On Clifford-valued Actions, Generalized Dirac Equation and Quantization of Branes

Carlos Castro Perelman Plaksha University, Mohali, Punjab, India Ronin Institute, 127 Haddon Place, Montclair, N.J. 07043, USA perelmanc@hotmail.com

April 2023

Abstract

We explore the construction of a generalized Dirac equation via the introduction of the notion of Clifford-valued actions, and which was inspired by the work of [1], [2] on the De Donder-Weyl theory formulation of field theory. Crucial in this construction is the evaluation of the *exponentials* of *multivectors* associated with Clifford (hypercomplex) analysis. Exact *matrix* solutions (instead of spinors) of the generalized Dirac equation in D = 2,3 spacetime dimensions were found. This formalism can be extended to curved spacetime backgrounds like it happens with the Schroedinger-Dirac equation. We conclude by proposing a wavefunctional equation governing the quantum dynamics of branes living in C-spaces (Clifford spaces), and which is based on the De Donder-Weyl Hamiltonian formulation of field theory.

Keywords : Quantum Mechanics; Clifford Algebras; Dirac Equation; De Donder-Weyl theory.

1 Dirac Equation, Exponentials of Multivectors

The 4D Dirac equation, in units of $\hbar = c = 1$, is

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0, \ \mu = 0, 1, 2, 3$$
 (1)

where ψ is a Dirac spinor, a column matrix with 4 complex entries. It is well known among the experts that Dirac spinors are left/right ideal elements of the complex Clifford Cl(4, C) algebra in 4D. Such left/right ideals of the Clifford algebra can be represented by 4×4 complex matrices with one, and only one, non-vanishing column/row, while the remaining three columns/rows are set to zero.

Inspired by the work of [1], [2] we shall begin to generalize the Dirac equation (1), firstly, by replacing the spinor ψ with a matrix Ψ defined as $\Psi \equiv R e^{-iS_{\mu}\gamma^{\mu}} = R e^{-iS(\frac{S_{\mu}}{S})\gamma^{\mu}}$, where S^{μ} is a four-vector extension of the Hamilton-Jacobi function S and whose norm is $S \equiv \sqrt{S_{\mu}S^{\mu}}$. Performing a power series Taylor expansion and taking into account $\gamma^{\mu}\gamma^{\nu} = \eta^{\mu\nu}\mathbf{1} + \gamma^{[\mu\nu]}$, one arrives at

$$R \ e^{-iS_{\mu}\gamma^{\mu}} = R \ e^{-iS(\frac{S_{\mu}}{S})\gamma^{\mu}} = R \ \cos(S) \ \mathbf{1} \ -i \ \gamma^{\mu} \ (\frac{RS_{\mu}}{S}) \ \sin(S)$$
(2)

One could extend the above definition of Ψ by writing $\Psi = Re^{-iS_M\Gamma^M}$ where the Γ^M 's span the $2^4 = 16$ matrices $\mathbf{1}, \gamma^{\mu}, \gamma^{[\mu\nu\sigma]}, \gamma^{[\mu\nu\sigma]}, \gamma^{[\mu\nu\sigma\tau]}$ associated with the 16-dim Clifford algebra Cl(4, C). However, one cannot any longer write the Clifford-valued quantity Ψ in the same functional form displayed by eq-(2)

$$\Psi = R e^{-iS_M \Gamma^M} \neq R \cos[\sqrt{S_M S^M}] \mathbf{1} - i \Gamma^N \left(\frac{RS_N}{\sqrt{S_M S^M}}\right) \sin[\sqrt{S_M S^M}]$$
(3)

Since Ψ in (3) is a 4×4 matrix it can be expanded in a Clifford basis as $\Psi = \Psi_M \Gamma^M$, but now the expressions for the coefficients Ψ_M 's are very complicated functions of R, and the polyvector-valued entries S_M associated with the Clifford-valued $\mathbf{S} = S_M \Gamma^M$ extension of the Hamilton-Jacobi function S.

The exponentials of generalized multivectors associated with real Clifford algebras in 3D have been found explicitly by [4] (see also [5]). Given the multivector in 3D $\mathbf{A} = a_0 + a_i e_i + a_{ij} e_{ij} + a_{123}I$, where I is a pseudo-scalar, its exponential $exp(\mathbf{A}) = \mathbf{B}$ is another multivector $\mathbf{B} = b_0 + b_i e_i + b_{ij} e_{ij} + b_{123}I$ whose components (coefficients) $b_0, b_i, b_{ij}, b_{123}$ are explicitly given in terms of $a_0, a_i, a_{ij}, a_{123}$. For instance, in the Cl(0,3) algebra case, the coefficients found by [4] are given by

$$b_0 = \frac{1}{2} e^{a_0} \left(e^{a_{123}} \cos(a_+) + e^{-a_{123}} \cos(a_-) \right)$$
(4a)

$$b_{123} = \frac{1}{2} e^{a_0} \left(e^{a_{123}} \cos(a_+) - e^{-a_{123}} \cos(a_-) \right)$$
(4b)

$$b_1 = \frac{1}{2} e^{a_0} \left(e^{a_{123}} \left(a_1 - a_{23} \right) \frac{\sin(a_+)}{a_+} + e^{-a_{123}} \left(a_1 + a_{23} \right) \frac{\sin(a_-)}{a_-} \right)$$
(4c)

$$b_2 = \frac{1}{2} e^{a_0} \left(e^{a_{123}} \left(a_2 + a_{13} \right) \frac{\sin(a_+)}{a_+} + e^{-a_{123}} \left(a_2 - a_{13} \right) \frac{\sin(a_-)}{a_-} \right)$$
(4d)

$$b_3 = \frac{1}{2} e^{a_0} \left(e^{a_{123}} \left(a_3 - a_{12} \right) \frac{\sin(a_+)}{a_+} + e^{-a_{123}} \left(a_3 + a_{12} \right) \frac{\sin(a_-)}{a_-} \right)$$
(4e)

$$b_{12} = \frac{1}{2} e^{a_0} \left(-e^{a_{123}} (a_3 - a_{12}) \frac{\sin(a_+)}{a_+} + e^{-a_{123}} (a_3 + a_{12}) \frac{\sin(a_-)}{a_-} \right)$$

$$b_{13} = \frac{1}{2} e^{a_0} \left(e^{a_{123}} (a_2 + a_{13}) \frac{\sin(a_+)}{a_+} - e^{-a_{123}} (a_2 - a_{13}) \frac{\sin(a_-)}{a_-} \right)$$

$$b_{23} = \frac{1}{2} e^{a_0} \left(-e^{a_{123}} (a_1 - a_{23}) \frac{\sin(a_+)}{a_+} + e^{-a_{123}} (a_1 + a_{23}) \frac{\sin(a_-)}{a_-} \right)$$

$$(4f)$$

$$(4g)$$

where

$$a_{+} = \sqrt{(a_{3} - a_{12})^{2} + (a_{2} + a_{13})^{2} + (a_{1} - a_{23})^{2}}$$
(5a)

$$a_{-} = \sqrt{(a_3 + a_{12})^2 + (a_2 - a_{13})^2 + (a_1 + a_{23})^2}$$
(5b)

To find the explicit components of the exponential of a multivector associated with a Clifford algebra in 4D is a more difficult task.

Let us then generalize the Dirac equation (1) by writing the following equation

$$(i\gamma^{\mu}\partial_{\mu})^{\alpha\beta} \Psi^{\sigma}_{\beta} - m \Psi^{\alpha\sigma} = 0, \quad \mu = 0, 1, 2, 3 \tag{6}$$

where $\Psi^{\alpha\sigma}$ is no longer a Dirac spinor but a 4 × 4 complex matrix given by $\Psi = Re^{-iS_{\mu}\gamma^{\mu}}$ and whose Taylor expansion is provided by eq-(2). Inserting the expression for Ψ provided by eq-(2) into eq-(6) yields the following 3 equations after matching the terms multiplying the unit matrix and the γ^{μ} , $\gamma^{[\mu\nu]}$ matrices

$$\partial_{\mu} \left(\frac{RS^{\mu}}{S} \sin(S) \right) = m R \cos(S) \tag{7}$$

$$\partial_{\mu}(R\cos(S)) = -m \frac{RS_{\mu}}{S}\sin(S)$$
(8)

$$\partial_{\mu} \left(\frac{RS_{\nu}}{S} \sin(S) \right) - \partial_{\nu} \left(\frac{RS_{\mu}}{S} \sin(S) \right) = 0 \tag{9}$$

Eq-(9) is trivially satisfied since from eq-(8) one learns that $\frac{RS_{\mu}}{S}sin(S)$ is a total derivative given by $\frac{1}{m}\partial_{\mu}(R\cos(S))$. Thus one arrives at $\frac{1}{m}\partial_{[\mu}\partial_{\nu]}(R\cos(S)) = 0$. After some straightforward algebra by treating the sine and cosine as independent functions, one learns from eqs-(7,8) that

$$S^{\mu}\partial_{\mu}S = mS; \ \partial_{\mu}R = 0; \ \partial_{\mu}(\frac{S^{\mu}}{S}) = \frac{S\partial_{\mu}S^{\mu} - S^{\mu}\partial_{\mu}S}{S^{2}} = 0$$
 (10)

And, finally, from eq-(10) one arrives at a covariant Hamilton-Jacobi equation

$$\partial_{\mu}S^{\mu} - m = 0 \tag{11}$$

Eq-(11) can be interpreted as being the "square-root" of the relativistic Hamilton-Jacobi equation

$$(\partial_{\mu}\mathcal{S})^2 - m^2 = 0 \leftrightarrow p_{\mu} p^{\mu} - m^2 = 0, \quad p_{\mu} = \partial_{\mu}\mathcal{S}$$
(12)

where S is the relativistic (scalar) action associated with the massive spin- $\frac{1}{2}$ particle. Note that $S \neq S = \sqrt{S_{\mu}S^{\mu}}$.

The Dirac equation (1) is commonly referred as the "square-root" of the Klein-Gordon equation. This is just a simple consequence of

 $(i\gamma^{\mu}\partial_{\mu}-m)(i\gamma^{\nu}\partial_{\nu}+m) = -(\partial_{\mu}\partial^{\mu}+m^2) = 0$. Therefore, one has found another realization of the "square-root" procedure of eq-(12) given by the covariant Hamilton-Jacobi equation (11), after recurring to a vector-valued extension of the Hamilton-Jacobi function given by S^{μ} , and to a generalization of the Dirac equation displayed in eq-(6) where now $\Psi^{\alpha\sigma}$ is a 4 × 4 complex matrix given by $\Psi = Re^{-iS_{\mu}\gamma^{\mu}}$, and not a (column) spinor.

One should emphasize that eq-(6) is *not* the same as the Dirac-Hestenes equation (DHE) [7] describing a Dirac-Hestenes spinor field (DHSF), and whose relation with the relativistic de Broglie-Bohm theory was studied by [8], in order to show that the classical relativistic Hamilton-Jacobi equation is equivalent to a DHE satisfied by a particular class of DHSF. This was required in order to obtain the correct relativistic quantum potential when the Dirac theory is interpreted as a de Broglie-Bohm theory.

As a reminder, the DHE is obtained from the Dirac equation (1) simply by replacing $i\psi \to \Psi_{4\times 4}\gamma_{21}$ and $m\psi \to \Psi_{4\times 4}\gamma_0$, with $\Psi_{4\times 4}$ a suitable complex 4×4 matrix and whose entries are given in terms of the 4 complex components of the Dirac spinor ψ . For more details see [8].

We are going to solve the generalized Dirac equation (6) in D = 2 + 1dimensions via the substitution $\Psi = Re^{-iS_{\mu}\gamma^{\mu}}$ when R = constant. A trivial solution of the equations (10) for S_{μ} , when $\eta_{\mu\nu} = diag(1, -1, -1)$, is of the form

$$S_{\mu} = m \ (t, \ 0, \ 0), \ S = (S_{\mu}S^{\mu}) = mt \ \Rightarrow \ \partial_{\mu}S^{\mu} - m = m - m = 0,$$

 $S \ \partial_{t}S = m \ S_{t} = m^{2}t$ (13)

and it yields the following solution of the generalized Dirac equation (6) in D = 2 + 1 for the 2×2 matrix Ψ given by

$$\Psi = R \left(\cos(mt) \mathbf{1} - i \gamma^t \sin(mt) \right)$$
(14)

with *R* constant. A representation of the 2×2 matrix γ^t can be chosen to have 1, -1 along the diagonals and zero entries off the diagonal. One can verify explicitly that Ψ given by eq-(14) solves eq-(6).

Under Lorentz transformations one has

$$S^{2} = S_{\mu}S^{\mu} \to S^{\prime 2} = S^{\prime}_{\mu}S^{\prime \mu} = S_{\mu}S^{\mu} = S^{2}, \ \gamma^{\mu} S_{\mu} \to \Lambda \gamma^{\mu} S_{\mu} \Lambda^{-1},$$
(15)

$$\Psi \to \Lambda \ \Psi \ \Lambda^{-1}, \ \gamma^{\mu} \partial_{\mu} \to \Lambda \ \gamma^{\mu} \partial_{\mu} \ \Lambda^{-1}$$
 (16)

and one can verify that the generalized Dirac equation is covariant under the above Lorenz transformations

$$i\gamma^{\mu}\partial_{\mu}\Psi - m \Psi = 0 \to \Lambda (i\gamma^{\mu}\partial_{\mu}\Psi - m \Psi) \Lambda^{-1} = 0$$
(17)

where Λ is a 2 × 2 matrix encoding the Lorenz transformations. mt is not a Lorentz scalar, mt is just a component of S_{μ} that happens to coincide with S in the rest frame of the particle. Under Lorentz transformations $S_{\mu} = m(t, 0, 0) \rightarrow S'_{\mu} = [S'_{t'}(t', x', y'); S'_{x'}(t', x', y'); S'_{y'}(t', x', y')]$, such that $S^2 = m^2 t^2 = S'^2 = (S'_{t'})^2 - (S'_{x'})^2 - (S'_{y'})^2$.

Given the particular solution (14), a Lorentz transformation will generate a family of solutions of the form

$$\Psi' = R \left(\cos(S') \mathbf{1} - i \frac{\gamma'^{\mu} S'_{\mu}}{S'} \sin(S') \right) = \Lambda \Psi \Lambda^{-1} = R \Lambda \left(\cos(mt) \mathbf{1} - i \gamma^{t} \sin(mt) \right) \Lambda^{-1}$$
(18)

with S' = S = mt. There are many other solutions different from (14) and belonging to different orbits of the Lorentz group. For instance, given $S^2 = (S_t)^2 - (S_x)^2 - (S_y)^2 \neq m^2 t^2$, the equations $S\partial_\mu S = mS_\mu$ in the most general case yield the following differential equations

$$S_t \partial_t S_t - S_x \partial_t S_x - S_y \partial_t S_y = m S_t \tag{19a}$$

$$S_t \partial_x S_t - S_x \partial_x S_x - S_y \partial_x S_y = m S_x \tag{19b}$$

$$S_t \partial_y S_t - S_x \partial_y S_x - S_y \partial_y S_y = m S_y \tag{19c}$$

and whose nontrivial solutions $S_{\mu} = (S_t(t, x, y), S_x(t, x, y), S_y(t, x, y))$ are such that $S^2 \neq m^2 t^2$, and are very different from the trivial solution $S_{\mu} = (mt, 0, 0)$. A Lorentz transformation of the nontrivial solutions will generate another family of solutions belonging to a different Lorentz orbit from the trivial solution.

Let us find now solutions to eqs-(10) in D = 1 + 1. From eqs-(10) one learns

$$\partial_{\mu}S = m \frac{S_{\mu}}{S}; \ \partial_{\mu}(\frac{S^{\mu}}{S}) = 0 \Rightarrow \partial^{\mu}\partial_{\mu}S = 0$$
 (20)

The solutions for S have the usual (right-moving, left-moving) wave-like form

$$S = f(x-t) + h(x+t) \equiv f(u) + h(v), \quad u \equiv x-t, \quad v \equiv x+t$$
 (21)

for arbitrary functions f, h. Consequently, given $S_{\mu} = (S_t, S_x)$, one has

$$S^{2} = [f(u) + h(u)]^{2} = (S_{t})^{2} - (S_{x})^{2}, \qquad (22a)$$

$$\partial_t S = -f'_u + h'_v = m \frac{S_t}{f(u) + h(v)}; \quad \partial_x S = f'_u + h'_v = m \frac{S_x}{f(u) + h(v)}$$
(22b)

Eliminating S_t, S_x from eqs-(22b) by recurring to eq-(22a) yields

$$m^{2} = (-f'_{u} + h'_{v})^{2} - (f'_{u} + h'_{v})^{2} = -4 f'_{u} h'_{v}$$
(23)

A trivial solution to eq-(23) is

$$f(u) = -\frac{mu}{2}, \quad h(v) = \frac{mv}{2} \Rightarrow f = -\frac{m}{2}(x-t), \quad h = \frac{m}{2}(x+t) \Rightarrow$$

$$S = f + h = mt, \quad S_t = mt, \quad S_x = 0$$
(24a)

and once again one recovers the same functional form found in eq-(13) in the rest frame of the particle. There are many other solutions to (23). Since f'_u is solely a function of u, and h'_v is solely a function of v, one learns from eq-(23) that $f'_u = c_1$ (constant) and $h'_v = c_2$ (constant) leading to $f(u) = c_1 u + d_1$, $h(v) = c_2 v + d_2$, with d_1, d_2 arbitrary constants and c_1, c_2 obeying $c_1 c_2 = -\frac{m^2}{4}$. Hence, one finds that the most general solution to eqs-(10) in D = 1 + 1 are

$$S = f + h = c_1(x-t) + c_2(x+t) + (d_1+d_2) = x (c_1+c_2) + t (c_2-c_1) + d_1+d_2$$
(24b)

leading to the most general solutions

$$S_{t} = \frac{c_{2} - c_{1}}{m} \left[x \left(c_{1} + c_{2} \right) + t \left(c_{2} - c_{1} \right) + d_{1} + d_{2} \right]$$
$$S_{x} = \frac{c_{2} + c_{1}}{m} \left[x \left(c_{1} + c_{2} \right) + t \left(c_{2} - c_{1} \right) + d_{1} + d_{2} \right]$$
(24c)

with $c_1c_2 = -\frac{m^2}{4}$. One can also verify from eqs-(24c) that $\partial_{\mu}S^{\mu} - m = \partial_t S_t - \partial_x S_x - m = 0$. And, finally, by inserting the solutions found in eqs-(24b,24c) directly into eq-(2) (with *R* constant) one has then found *exact* solutions to the generalized Dirac equation (6) in D = 1 + 1 where Ψ is now a 2 × 2 matrix rather than a column spinor.

The above solutions of the generalized Dirac equation (6) in D = 2 + 1 and D = 1 + 1 were straightforward via the substitution $\Psi = Re^{-iS_{\mu}\gamma^{\mu}}$. However, this is *no* longer the case when one has the exponential of the full multivector-valued action

$$\Psi = R \exp\left(S_0 \mathbf{1} + S_\mu \gamma^\mu + S_{\mu\nu} \gamma^{\mu\nu} + S_{\mu\nu\rho} \gamma^{\mu\nu\rho}\right)$$
(25)

after reabsorbing the -i factors into the components $S_0, S_\mu, S_{\mu\nu}, \cdots$ of the multivector-valued action

The exponential of the multivector associated with the Cl(0,3) algebra, such that $e_1^2 = e_2^2 = e_3^2 = -1$, was explicitly displayed above in eqs-(4,5). The authors [4] also wrote down the exponentials of the multivectors associated with the remaining Cl(3,0), Cl(2,1), Cl(1,2) real Clifford algebras Cl(p,q), p+q = 3 in 3D. Below we shall discuss the plausible physical interpretation of the components $S_0, S_{\mu\nu}, S_{\mu\nu}, \cdots$ of the multivector-valued action.

Inserting the substitution (25) into eq-(6), and recurring to similar results as in [4] which determine the functional relations among the components of $\Psi = \Psi_M \Gamma^M$ and $\mathbf{S} = S_M \Gamma^M$, leads to a very complicated system of coupled nonlinear differential equations for the multivector components $S_0, S_{\mu}, S_{\mu\nu}, S_{\mu\nu\rho}$. Nothing has been gained in this case by making the substitution (25) as compared to the trivial solutions found above.

2 The Generalized Dirac Equation in C-space (Clifford space)

Let us proceed in constructing the most general Dirac-like equation in C-space (Clifford-space). The analog of mass \mathcal{M} in C-space is defined in terms of the on-shell condition of the polyparticle's polymomentum [10] as follows

$$p^{2} + P_{\mu}P^{\mu} + P_{\mu\nu}P^{\mu\nu} + P_{\mu\nu\rho}P^{\mu\nu\rho} + P_{\mu\nu\rho\tau}P^{\mu\nu\rho\tau} = \mathcal{M}^{2}$$
(26)

Powers of a length parameter must be introduced in eq-(26) on dimensional grounds to match units. In [10] we introduced the Planck scale L_P which was set to 1 in units of $G = \hbar = c = 1$. A Taylor expansion of the exponential $\Psi(\mathbf{X}) = R(\mathbf{X})e^{-iS_J(\mathbf{X})\Gamma^J} = \Psi_I\Gamma^I$ determines the explicit (and complicated) functional form of the expansion coefficients $\Psi_I(R, S_J)$ in terms of R, S_J as shown in eqs-(4,5). This requires using the explicit formulae for the Clifford geometric products [9] of the Γ 's; i.e. $\Gamma^I\Gamma^J = f^{IJ}_K\Gamma^K$. These geometric products (expressed in terms of commutators and anti-commutators) [9] are very useful in finding solutions to the most general Dirac-like equation in C-space given by

$$i \Gamma^{I} \frac{\partial}{\partial X^{I}} \Psi - \mathcal{M} \Psi = 0. \quad I = 1, 2, 3, \cdots, 2^{D}$$
 (27)

Upon decomposing Ψ in the form $\Psi(X^I) = \Psi_J(X^I)\Gamma^J$, inserting it into eq-(27), and recurring to the geometric products of the Clifford algebra generators, yields the following 2^D equations corresponding to the 2^D dimensions of the Clifford algebra in *D*-dim

$$i f_{K}^{IJ} \frac{\partial \Psi_{J}}{\partial X^{I}} = \mathcal{M} \Psi_{K}, \quad I, J, K = 1, 2, 3, \cdots, 2^{D}$$
 (28)

After solving the 2^D equations (28) for the 2^D functions $\Psi_J(X^I)$ of the multivector coordinates $\mathbf{X} = X^I \Gamma_I$, one can go back to the expressions relating the Ψ_J components in terms of the S_J components (as indicated by eqs-(4,5), for example), and *implicitly* establish the solutions for the multivector components $S_J(X^I)$ of the Clifford-valued action $\mathbf{S} = S_J \Gamma^J$.

Note that one has 2^D equations (28) for $1+2^D$ functions after adding $R(\mathbf{X})$ to the 2^D components $S_K(\mathbf{X})$ of the Clifford-valued action $\mathbf{S} = S_K \Gamma^K$. This issue can be easily resolved in the *complex* Clifford algebra case simply by *absorbing* R into a re-definition of the scalar part of the action S_0 . One simply rewrites $Re^{-iS_0} = e^{lnR-iS_0} \equiv e^{-iS'_0}$, where S'_0 is now complex. Therefore, effectively one ends up with 2^D equations corresponding to 2^D unknowns $S'_0, S_{\mu}, S_{\mu\nu}, \cdots$. Earlier on, we were able to derive in the simplest case that $\partial_{\mu}S^{\mu} - m = 0$ in eq-(11). The natural extension of this relation (in the most general case) in *C*-space is $\partial_I S^I - \mathcal{M} = 0$, where *I* are multivector-valued indices spanning the full of *C*-space. To *prove* the latter relation from eqs-(28), after expressing the Ψ_I components in terms of the S_I components, is a very difficult task due to the complexity of these relations, as displayed by eqs-(4,5), for example. This is beyond the scope of this work.

Bohm's introduction of his quantum potential $Q \sim \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}}$ into the classical non-relativistic Hamilton-Jacobi equation, followed up by the use of the pilotwave guide equation (continuity equation) $\partial_t \rho + \frac{1}{m} \partial_i (\rho \partial^i S) = 0$ leads to the Schroedinger equation via the substitution $\psi = \sqrt{\rho} e^{-iS}$. Is there an analogy of Bohm's procedure here? Namely, given W_Q , the analog of a putative Bohm's quantum potential (which is to be determined), after including it into the covariant Hamilton-Jacobi equation in *C*-space as follows

$$\partial_I S^I = \mathcal{M} + \mathcal{W}_Q \tag{29}$$

and adding the continuity equation¹

$$\partial_I J^I = 0, \quad J^I \equiv Trace (\Psi^{\dagger} \Gamma^I \Psi), \quad \Gamma^I \equiv \mathbf{1}, \gamma^{\mu}, \gamma^{\mu_1 \mu_2}, \gamma^{\mu_1 \mu_2 \mu_3}, \cdots$$
 (30)

does this lead to the generalized Dirac equation (27) after making the standard substitution $\Psi(\mathbf{X}) = R(\mathbf{X})e^{-iS_I(\mathbf{X})\Gamma^I}$?? In other words, can one find a judicious expression for \mathcal{W}_Q in terms of Ψ and Ψ^{\dagger} which attains this goal ??

This is a difficult problem for several reasons. Firstly, because one has to construct the "logarithm" of a multivector in order to express $\mathbf{S} = S_I \Gamma^I$ in terms of $\Psi = \Psi_I \Gamma^I$, which is the inverse operation from obtaining the exponential of a multivector. Secondly, the expansion $\mathbf{S} = S_I \Gamma^I$ is comprised of hermitian and anti-hermitian matrices, hence $\Psi^{\dagger} \Psi \neq R^2 \mathbf{1}$, as a result of the Baker-Campbell-Hausdorff formula. Therefore, R cannot be expressed in terms of Ψ and Ψ^{\dagger} . Therefore, it is highly unlikely that one can recover the generalized Dirac equation (27) from eqs-(29,30). Note also the *difference* of eq-(30) involving the actual matrices Ψ to the case involving a Dirac spinor ψ_D

$$\partial_{\mu}J^{\mu} = 0, \quad J^{\mu} \equiv \bar{\psi}_D \ \gamma^{\mu} \ \psi_D, \quad \bar{\psi}_D \equiv \psi^{\dagger}_D \gamma^0 \tag{31}$$

Eq-(31) is obtained from the Dirac equation and its conjugate as shown in the standard textbooks.

It remains to find what is the physical significance of the components of the multivector-valued action $\mathbf{S} = S_M \Gamma^M$? Given a Clifford-valued multivector coordinate $\mathbf{X} = x\mathbf{1} + x^{\mu}\gamma_{\mu} + x^{\mu\nu}\gamma_{\mu\nu} + \cdots$ associated to a polyparticle in *C*-space [10], and the polyparticle's multivector-valued momentum $\mathbf{P} = p\mathbf{1} + p^{\mu}\gamma_{\mu} + p^{\mu\nu}\gamma_{\mu\nu} + \cdots$, the Clifford geometric product $\mathbf{P}\mathbf{X}$ can be used to define a physical quantity which has the same characteristics as a multivector-valued action $\mathbf{S} =$

 $^{^1 {\}rm The}$ trace of $\Psi^\dagger \Psi$ is positive definite since the matrix Ψ^\dagger is the hermitian adjoint of the matrix Ψ

 $S_M \Gamma^M$. For instance, let us define $\mathbf{S} \equiv \mathbf{PX}$, and look at the product $p_\mu x_\nu \gamma^\mu \gamma^\nu = p_\mu x^\mu \mathbf{1} + \frac{1}{2} \gamma^{\mu\nu} (p_\mu x_\nu - p_\nu x_\mu)$. The scalar part $p_\mu x^\mu$ is the standard phase factor (with units of action) associated to a plane wave solution to the Klein-Gordon equation. Whereas the bivector piece includes the orbital angular momentum $(p_\mu x_\nu - p_\nu x_\mu)$ associated to the Lorentz generators.

The scalar part of the Clifford geometric product yields

$$S_0 = \langle \mathbf{P} \mathbf{X} \rangle = px + p_{\mu}x^{\mu} + p_{\mu\nu}x^{\mu\nu} + \cdots$$
(32)

and furnishes the generalization of the plane wave phase factor to the full *C*-space. Whereas the higher-grade multivectors in **PX** will yield the other components $S_{\mu}, S_{\mu\nu}, S_{\mu\nu\sigma}, \cdots$ of **S** in terms of the other combinations of products.

The author [1] pointed out that similar to the Hamiltonian-Jacobi formulation of classical mechanics, an analog can be developed in the De-Donder-Weyl theory in terms of D Hamilton-Jacobi functions S^{μ} on the *field* configuration space and which satisfy the De-Donder-Weyl Hamilton-Jacobi equation $\partial_{\mu}S^{\mu} + H_{DW} = 0$, where $H_{DW} = p_a^{\mu}\partial_{\mu}\phi^a - L$ is the De-Donder-Weyl Hamiltonian which is a function of the fields ϕ^a , their polymomenta $p_a^{\mu} \equiv (\partial L/\partial(\partial_{\mu}\phi^a))$, and the space-time coordinates x^{μ} . We find that the DW Hamilton-Jacobi equation has the same form as $\partial_I S^I - \mathcal{M} = 0$ (up to a sign of S^I due to our choice of sign in the phase factor $\Psi = Re^{-iS_I\Gamma^I}$). More work is required in order to explore further analogies with the DW (De Donder-Weyl) formalism.

Our results have been restricted to flat spacetimes. They can be extended to curved spacetime backgrounds via the introduction of vierbeins e^a_{μ} obeying $g_{\mu\nu} = e^a_{\mu} e^b_{\nu} \eta_{ab}$, and which allows to relate the Clifford basis generators in the tangent space γ_a to the Clifford basis generators in the curved spacetime $\gamma_{\mu} = e^a_{\mu} \gamma_a$. This procedure allows to construct the Schroedinger-Dirac equation [11] in curved spacetime backgrounds

$$(g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} + \frac{R}{4} + m^2) \Psi_D = 0$$
 (33)

and which is obtained from "squaring" the covariant Dirac equation after recurring to the relation

$$\gamma^{\mu}\gamma^{\nu} \nabla_{\mu} \nabla_{\nu} = g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} + \gamma^{\mu\nu} [\nabla_{\mu}, \nabla_{\nu}]$$

and where the scalar curvature term $\frac{R}{4}$ stems from the commutator $[\nabla_{\mu}, \nabla_{\nu}] = [\partial_{\mu} + \omega_{\mu}, \partial_{\nu} + \omega_{\nu}]$ of the covariant derivatives which are defined in terms of the Clifford-valued spin connection $\omega_{\mu} = \omega_{\mu}^{ab} \gamma_{ab}$.

The Schroedinger-Dirac equation was recently revisited by [12]. Despite that the Schroedinger-Dirac equation is *not* conformally invariant, there exists a generalization of the equation that is conformally invariant but which requires a different conformal transformation of the spinor than the one required by the Dirac equation. The new conformal factor acquired by the spinor is found to be a *matrix-valued* factor [12] obeying a differential equation that involves the Fock-Ivanenko line element. We conclude by discussing an interesting physical application of this work in the study of branes in C-spaces [10]. These are characterized by maps from the multivector-valued world-manifold of the brane embedded into a target Cspace background given by $X^M(\sigma^A)$. The multivector-valued index in X^M spans the dimension 2^D of the target space Clifford algebra Cl(D). Whereas the multivector-valued index in σ^A spans the 2^d -dim of the world-manifold Clifford algebra Cl(d). There is a natural wave-functional $\Psi[X^M(\sigma^A)]$ associated with the C-space brane field configurations. This wave-functional is similar to the string field $\Psi[X^{\mu}(\sigma^1, \sigma^2)]$ in open and closed strings, where X^{μ} are the embedding background target spacetime coordinates and σ^1, σ^2 are the string world-sheet coordinates.

This is where the DW formulation of field theory becomes important. In such DW formulation the spacetime variables x^{μ} also enter into picture, in addition to the fields ϕ^a and their polymomenta $p_a^{\mu} \equiv (\partial L/\partial(\partial_{\mu}\phi^a))$. Hence, the DW formalism requires to extend $\Psi[X^M(\sigma^A)]$ to $\Psi[X^M(\sigma^A), \sigma^A]$, such that the latter can be interpreted as a probability amplitude for the *C*-space brane in the quantum state Ψ to have a field configuration $X^M(\sigma^A)$ at the point σ^A . In other words, $\Psi[X^M(\sigma^A), \sigma^A] \equiv \langle X^M(\sigma^A), \sigma^A | \Psi \rangle$.

Finally, following similar steps to the work by [1], [2] one can then write a Dirac-like equation of the form

$$i\Gamma^{A}\frac{\partial}{\partial\sigma^{A}}\Psi[X^{M}(\sigma^{A}),\sigma^{A}] = \hat{H}_{DW}\Psi[X^{M}(\sigma^{A}),\sigma^{A}], \quad A = 1, 2, 3, \cdots, 2^{d} \quad (34)$$

where \hat{H}_{DW} is the operator corresponding to the DW Hamiltonian function and where we set κ to unity. κ is a constant which is required on dimensional grounds to match units [1],[2]. Ψ is Clifford-valued $\Psi = \Psi_0 \mathbf{1} + \Psi_a \gamma^a + \Psi_{ab} \gamma^{ab} + \cdots$ where the gammas Γ^A span the 2^d -dimensions of the world-manifold associated with the Cl(d) algebra of the C-space brane.

In the case of *free* (non-interacting) branes, eq-(34) is of the form

$$i\Gamma^{A}\frac{\partial}{\partial\sigma^{A}}\Psi[X^{M}(\sigma^{A}),\sigma^{A}] = -\frac{1}{2} \frac{\delta^{2} \Psi[X^{M}(\sigma^{A}),\sigma^{A}]}{(\delta X^{M}(\sigma^{A}))^{2}}, \quad A = 1, 2, 3, \cdots, 2^{d} \quad (35)$$

Suffice to say that matters are not that simple due to the complexity of eq-(35), otherwise the quantization of branes would have been attained long ago. Introducing brane interactions will complicate matters since one would be required to introduce a term of the form $V[X^M(\sigma^A)]\Psi$ into eq-(35) where V is the potential.

Concluding, we have explored the construction of a generalized Dirac equation via the introduction of the notion of Clifford-valued actions, and which was inspired by the work of [1], [2] on the De Donder-Weyl theory formulation of field theory. Crucial in this construction is the evaluation of the *exponentials* of *multivectors* associated with Clifford (hypercomplex) analysis. Exact *matrix* solutions (instead of spinors) of the generalized Dirac equation in D = 2,3spacetime dimensions were found. This formalism can be extended to curved spacetime backgrounds like it happens with the Schroedinger-Dirac equation. We finalized by proposing a wave-functional equation governing the quantum dynamics of branes living in *C*-spaces, and which was based on the De Donder-Weyl Hamiltonian formulation of field theory.

Acknowledgments

We thank M. Bowers for assistance; to Igor Kanatchikov for many discussions related to his work, and to Profs. Rudra Pratap and Amrik Sen for their very kind invitation to Plaksha University in Punjab, India.

References

 I.V. Kanatchikov, "De Donder-Weyl theory and a hypercomplex extension of quantum mechanics to field theory" Rept.Math.Phys. 43 (1999) 157-170.

M. E. Pietrzyk, C. Barbachoux, I. V. Kanatchikov, and J. Kouneiher, "On the covariant Hamilton-Jacobi formulation of Maxwell's equations via the polysymplectic reduction" arXiv : 2212.14845.

[2] I.V. Kanatchikov, "De Donder-Weyl Hamiltonian formulation and precanonical quantization of vielbein gravity J. Phys.: Conf. Ser. 442 012041 (2013)

I.V. Kanatchikov, "Schrödinger wave functional in quantum Yang-Mills theory from precanonical quantization" Rep. Math. Phys. 82 (2018) 373

- [3] D. Vey, "Multisymplectic formulation of vielbein gravity. De Donder-Weyl formulation, Hamiltonian (n-1)-forms", Class. Quantum Grav. 32 095005, 2015
- [4] A. Dargys and A. Acus, "Exponentials of general multivector (MV) in 3D Clifford algebras" arXiv : 2104.01905.
- [5] E. Hitzer, "Exponential factorization of multivectors in Cl(p,q), p+q < 3. Math. Meth. Appl. Sci. **115** (2020)
- [6] A. Guerra IV, N. Román-Roy, "More insights into symmetries in multisymplectic field theories" arXiv : 2301.01255.
- [7] D. Hestenes, "Local observables in Dirac theory", J. Math. Phys. 14 (1973) 893.
- [8] A. M. Moya, W. A. Rodrigues Jr. and S. A. Wainer, "The Dirac-Hestenes Equation and its Relation with the Relativistic de Broglie-Bohm Theory" arXiv : 1610.09655

[9] K. Becker, M. Becker and J. Schwarz, String Theory and M-Theory : A Modern Introduction (Cambridge University Press, 2007, pp. 543-545).

W. Mueck, "General (anti) commutators of gamma matrices" arXiv : 0711.1436

- [10] C. Castro and M. Pavsic, "The Extended Relativity Theory in Clifford-spaces", Progress in Physics, vol. 1 (2005) 31.
 C. Castro and M. Pavsic, "On Clifford algebras of spacetime and the Conformal Group" Int. Jour. of Theoretical Physics 42 (2003) 1693.
- [11] E. Schroedinger, "Diracsches Elektron im Schwerefeld I", Sitzungsber. Preuss. Akad. Wiss. Phys-Math. Kl 105 (1932).
- [12] N. Fleury, F. Hammad, P. Sadehi, "Revisiting the Schrodinger-Dirac equation" arXiv: 2302.06723