non–empty cCoPs Co(2m,CP) only the
residue classes 2m ≡ −2(mod 6), 2m ≡ 0(mod 6) and 2m ≡ +2(mod 6).

Lemma 4.6. Let the requirements of Theorem 4.5 be fulfilled. If holds 2m ≡
+2(mod 6) then must be <(z2) ≡ −1(mod 6) and if holds 2m ≡ 0(mod 6) then must
be <(z2) ≡ +1(mod 6).

Proof. At first we consider the case 2m ≡ +2(mod 6). Then holds if <(z2) ≡
+1(mod 6)

<(z1) = 2m−<(z2) ≡ 2− 1(mod 6) ≡ 1(mod 6) −→ <(z1 + 2) ≡ 3(mod 6),

which means that z1 + 2 cannot be a member of CP.
If holds 2m ≡ 0(mod 6) and <(z2) ≡ −1(mod 6) we get

<(z1) = 2m−<(z2) ≡ 0 + 1(mod 6) ≡ 1(mod 6) −→ <(z1 + 2) ≡ 3(mod 6),

which also means that z1 + 2 cannot be a member of CP. The case <(z2) = 3 we
can exclude since <(z1 + 2) must be less than <(z2). It is easy to check that in all
other cases z1 + 2 can be a member of CP. �
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