Redefining Black Hole Entropy Due to Proporcionality to the Fine Structure Constant

Keith Huckelby keithhuck7000@gmail.com

Abstract

In this article we propose a new definition of the entropy of black holes. For this we base ourselves on a reformulation of the Hawking-Bekenstein formula in such a way that, on the one hand, by introducing a new variable that represents the number of microstates and On the other hand, taking into account the mass of the black hole, we can conclude a new equation for the entropy of black holes.

Keywords: Black hole, Entropy, Microstates, Black hole mass.

Introduction

In this paper I will present an equation which will show how the black hole entropy is proportional to the fine structure constant.Afterwards I will explain how this equation relates to black hole entropy and how we can define it in relation to the original Hawking-Bekenstein black hole entropy formula.We can see below the original formula

$$S_{BH} = \frac{4\pi r_{BH}^2}{4l_p^2}$$

The equation above tells us the amount of entropy of a black hole.Originally Bekenstein derived this formula and concluded a black hole entropy is proportional to the black hole's event horizon surface area.

The fine structure constant

$$\alpha_e = \frac{1}{137} = \frac{k_e e^2}{\hbar c}$$

Above we have an equation which gives us the value of the fine structure constant. We represent the fine structure constant as " α_e ". The variable " α_e " can be also given by the 2nd expression $\frac{k_e e^2}{\hbar c}$. This expression essentially implies that the fine structure constant is a probability which shows the chance of an electromagnetic interaction between a photon and an electron within an atomic electrostatic interaction. The probability is one out of 137 atomic electrostatic interactions emitting or absorbing a photon.

The new micro-state variable for black hole entropy

$$\Phi_M = \frac{Gm^2}{k_c e^2}$$

This is the micro-state variable we will use in our new black hole entropy equation. The variable tells us how many atomic electro-static interactions are needed within a certain surface area to result in the gravitational field of the mass "*m*".Keep in mind the surface area is derived using the Schwarzchild radius of the mass "*m*".Whenever the mass "*m*"equals the Planck mass, ϕ_M equals 137 which is the maximum of the fine structure constant.

Multiplying the fine structure constant and the micro-state variable

$$\alpha_e \phi_M = \alpha_e \frac{Gm^2}{k_c e^2} = \frac{m^2}{m_p^2}$$

The product of both the fine structure constant α_e and the micro-state variable ϕ_M give us the squared number of Planck masses " m_p " within an overall mass "m". Within each Planck mass there are 137 atomic electro-static interactions and each 137 electro-static interaction there are at least one of the interactions has an electro-magnetic absorption or emission of a photo

Presenting a new form of black hole entropy

$$S_{BH} = k_B \frac{4\pi r_B^2}{4l_P^2} = 4\pi k_B \alpha_e \phi_M$$

This is the black hole entropy equation in its original form reduced to $4\pi k_B \alpha_e \phi_M$. The original Hawking-Bekenstein

equation makes the black hole entropy proportional to the surface area $4\pi r_B^2$ where " r_B " is the Schwarzchild radius of the mass "m". " r_B " equals 2*Gm* divided by c^2 . The new form makes Φ_M the micro-state variable proportional to the black hole entropy S_{BH} . Keep in mind α_e is the fine structure constant and Φ_M equals $\frac{Gm^2}{k_c e^2}$

This new form of black hole entropy needs to be interpreted.Because of how I have defined above the variables of the fine structure constant and the micro-state.

Conclusion

I conclude black hole entropy in this new form can be interpreted as a measure of the different states in which a certain number of atomic electro-static interactions can be arranged in a Schwarzchild surface area to result in the gravitational field of mass "m".

Bibliography

Penrose Roger ,2005. Vintage books

List of physical parameters

- S_{R} : Black hole entropy
- k_B : Boltzmann constant, 1. 3807 $x \ 10^{-23} JT^{-1}$
- c : Speed of light , 299792458 *ms*⁻¹
- G : Gravitational constant, 6. 674 $x \, 10^{-11} m^3 k g^{-1} s^{-2}$
- m : Mass of black hole
- r_{B} : Schwarzschild radius of mass "m"
- l_p : Planck length, 1. 6162 x 10⁻³⁵m
- ϕ_M : Micro-state variable of black hole entropy
- m_p : Planck mass , 2. 176 x $10^{-8} kg$