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Abstract
Since Dr. Yitang Zhang proved in 2013 that there are infinitely many pairs of prime numbers differing by 70 million, it

has been proved now that there are infinitely many pairs of prime numbers differing by 246. In this paper, we use the sieve
method invented by Snndaram in 1934 to find out the solution of triple prime numbers and twin prime numbers, and find the
general solution formula of the subset, i.e, an1 + b which is result of each subset, such as 3n + 1, 5n + 2, 7n + 3, 9n +
4, 11n+5, 13n+6, 15n+7, 17n+8, · · · in 2mn+n+m, modulo x respectively (x ≤ 3 takes prime). This general solution
formula is used to prove the triple prime conjecture and the twin prime conjecture.

1. Introduction
In 1934, Sindaram invented a new sieve method, centered on the use of the general term of the number array amn =

(2m+ 1)n+m to construct the following number array - Sindaram’s table (see Literature [1]).

4 7 10 13 16 19 22 · · ·
7 12 17 22 27 32 37 · · ·
10 17 24 31 38 45 52 · · ·
13 22 31 40 49 58 67 · · ·

(1)

Sindaram found that 2N+1 is not prime if the natural number N appears in the above number array; if N does not appear
in the above number array, then 2N + 1 must be prime (see Literature [1]).

In this paper, note that K = {2mn+ n+m|m,n ∈ N}, L = {2mn+ n+m− 1 |m,n ∈ N}, S = {2mn+ n+m−
3 |m,n ∈ N}, where m ≤ 1, n ≤ 1 are natural numbers, N+ : 0, 1, 2, 3, · · · are 0 and natural numbers, N : 1, 2, 3, · · · are
natural numbers.

Since (2m + 1)n + m = 2mn + n + m, note K = {2mn + n + m | m,n ∈ N}, so we have the following: let q be
positive integer, then 2q + 1 is prime (q /∈ K).

2. Basic Knowledge
Proposition 2.1 All prime numbers p greater than 2 can be expressed as (see Literature [2])

p = 2q + 1 (2)

where q /∈ K takes positive integer.

Proposition 2.2 All twin prime numbers can be expressed as (see Literature [3]){
2q + 1
2(q + 1) + 1

(3)

where q /∈ K ∪ L takes positive integer.
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Proposition 2.3 All triple primes can be expressed as (see Literature [4]) 2q + 1
2(q + 1) + 1
2(q + 3) + 1

(4)

where q /∈ K ∪ L ∪ S takes positive integer. Obviously, the following definitions are available from Proposition 2.1,
Proposition 2.2, and Proposition 2.3.

Definition 2.1 Positive integers not belonging to K are the root of odd prime numbers.

Definition 2.2 Positive integers not belonging to K nor L are the root of twin prime.

Definition 2.3 Positive integers not belonging to K, L or S are the root of triple prime.

3. Applications
3.1. Finding odd prime numbers by the Sindaram sieve method

The values of 2mn+n+m are arranged in descending order as follows if m,n are the natural number, which are obtained
from the Sindaram table (See Literature [1]).

4 7 10 13 16 19 22 · · · (5)

The remaining positive integer corresponding to the above is the value of the odd prime root q in equation (2.1), i.e.,

q = 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, · · · (6)

Substituting the above equation into (2.1) yields

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, · · · (7)

which are all odd prime numbers.

3.2. Finding twin primes by the Sindaram sieve method

The values of 2mn+n+m are arranged in descending order as follows if m,n are the natural number, which are obtained
from Sindaram’s table.

4 7 10 13 16 19 22 · · · (8)

Then the values of 2mn+ n+m− 1 are arranged in order from smallest to largest as follows.

3 6 9 11 12 15 16 18 21 · · · (9)

Then the values in the equations 2mn+ n+m and 2mn+ n+m− 1 are arranged in the following order from smallest
to largest.

3 4 6 7 9 10 11 12 13 15 16 17 18 19 21 22 · · · (10)

The remaining positive integer corresponding to the above is the value of the twin prime root q in equation (2.2), i.e.,

q = 1, 2, 5, 8, 14, 20, · · · (11)

Substituting q = 1, 2, 5, 8, 14, 20, · · · into equation (2.2) yields:

3, 5; 5, 7; 11, 13; 17, 19; 29, 31; 41, 43; · · · (12)

all of which are twin prime numbers.



3.3. Finding the triple prime by the Sindaram sieve method

The values of 2mn+ n+m are arranged in descending order as follows if m,n are natural numbers, which are obtained
from Sindaram’s table.

4 7 10 12 13 16 17 19 22 · · · (13)

Then the values of 2mn+ n+m− 1 are arranged in order from smallest to largest as follows.

3 6 9 11 12 15 16 18 21 · · · (14)

Then the values of 2mn+ n+m− 3 are arranged in order from smallest to largest as follows.

1 4 7 9 10 13 14 16 19 · · · (15)

The values in the equations 2mn+ n+m, 2mn+ n+m− 1, and 2mn+ n+m− 3 are then arranged in the following
order from smallest to largest.

1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, · · · (16)

The remaining positive integer corresponding to the above is the value of the triple prime root q in equation (2.3), i.e.,

q = 2, 5, 8, 20, · · · (17)

Substituting q = 2, 5, 8, 20, · · · into equation (2.3) yields:

5, 7, 11; 11, 13, 17; 17, 19, 23; 41, 43, 47; · · · (18)

all of which are triple prime numbers.

4. Introduction of the equivalence proposition of infinite number of triple prime numbers
We firstly identify the pattern from the following example and then introduce the equivalent proposition of infinite number

of triple primes.

Example 4.1 In the five sets 5n, 5n+ 1, 5n+ 2, 5n+ 3, 5n+ 4.
1). Substituting n = 1 into 5n yields 5, and substituting q = 5 into equation (2.3) yields: 11, 13, 17.
2). Substituting n = 1 into 5n+ 3 yields 8. Substituting q = 8 into equation (2.3) yields: 17, 19, 23.
Checking the prime number table shows that:

11, 13, 17; 17, 19, 23 (19)

are two groups of triple prime numbers, then according to Proposition 2.3: 5 and 8 are both positive integers that do not
belong to K ∪ L ∪ S. Then according to Definition 2.3: 5 and 8 are both triple prime roots, so when n ≥ 0 takes positive
integer, among the five sets 5n, 5n+ 1, 5n+ 2, 5n+ 3, 5n+ 4, at least 2 sets are the ones containing triple prime roots.

Example 4.2 In the seven sets 7n, 7n+ 1, 7n+ 2, 7n+ 3, 7n+ 4, 7n+ 5, 7n+ 6.
1). Substituting n = 1 into 7n+ 1 yields 8, substituting q = 8 into equation (2.3) yields: 17, 19, 23.
2). Substituting n = 7 into 7n+ 4 yields 53, and substituting q = 53 into equation (2.3) yields: 107, 109, 113.
3). Substituting n = 24 into 7n+ 5 yields 173, substituting q = 173 into equation (2.3) yields: 347, 349, 353.
4). Substituting n = 2 into 7n+ 6 yields 20, substituting q = 20 into equation (2.3) yields: 41, 43, 47.
Checking the prime number table shows that:

17, 19, 23; 107, 109, 113; 347, 349, 353; 42, 43, 47 (20)

are four groups of triple prime numbers, then according to Proposition 2.3: 8, 53, 173, 20 are all positive integers that do not
belong to K ∪L∪S. Then according to Definition 2.3: 8, 53, 173, 20 are all triple prime roots, so when n ≥ 0 takes positive
integer, among the seven sets 7n, 7n+1, 7n+2, 7n+3, 7n+4, 7n+5, 7n+6, at least 4 sets are the ones containing triple
prime roots.



Example 4.3 In the eleven sets 11n, 11n+1, 11n+2, 11n+3, 11n+4, 11n+5, 11n+6, 11n+7, 11n+8, 11n+9, 11n+10.
1). Substituting n = 40 into 11n yields 440, and substituting q = 440 into equation (2.3) yields: 881, 883, 887.
2). Substituting n = 14 into 11n+ 1 yields 155, and substituting q = 155 into equation (2.3) yields: 311, 313, 317.
3). Substituting n = 10 into 11n+ 3 yields 113, and substituting q = 113 into equation (2.3) yields: 227, 229, 233.
4). Substituting n = 4 into 11n+ 6 yields 50, and substituting q = 50 into equation (2.3) yields: 101, 103, 107.
5). Substituting n = 8 into 11n+ 7 yields 95, and substituting q = 95 into equation (2.3) yields: 191, 193, 197.
6). Substituting n = 15 into 11n+ 8 yields 173, and substituting q = 173 into equation (2.3) yields: 347, 349, 353.
7). Substituting n = 1 into 11n+ 9 yields 20, and substituting q = 20 into equation (2.3) yields: 41, 43, 47.
8). Substituting n = 20 into 11n+ 10 yields 230, and substituting q = 230 into equation (2.3) yields: 461, 463, 467.
Checking the prime number table shows that:

881, 883, 887; 311, 313, 317; 227, 229, 233; 101, 103, 107; 191, 193, 197; 347, 349, 353; 41, 43, 47; 461, 463, 467 (21)

are 8 groups of triple prime numbers, then according to Proposition 2.3, we know that: 440, 155, 113, 50, 95, 173, 20, 230
are all positive integers not belonging to K ∪ L ∪ S. Then according to Definition 2.3: 440, 155, 113, 50, 95, 173, 20, 230
are triple prime roots, so when n ≥ 0 takes positive integer,among the eleven sets 11n, 11n + 1, 11n + 2, 11n + 3, 11n +
4, 11n+ 5, 11n+ 6, 11n+ 7, 11n+ 8, 11n+ 9, 11n+ 10, at least 8 sets are the ones containing triple prime roots.

Example 4.4 In the thirteen sets 13n, 13n+1, 13n+2, 13n+3, 13n+4, 13n+5, 13n+6, 13n+7, 13n+8, 13n+9, 13n+
10, 13n+ 11, 13n+ 12 thirteen.

1). Substituting n = 50 into 13n yields 650, then substituting q = 650 into equation (2.3) yields: 1301, 1303, 1307.
2). Substituting n = 4 into 13n+ 1 yields 53, then substituting q = 53 into equation (2.3) yields: 107, 109, 113.
3). Substituting n = 57 into 13n+ 2 yields 743, then substituting q = 743 into equation (2.3) yields: 1487, 1489, 1493.
4). Substituting n = 7 into 13n+ 4 yields 95, then substituting q = 95 into equation (2.3) yields: 191, 193, 197.
5). Substituting n = 1 into 13n+ 7 yields 20, then substituting q = 20 into equation (2.3) yields: 41, 43, 47.
6). Substituting n = 24 into 13n+ 8 yields 320, then substituting q = 320 into equation (2.3) yields: 641, 643, 647.
7). Substituting n = 8 into 13n+ 9 yields 113, then substituting q = 113 into equation (2.3) yields: 227, 229, 233.
8). Substituting n = 61 into 13n+ 10 yields 803, then substituting q = 803 into equation (2.3) yields: 1607, 1609, 1613.
9). Substituting n = 3 into 13n+ 11 yields 50, then substituting q = 50 into equation (2.3) yields: 101, 103, 107.
10). Substituting n = 11 into 13n+ 12 yields 155, then substituting q = 155 into equation (2.3) yields: 311, 313, 317.
Checking the prime number table shows that:

1301, 1303, 1307; 107, 109, 113; 1487, 1489, 1493; 191, 193, 197; 41, 43, 47;

641, 643, 647; 227, 229, 233; 1607; 1609, 1613; 101, 103, 17; 311, 313, 317
(22)

are 10 groups of triple primes, then according to Proposition 2.3: 650, 53, 743, 95, 20, 320, 113, 803, 50, 155 are all positive
integers that do not belong to K ∪ L ∪ S. Then according to Definition 2.3: 650, 53, 743, 95, 20, 320, 113, 803, 50, 155 are
all triple prime roots. So when n ≥ 0 takes positive integer, among the thirteen sets at least 10 of the 13 sets 13n, 13n +
1, 13n+ 2, 13n+ 3, 13n+ 4, 13n+ 5, 13n+ 6, 13n+ 7, 13n+ 8, 13n+ 9, 13n+ 10, 13n+ 11, 13n+ 12, at least 10 sets
are the ones containing triple prime roots.

Clearly from Example 4.1, Example 4.2, Example 4.3, Example 4.4, there is a common feature found that when p takes
prime number 5, 7, 11, 13, and n ≥ 1 is natural number, among the p sets of pn, pn + 1, pn + 2, · · · , pn + p − 1, there are
all p − 3 sets containing the roots of the triple prime. From this, we introduce the equivalent proposition of infinite number
of triple primes as follows.

Proposition 4.1 When p ≥ 5 is prime and n ≥ 0 is natural number, the p sets pn, pn+ 1, pn+ 2, · · · , pn+ p− 1, at least
p− 3 sets are the ones that containing triple prime roots.

Clearly when p ≥ 5 is prime and n ≥ 0 is natural number, there is no repeated values among the p sets pn, pn+ 1, pn+
2, · · · , pn+ p− 1.

Also because there are infinite prime numbers,and only prime 2 is even, then there are infinite odd prime numbers, and
then odd prime number p− 3 is still infinite.

Therefore, from infinite numbers of sets containing the roots of triple prime numbers, there are infinite numbers of groups
of triple prime numbers, namely.

If Proposition 4.1 holds, then there are infinite many triple prime numbers.
So Proposition 4.1 is an equivalent proposition of the infinity of triple prime .
Clearly, there is a group of twin prime in every group of triple primes, so if there are infinite many triple primes, then there

are infinite many twin primes.



5. Three general solution formulas
From the above discussion it follows that: by the Sindaram sieve method, prime, twin prime, and triple prime numbers are

related to the integer in 2mn+ n+m, so the simplest subset of integer in 2mn+ n+m is studied firstly.

5.1. The 3n+1; 5n+2; 7n+3; 9n+4; 11n+5; 13n+6; 15n+7; 17n+8; · · · subsets of 2mn+n+m, each modulo
x (x ≥ 3 takes prime) with all the corresponding an1 + b subsets of the general solution formulas and
the 3m+ 1; 5m+ 2; 7m+ 3; 9m+ 4; 11m+ 5; 13m+ 6; 15m+ 7; 17m+ 8; · · · subsets of 2mn+ n+m, each
modulo x (x ≥ 3 takes prime), with all the corresponding an1 + b subsets of general solution formulas.

According to the unique decomposition theorem, every integer greater than 1 could be divided into the concatenated
product of prime factors, which is a = p1p2 · · · pk, k ≥ 1. Here, p1p2 · · · pk are odd prime numbers, of which there may be
same values, e.g., 63 = 3× 3× 7, 75 = 3× 5× 5 (see Literature [5]).

Then odd number 3, 5, 7, 9, 11, 13, 15, 17, · · · greater than 1 could also be denoted by p1p2 · · · pk (here, p1p2 · · · pk are
odd prime, of which there may be same values, k = 1, 2, 3, · · · takes natural number, e.g., 63 = 3× 3× 7, 75 = 3× 5× 5).

Since 2mn+ n+m = (2m+ 1)n+m, substituting m = 1, 2, 3, 4, 5, 6, · · · natural number into (2m+ 1)n+m yields
respectively: 3n+ 1; 5n+ 2; 7n+ 3; 9n+ 4; 11n+ 5; 13n+ 6; 15n+ 7; 17n+ 8; · · · .

Then 2mn + n + m: 3n + 1; 5n + 2; 7n + 3; 9n + 4; 11n + 5; 13n + 6; 15n + 7; 17n + 8; · · · n with coefficient
3, 5, 7, 9, 11, 13, 15, · · · odd an + b (where a takes odd number, n takes natural number, 1 ≤ b ≥ a−1

2 ) subset could be
expressed as the following general solution formula:

p1p2 · · · pkn+
p1p2 · · · pk − 1

2
(23)

of which p1, p2, · · · , pk take odd prime number, n ≥ 1 takes natural number, and k = 1, 2, 3, · · · takes natural number.
Clearly, when p1p2 · · · pkn+ p1p2···pk−1

2 modulo x (x ≥ 3 takes prime), according to the residual theory we have:

{p1p2 · · · pkn+
p1p2 · · · pk − 1

2
| n ∈ N+}

= {xp1p2 · · · pkn1 +
p1p2 · · · pk − 1

2
| n1 ∈ N+}

∪{xp1p2 · · · pkn1 + p1p2 · · · pk +
p1p2 · · · pk − 1

2
| n1 ∈ N+}

∪{xp1p2 · · · pkn1 + 2p1p2 · · · pk +
p1p2 · · · pk − 1

2
| n1 ∈ N+}

∪ · · ·

∪{xp1p2 · · · pkn1 + (x− 1)p1p2 · · · pk +
p1p2 · · · pk − 1

2
| n1 ∈ N+}

(24)

Therefore, the following general solution could be derived from the set of residual system on the right side of the above
equation.

That is, the coefficient 3n+ 1; 5n+ 2; 7n+ 3; 9n+ 4; 11n+ 5; 13n+ 6; 15n+ 7; 17n+ 8; · · · n of 2mn+ n+m are
an+ b of 3, 5, 7, 9, 11, 13, 15, · · · odd number (where a takes odd number, n takes natural number, 1 ≤ b ≥ a−1

2 ) After the
subsets are each modulo x (x ≥ 3 takes prime), the corresponding general solution of the subset an1 + b is

xp1p2 · · · pkn1 +
p1p2···pk−1

2

xp1p2 · · · pkn1 + p1p2 · · · pk + p1p2···pk−1
2

xp1p2 · · · pkn1 + 2p1p2 · · · pk + p1p2···pk−1
2

· · ·
xp1p2 · · · pkn1 + (x− 1)p1p2 · · · pk + p1p2···pk−1

2

(25)

where m,n, k, n1 takes natural number, p1, p2, · · · , pk may be identical, but none is equal to x, p1, p2, · · · , pk are all odd
prime. p1p2···pk−1

2 ≤ b ≥ (x− 1)p1p2 · · · pk + p1p2···pk−1
2 .

Similarly, substituting n = 1, 2, 3, 4, 5, 6, · · · natural number into (2m+1)n+m yields: 3m+1; 5m+2; 7m+3; 9m+
4; 11m+ 5; 13m+ 6; 15m+ 7; 17m+ 8; · · · ; (2m+ 1)n+m, respectively.

Since 2mn + n + m is symmetric, it shall find the general solution of subset an1 + b of 2mn + n + m in terms of
3m + 1; 5m + 2; 7m + 3; 9m + 4; 11m + 5; 13m + 6; · · · (where a takes odd number, m,n both take natural number,



1 ≤ b ≥ a−1
2 ) when the set is modulo x (x ≥ 3 takes prime) respectively. It is the same as finding general solution of subset

an1 + b (5.1) of 2mn+n+m in terms of 3n+1; 5n+2; 7n+3; 9n+4; 11n+5; 13n+6; · · · (where a takes odd number,
m,n take natural number, 1 ≤ b ≥ a−1

2 ) when the set is modulo x (x ≥ 3 takes prime) respectively. An example is given as
follows.

Example 5.1 (1) Substituting m = 1 into 2mn+n+m yields 3n+1, then {3n+1 | n ∈ N} ∈ {2mn+m+n | n ∈ N},
i.e., 3n+ 1 is a subset of 2mn+ n+m when m,n take natural number. Substituting n = 5n1 into 3n+ 1 yields 15n1 + 1.
Substituting n = 5n1 + 1 into 3n + 1 yields 15n1 + 4. Substituting n = 5n1 + 2 into 3n + 1 yields 15n1 + 7. Then
{15n1+1 | n1 ∈ N} ∈ {3n+1 | n ∈ N}, {15n1+4 | n1 ∈ N} ∈ {3n+1 | n ∈ N}, {15n1+7 | n1 ∈ N} ∈ {3n+1 | n ∈ N}.
That is, when ,n take natural number, 15n1 + 1, 15n1 + 4, 15n1 + 7 are all subsets of 3n + 1. Since 3n + 1 is a subset of
2mn + n + m when m,n take natural number. Then it could be drawn from the set transitivity that when n1,m, n take
natural number, 15n1 + 1, 15n1 + 4, 15n1 + 7 are all subsets of 2mn+m+ n.

(2) Substituting n = 1 into 2mn+ n+m yields 3m+ 1, then {3m+ 1 |m ∈ N} ∈ {2mn+m+ n |m,n ∈ N}, i.e.,
3m + 1 is a subset of 2mn + n +m when m,n take natural number. Substituting m = 5n1 into 3m + 1 yields 15n1 + 1.
Substituting m = 5n1 + 1 into 3m + 1 yields 15n1 + 4. Substituting m = 5n1 + 2 into 3m + 1 yields 15n1 + 7. Then
{15n1+1 | n1 ∈ N} ∈ {3m+1 | n ∈ N}, {15n1+4 | n ∈ N} ∈ {3m+1 | n ∈ N}, {15n1+7 | n ∈ N} ∈ {3m+1 | n ∈ N}.
That is, when n1,m take natural number, 15n1 + 1, 15n1 + 4, 15n1 + 7 are all subsets of 3m+ 1. Since 3n+ 1 is a subset
of 2mn + n +m when m,n take natural number. Then it could be drawn from the set transitivity that when n1,m, n take
natural number, 15n1 + 1, 15n1 + 4, 15n1 + 7 are all subsets of 2mn+m+ n.

Clearly the same result in (1) of Example 5.1 and (2) of Example 5.1 is obtained when n1,m, n take natural number,
15n1 + 1, 15n1 + 4, 15n1 + 7 are all subsets of 2mn +m + n, etc, so one of them could be omitted. In this paper, we use
the 3n+ 1, 5n+ 2, 7n+ 3, 7n+ 4, 11n+ 5, 13n+ 6, · · · subsets of 2mn+ n+m to solve Eq. (5.1), and no longer use the
3m+ 1; 5m+ 2; 7m+ 3; 9m+ 4; 11m+ 5; 13m+ 6; · · · subsets of 2mn+ n+m to solve Eq. (5.1).

That is, equation (5.1) not only contains 3n+1; 5n+2; 7n+3; 9n+4; 11n+5; 13n+6; 15n+7; 17n+8; · · · subsets of
2mn+ n+m modulo x (x ≥ 3 takes prime) corresponding to all an1 + b subsets, but also contains 3m+ 1, 5m+ 2, 7m+
3of2mn+ n+m, 9m+ 4, 11m+ 5, 13m+ 6, 15m+ 7, 17m+ 8, · · · subsets modulo x (x ≥ 3 takes prime) respectively,
which is corresponding to all an1 + b subsets.

5.2. The subsets 3n; 5n + 1; 7n + 2; 9n + 3; 11n + 4; 13n + 5; 15n + 6; 17n + 7; · · · of 2mn + n +m − 1 modulo x
(x ≥ 3 takes prime) and all the corresponding an1 + b subset general solution formula and the subsets
3m; 5m + 1; 7m + 2; 9m + 3; 11m + 4; 13m + 5; 15m + 6; 17m + 7; · · · of 2mn + n +m − 1 modulo x (x ≥ 3
takes prime) respectively, which is corresponding to all an1 + b subset general solution formula.

Since 2mn+n+m−1 = (2m+1)n+m−1, substituting m = 1, 2, 3, 4, 5, 6, · · · natural number into (2m+1)n+m−1
yields: 3n; 5n+ 1; 7n+ 2; 9n+ 3; 11n+ 4; 13n+ 5; 15n+ 6; 17n+ 7; · · · respectively. The same method as in 5.1 yields
3n; 5n+1; 7n+2; 9n+3; 11n+4; 13n+5; 15n+6; 17n+7; · · · subsets of 2mn+ n+m− 1 modulo x (x ≥ 3 taken as
prime), respectively, which is corresponding to all an1 + b subset general solution:

xp1p2 · · · pkn1 +
p1p2···pk−1

2 − 1

xp1p2 · · · pkn1 + p1p2 · · · pk + p1p2···pk−1
2 − 1

xp1p2 · · · pkn1 + 2p1p2 · · · pk + p1p2···pk−1
2 − 1

· · ·
xp1p2 · · · pkn1 + (x− 1)p1p2 · · · pk + p1p2···pk−1

2 − 1

(26)

where m,n, k, n1 take natural number, p1, p2, · · · , pk may be identical, but none is equal to x. p1, p2, · · · , pk, are all odd
prime, p1p2···pk−1

2 ≤ b ≥ (x − 1)p1, p2, · · · , pk + p1p2···pk−1
2 − 1. As in equation (5.1), equation (5.2) not only contains

all an1 + b subsets of 2mn + n +m − 1 of 3n; 5n + 1; 7n + 2; 9n + 3; 11n + 4; 13n + 5; 15n + 6; 17n + 7; · · · modulo
x (x ≥ 3 takes prime) respectively, corresponding to all a + b subsets, but also contains 3m of 2mn + n + m − 1; 5m +
1; 7m + 2; 9m + 3; 11m + 4; 13m + 5; 15m + 6; 17m + 7; · · · modulo x (x ≥ 3 takes prime), respectively, corresponding
to all an1 + b subsets.



5.3. The subsets 3n − 2; 5n − 1; 7n; 9n + 1; 11n + 2; 13n + 3; 15n + 4; 17n + 5; · · · of 2mn + n +m − 3 modulo x
(x ≥ 3 takes prime) and all the corresponding an1 + b subset general solution formula and the subsets
3m − 2; 5m − 1; 7m; 9m + 1; 11m + 2; 13m + 3; 15m + 4; 17m + 5; · · · of 2mn + n +m − 1 modulo x (x ≥ 3
takes prime) respectively, which is corresponding to all an1 + b subset general solution formula.

Since 2mn+n+m−3 = (2m+1)n+m−3, substituting m = 1, 2, 3, 4, 5, 6, · · · natural number into (2m+1)n+m−3
yields: 3n− 2; 5n− 1; 7n; 9n+ 1; 11n+ 2; 13n+ 3; 15n+ 4; 17n+ 5; · · · respectively. The same method as in 5.1 yields
3n − 2; 5n − 1; 7n; 9n + 1; 11n + 2; 13n + 3; 15n + 4; 17n + 5; · · · subsets of 2mn + n +m − 3 modulo x (x ≥ 3 takes
prime) respectively, which is corresponding to all an1 + b subset general solution:

xp1p2 · · · pkn1 +
p1p2···pk−1

2 − 3

xp1p2 · · · pkn1 + p1p2 · · · pk + p1p2···pk−1
2 − 3

xp1p2 · · · pkn1 + 2p1p2 · · · pk + p1p2···pk−1
2 − 3

· · ·
xp1p2 · · · pkn1 + (x− 1)p1p2 · · · pk + p1p2···pk−1

2 − 3

(27)

where m,n, k, n1 take natural number, p1, p2, · · · , pk may be identical, but none is equal to x. p1, p2, · · · , pk are all odd
prime, p1p2···pk−1

2 −3 ≤ b ≥ (x−1)p1, p2, · · · , pk+ p1p2···pk−1
2 −3. As in equation (5.1), equation (5.3) not only contains all

an1+b subsets corresponding to the subsets 3n−2; 5n−1; 7n; 9n+1; 11n+2; 13n+3; 15n+4; 17n+5; · · · of 2mn+n+m−3
modulo x (x ≥ 3 takes prime) respectively, but also contains 3m−2; 5m−1; 7m; 9m+1; 11m+2; 13m+3; 15m+4; 17m+
5; · · · of 2mn+n+m− 3 modulo x (x ≥ 3 takes prime) respectively, corresponding to all an1 + b subsets. Also, since this
paper is written: K = {2mn+n+m |m,n ∈ N}, L = {2mn+n+m−1 |m,n ∈ N}, S = {2mn+n+m−3 |m,n ∈ N},
where m,n ≥ 1 take natural number, N : 1, 2, 3, · · · takes natural number.

The equation (5.1) contains all an1 + b subsets of K ∪ L ∪ S modulo x (x ≥ 3 taken as prime) corresponding to
3n+1; 5n+2; 7n+3; 9n+4; 11n+5; 13n+6; 15n+7; 17n+8; · · · subsets modulo x (x ≥ 3 taken as prime), as well as
3m+ 1; 5m+ 2; 7m+ 3; 9m+ 4 of K ∪L∪ S; 11m+ 5; 13m+ 6; 15m+ 7; 17m+ 8; · · · subsets modulo x (x ≥ 3 taken
as prime), respectively, which is corresponding to all an1.

The equation (5.2) contains all an1 + b subsets modulo x (x ≥ 3 takes prime) corresponding to 3n; 5n+ 1; 7n+ 2; 9n+
3; 11n+ 4; 13n+ 5; 15n+ 6; 17n+ 7; · · · subsets of K ∪L∪ S. It also contains all an1 + b subsets modulo x (x ≥ 3 takes
prime)respectively, corresponding to 3m; 5m + 1; 7m + 2; 9m + 3; 11m + 4; 13m + 5; 15m + 6; 17m + 7; · · · subsets of
K ∪ L ∪ S.

The equation (5.3) contains all an1 + b subsets modulo x (x ≥ 3 takes prime) corresponding to 3n− 2; 5n− 1; 7n; 9n+
1; 11n+2; 13n+3; 15n+4; 17n+5; · · · subsets of K ∪L∪S as well as all an1 + b subsets modulo x (x ≥ 3 takes prime)
respectively, corresponding to 3m−2; 5m−1; 7m; 9m+1; 11m+2; 13m+3; 15m+4; 17m+5; · · · subsets of K ∪L∪S.

6. Preliminary propositions
Proposition 6.1 In p1p2···pk−1

2 − 3 ≤ b ≥ (x− 1)p1p2 · · · pk + p1p2···pk−1
2 closed interval, the corresponding an1+ b subset

general solution formula of K ∪ L ∪ S are (5.1), (5.2), (5.3) only. (where m,n, k, n1 take natural number, p1p2 · · · pk may
be identical, but none is equal to x, p1p2 · · · pk take odd prime, a ≤ 3 takes odd).

In the 1st an1 + b set in equation (5.1) b = p1p2···pk−1
2

In the last an1 + b set in equation (5.1) b = (x− 1)p1p2 · · · pk + p1p2···pk−1
2

In the 1st an1 + b set in equation (5.2) b = p1p2···pk−1
2 − 1

In the last an1 + b set in equation (5.2) b = (x− 1)p1p2 · · · pk + p1p2···pk−1
2 − 1

In the 1st an1 + b set in equation (5.3) b = p1p2···pk−1
2 − 3

In the last an1 + b set in equation (5.3) b = (x− 1)p1p2 · · · pk + p1p2···pk−1
2 − 3 closed interval and since it is clear that

when k takes natural number, x, the p1p2 · · · pk are odd prime,

p1p2 · · · pk − 1

2
− 3 <

p1p2 · · · pk − 1

2
− 1 <

p1p2 · · · pk − 1

2
(28)

(x− 1)p1 · · · pk +
p1 · · · pk − 1

2
− 3 < (x− 1)p1 · · · pk +

p1 · · · pk − 1

2
− 1 < (x− 1)p1 · · · pk +

p1 · · · pk − 1

2
− 3

(29)



Then b in the set an1 + b is in p1p2···pk−1
2 − 3 to (x − 1)p1p2 · · · pk + p1p2···pk−1

2 contains b in p1p2···pk−1
2 to (x −

1)p1p2 · · · pk + p1p2···pk−1
2 closed interval and contains b in p1p2···pk−1

2 − 1 to (x − 1)p1p2 · · · pk + p1p2···pk−1
2 − 1 closed

interval and also contains b in p1p2···pk−1
2 − 3 to (x− 1)p1p2 · · · pk + p1p2···pk−1

2 − 3 closed interval.
Suppose that K ∪ L ∪ S has an1 ± b subset of general solution in addition to equations (5.1), (5.2), (5.3) (where a is

odd number and m,n, k, n1 are natural number, p1p2 · · · pk may be identical, but none is equal to x. p1p2 · · · pk are all odd
prime, p1p2···pk−1

2 − j ≤ b ≥ (x− 1)p1p2 · · · pk + p1p2···pk−1
2 − j).

According to the unique decomposition theorem, the coefficient a of n1 in an1± b, every integer greater than 1, the result
is unique, if it decomposes prime factors regardless of their decomposition order (see Literature [5]).

Obviously, if K ∪ L ∪ S has another an1 ± b subset general solutions in addition to Eqs. (5.1), (5.2), (5.3), then the
coefficient n1 must be same with coefficient n1 in (5.1), (5.2), (5.3) and only the remainder is different, then it could be
written in the following form. 

xp1p2 · · · pkn1 +
p1p2···pk−1

2 − j

xp1p2 · · · pkn1 + p1p2 · · · pk + p1p2···pk−1
2 − j

xp1p2 · · · pkn1 + 2p1p2 · · · pk + p1p2···pk−1
2 − j

· · ·
xp1p2 · · · pkn1 + (x− 1)p1p2 · · · pk + p1p2···pk−1

2 − j

(30)

p1, p2, · · · , pk, n1,m, n, x, k are consistent with the requirements in equations (5.1), (5.2), (5.3).
Obviously, according to equations (5.1), (5.2) and (5.3), equation (6.1) is subsets of 2mn + n + m − j : 3n + 1 −

j; 5n + 2 − j; 7n + 3 − j; 9n + 4 − j; 11n + 5 − j; 13n + 6 − j; 15n + 7 − j; 17n + 8 − j; · · · modulo x (x ≥ 3
takes prime) respectively. Which is corresponding to all a + b subset general solution formula, also contains subsets of
2mn+n+m−j : 3m+1−j; 5m+2−j; 7m+3−j; 9m+4−j; 11m+5−j; 13m+6−j; 15m+7−j; 17m+8−j; · · ·
modulo x (x ≥ 3 takes prime), which is corresponding to all a+ b subset.

(a) When j = 0, equation (6.1) is in line with equation (5.1).
(b) When j = 1, equation (6.1) is in line with equation (5.2).
(c) When j = 3, equation (6.1) is in line with equation (5.3).
Then j 6= 0, j 6= 1, j 6= 3. Also, since when j 6= 0, j 6= 1, j 6= 3, it could be drawn from Proposition 2.1 that

2Q + 1; 2(Q + 1) + 1; 2(Q + 3) + 1; 2(Q + j) + 1 are four odd prime numbers when Q 6= 2mn + n + m,Q + 1 6=
2mn+ n+m,Q+ 3 6= 2mn+ n+m, and Q+ j 6= 2mn+ n+m, and 2Q+ 1; 2(Q+ 3) + 1; 2(Q+ j) + 1 are beyond
the triple prime. A contradiction appears and the hypothesis is not valid. Then Proposition 6.1 holds.

7. Proofs of the Samson prime conjecture and the twin prime conjecture
From what is stated in Paper 4, Proposition 4.1 is an equivalent proposition of the infinity of triple prime. If Proposition

4.1 holds is proved, then the infinity of triple prime holds. Proposition 4.1 is proved as follows.

7.1. p = 5

Substituting p = 5 into pn, pn+ 1, pn+ 2, ..., pn+ p− 1 yields: 5n, 5n+ 1, 5n+ 2, 5n+ 3, 5n+ 4. In the fives sets of
5n, 5n+ 1, 5n+ 2, 5n+ 3, 5n+ 4.

1) Substituting n = 1 into 5n yields 5, and substituting q = 5 into equation (2.3) yields: 11, 13, 17.
2) Substituting n = 1 into 5n+ 3 yields 8, and substituting q = 8 into equation (2.3) yields: 17, 19, 23.
Checking the prime number table shows that: 11, 13, 17; 17, 19, 23 are two groups of triple prime number, then according

to Proposition 2.3 we have: 5 and 8 are both positive integers not belonging to K ∪ L ∪ S. Then according to Definition 2.3
we have: 5 and 8 are both triple prime roots. So when n ≥ 0 takes positive integer,among the five sets 5n, 5n + 1, 5n +
2, 5n+ 3, 5n+ 4, at least 2 sets are the ones containing triple prime roots. So, when p = 5, Proposition 4.1 holds.

7.2. p = 7

Substituting p = 7 into pn, pn+ 1, pn+ 2, · · · , pn+ p− 1 yields: 7n, 7n+ 1, 7n+ 2, 7n+ 3, 7n+ 4, 7n+ 5, 7n+ 6.

The first proof method 1) Substituting n = 1 into 7n+ 1 yields 8, substituting q = 8 into equation (2.3) yields: 17, 19, 23.
2) Substituting n = 7 for 7n+ 4 yields 53, and substituting q = 53 into equation (2.3) yields: 107, 109, 113.
3) Substituting n = 24 into 7n+ 5 yields 173, substituting q = 173 into equation (2.3) yields: 347, 349, 353.
4) Substituting n = 2 into 7n+ 6 yields 20, substituting q = 20 into equation (2.3) yields: 41, 43, 47.



Checking the prime number table shows that: 17, 19, 23; 107, 109, 113; 347, 349, 353; 42, 43, 47 are four groups of triple
prime numbers, then according to Proposition 2.3: 8, 53, 173, 20 are all positive integers not belonging to K ∪ L ∪ S. Then
according to Definition 2.3: 8, 53, 173, 20 are all triple prime roots, so when n 6= 0 takes positive integer, among the seven
sets 7n, 7n + 1, 7n + 2, 7n + 3, 7n + 4, 7n + 5, 7n + 6, at least 4 sets are the ones containing triple prime roots. So,
when p = 7, Proposition 4.1 holds. Since the first proof requires looking up the prime number table, it is obvious that this
method does not work when analyze the relationship between p, pn+ 1, pn+ 2, · · · , pn+ p− 1 and K ∪ L ∪ S when p in
pn, pn+ 1, pn+ 2, ..., pn+ p− 1 takes infinite prime.

The second proof method Step 1: 7n, 7n+1, 7n+2, 7n+3, 7n+4, 7n+5, 7n+6 modulo 11 respectively, by the theory
of complete system of residues yields 7 groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
divided by 11, i.e.,

{7n | n ∈ N+} = {77n1 | n1 ∈ N+} ∪ {77n1 + 7 | n1 ∈ N+} ∪ {77n1 + 14 | n1 ∈ N+}
∪{77n1 + 21 | n1 ∈ N+} ∪ {77n1 + 28 | n1 ∈ N+} ∪ {77n1 + 35 | n1 ∈ N+} ∪ {77n1 + 42 | n1 ∈ N+}
∪{77n1 + 49 | n1 ∈ N+} ∪ {77n1 + 56 | n1 ∈ N+} ∪ {77n1 + 63 | n1 ∈ N+} ∪ {77n1 + 70 | n1 ∈ N+}

(31)

{7n+ 1 | n ∈ N+} = {77n1 + 1 | n1 ∈ N+} ∪ {77n1 + 8 | n1 ∈ N+} ∪ {77n1 + 15 | n1 ∈ N+}
∪{77n1 + 22 | n1 ∈ N+} ∪ {77n1 + 29 | n1 ∈ N+} ∪ {77n1 + 36 | n1 ∈ N+} ∪ {77n1 + 43 | n1 ∈ N+}
∪{77n1 + 50 | n1 ∈ N+} ∪ {77n1 + 57 | n1 ∈ N+} ∪ {77n1 + 64 | n1 ∈ N+} ∪ {77n1 + 71 | n1 ∈ N+}

(32)

{7n+ 2 | n ∈ N+} = {77n1 + 2 | n1 ∈ N+} ∪ {77n1 + 9 | n1 ∈ N+} ∪ {77n1 + 16 | n1 ∈ N+}
∪{77n1 + 23 | n1 ∈ N+} ∪ {77n1 + 30 | n1 ∈ N+} ∪ {77n1 + 37 | n1 ∈ N+} ∪ {77n1 + 44 | n1 ∈ N+}
∪{77n1 + 51 | n1 ∈ N+} ∪ {77n1 + 58 | n1 ∈ N+} ∪ {77n1 + 65 | n1 ∈ N+} ∪ {77n1 + 72 | n1 ∈ N+}

(33)

{7n+ 3 | n ∈ N+} = {77n1 + 3 | n1 ∈ N+} ∪ {77n1 + 10 | n1 ∈ N+} ∪ {77n1 + 17 | n1 ∈ N+}
∪{77n1 + 24 | n1 ∈ N+} ∪ {77n1 + 31 | n1 ∈ N+} ∪ {77n1 + 38 | n1 ∈ N+} ∪ {77n1 + 45 | n1 ∈ N+}
∪{77n1 + 52 | n1 ∈ N+} ∪ {77n1 + 59 | n1 ∈ N+} ∪ {77n1 + 66 | n1 ∈ N+} ∪ {77n1 + 73 | n1 ∈ N+}

(34)

{7n+ 4 | n ∈ N+} = {77n1 + 4 | n1 ∈ N+} ∪ {77n1 + 11 | n1 ∈ N+} ∪ {77n1 + 18 | n1 ∈ N+}
∪{77n1 + 25 | n1 ∈ N+} ∪ {77n1 + 32 | n1 ∈ N+} ∪ {77n1 + 39 | n1 ∈ N+} ∪ {77n1 + 46 | n1 ∈ N+}
∪{77n1 + 53 | n1 ∈ N+} ∪ {77n1 + 60 | n1 ∈ N+} ∪ {77n1 + 67 | n1 ∈ N+} ∪ {77n1 + 74 | n1 ∈ N+}

(35)

{7n+ 5 | n ∈ N+} = {77n1 + 5 | n1 ∈ N+} ∪ {77n1 + 12 | n1 ∈ N+} ∪ {77n1 + 19 | n1 ∈ N+}
∪{77n1 + 26 | n1 ∈ N+} ∪ {77n1 + 33 | n1 ∈ N+} ∪ {77n1 + 40 | n1 ∈ N+} ∪ {77n1 + 47 | n1 ∈ N+}
∪{77n1 + 54 | n1 ∈ N+} ∪ {77n1 + 61 | n1 ∈ N+} ∪ {77n1 + 68 | n1 ∈ N+} ∪ {77n1 + 75 | n1 ∈ N+}

(36)

{7n+ 6 | n ∈ N+} = {77n1 + 6 | n1 ∈ N+} ∪ {77n1 + 13 | n1 ∈ N+} ∪ {77n1 + 20 | n1 ∈ N+}
∪{77n1 + 27 | n1 ∈ N+} ∪ {77n1 + 34 | n1 ∈ N+} ∪ {77n1 + 41 | n1 ∈ N+} ∪ {77n1 + 48 | n1 ∈ N+}
∪{77n1 + 55 | n1 ∈ N+} ∪ {77n1 + 62 | n1 ∈ N+} ∪ {77n1 + 69 | n1 ∈ N+} ∪ {77n1 + 76 | n1 ∈ N+}

(37)

The total gives 77 sets of an1 + b with n1 coefficients all be 77.
Feature 1: In the above 77 sets,
There are only 7 sets divided by 11 with remainder 0.
There are only 7 sets divided by 11 with remainder 1.
There are only 7 sets divided by 11 with remainder 2.
There are only 7 sets divided by 11 with remainder 3.
There are only 7 sets divided by 11 with remainder 4.
There are only 7 sets divided by 11 with remainder 5.
There are only 7 sets divided by 11 with remainder 6.
There are only 7 sets divided by 11 with remainder 7.
There are only 7 sets divided by 11 with remainder 8.
There are only 7 sets divided by 11 with remainder 9.



There are only 7 sets divided by 11 with remainder 10.
A total of 7 sets of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11.
Feature 2: The coefficients of n1 in sets an1 + b are all 77.
Feature 3: The value of the remainder b of of set an1 + b is in the closed interval 0 to 76.
The total gives 77 sets of an1 + b with n1 coefficients of all be 77. From these three characteristics and the transitivity of

set, the following result could be derived.
If the seven sets 7n, 7n + 1, 7n + 2, 7n + 3, 7n + 4, 7n + 5, 7n + 6 are all subsets of K ∪ L ∪ S. Then in K ∪ L ∪ S,

there must be 7 groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11, and these 7
groups of complete system of residues with remainder 0,1,2,3,4,5,6,7,8,9,10 divided by 11 are the ones with remainder b in
K ∪ L ∪ S in the closed interval 0 to 76 and the coefficients are all 77 of a + b subsets, which otherwise do not satisfy the
transitivity of set.

So we want to analyze 7n, 7n+1, 7n+2, 7n+2, 7n+3, 7n+4, 7n+5, 7n+6 with K ∪L∪S using the characteristics
of 7n, 7n+1, 7n+2, 7n+3, 7n+4, 7n+5, 7n+6 modulo 11 respectively, to find an1 + b in K ∪L∪S whose remainder
b has values in the closed interval from 0 to 76 and whose n1 coefficients are all 77 sets.

Step 2: Find the set of an1 + b with remainder b of K ∪ L ∪ S is in the closed interval 0 to 76 and the coefficient of n1 is
77.

Since it could be drawn from Section 5: Eq. (5.1) is the general solution formula of the subset corresponding to 2mn +
n+m, i.e., an1 + b, which is result of each subset, such as 3n+ 1, 5n+ 2, 7n+ 3, 9n+ 4, ... of K ∪ L ∪ S. Actually, it is
also the general solution formula of the subset corresponding to 2mn+ n+m, i.e., an1 + b, which is result of each subset,
such as 3m+ 1, 5m+ 2, 7m+ 3, 9m+ 4, ... of K ∪ L ∪ S.

Eq. (5.2) is the general solution formula of the subset corresponding to 2mn+n+m− 1, i.e., an1 + b, which is result of
each subset, such as 3n, 5n+1, 7n+2, 9n+3, ... of K ∪L∪S. Actually, it is also the general solution formula of the subset
corresponding to 2mn + n +m − 1, i.e., an1 + b, which is result of each subset, such as 3m, 5m + 1, 7m + 2, 9m + 3, ...
of K ∪ L ∪ S.

Eq. (5.3) is the general solution formula of the subset corresponding to 2mn+n+m− 3, i.e., an1 + b, which is result of
each subset, such as 3n−2, 5n−1, 7n, 9n+1, ... of K ∪L∪S. Actually, it is also the general solution formula of the subset
corresponding to 2mn + n +m − 1, i.e., an1 + b, which is result of each subset, such as 3m − 2, 5m − 1, 7m, 9m + 1, ...
of K ∪ L ∪ S.

From equations (5.1), (5.2), (5.3), it is obvious that when the coefficient of n1 is 77, there are only two cases, i.e.,
p1p2 · · · pk = 7 with x = 11, and x = 7 with p1p2 · · · pk = 11.

7.2.1 The case of p1p2 · · · pk = 7, x = 11

Substituting p1p2 · · · pk = 7, x = 11 into (5.1) yields: 77n1 + 3, 77n1 + 10, 77n1 + 17, 77n1 + 24, 77n1 + 31, 77n1 +
38, 77n1 + 45, 77n1 + 52, 77n1 + 59, 77n1 + 66, 77n1 + 73. There are eleven sets and one set each with remainder
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11.

Substituting p1p2 · · · pk = 7, x = 11 into (5.2) yields: 77n1 + 2, 77n1 + 9, 77n1 + 16, 77n1 + 23, 77n1 + 30, 77n1 +
37, 77n1 + 44, 77n1 + 51, 77n1 + 58, 77n1 + 65, 77n1 + 72. There are eleven sets and one set each with remainder
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11.

Substituting p1p2 · · · pk = 7, x = 11 into (5.3) yields: 77n1, 77n1 + 7, 77n1 + 14, 77n1 + 21, 77n1 + 28, 77n1 +
35, 77n1 + 42, 77n1 + 49, 77n1 + 56, 77n1 + 63, 77n1 + 70. There are eleven sets and one set each with remainder
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11.

7.2.2 The case of p1p2 · · · pk = 11, x = 7

Substituting p1p2 · · · pk = 11, x = 7 into (5.1) yields: 77n1 + 5, 77n1 + 16, 77n1 + 27, 77n1 + 38, 77n1 + 49, 77n1 +
60, 77n1 + 71. There are seven sets and all are divided by 11 with remainder 5.

Substituting p1p2 · · · pk = 11, x = 7 into (5.2) yields: 77n1 + 4, 77n1 + 15, 77n1 + 26, 77n1 + 37, 77n1 + 48, 77n1 +
59, 77n1 + 70. There are seven sets and all are divided by 11 with remainder 4.

Substituting p1p2 · · · pk = 11, x = 7 into (5.2) yields: 77n1 + 2, 77n1 + 13, 77n1 + 24, 77n1 + 35, 77n1 + 46, 77n1 +
57, 77n1 + 68. There are seven sets and all are divided by 11 with remainder 2.

In summary, the following are as described in 7.2.1 and 7.2.2.



1) We get 77n1 +3, 77n1 +10, 77n1 +17, 77n1 +24, 77n1 +31, 77n1 +38, 77n1 +45, 77n1 +52, 77n1 +59, 77n1 +
66, 77n1 + 73 for a total of eleven sets and one set each of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11, while 77n1 + 3 is the
smallest and 77n1 + 73 is the largest.

2) We get 77n1 + 2, 77n1 + 9, 77n1 + 16, 77n1 + 23, 77n1 + 30, 77n1 + 37, 77n1 + 44, 77n1 + 51, 77n1 + 58, 77n1 +
65, 77n1 + 72 for a total of eleven sets and one set each of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11, while 77n1 + 2 is the
smallest and 77n1 + 72 is the largest.

3) We get 77n1, 77n1+7, 77n1+14, 77n1+21, 77n1+28, 77n1+35, 77n1+42, 77n1+49, 77n1+56, 77n1+63, 77n1+70
for a total of eleven sets and one set each of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11, while 77n1 is the smallest and 77n1+70
is the largest.

4) We get 77n1 +5, 77n1 +16, 77n1 +27, 77n1 +38, 77n1 +49, 77n1 +60, 77n1 +71 seven sets which are all divided
by 11 with remainder 5, while 77n1 + 5 is the smallest and 77n1 + 71 is the largest.

5) We get 77n1 +4, 77n1 +15, 77n1 +26, 77n1 +37, 77n1 +48, 77n1 +59, 77n1 +70 seven sets which are all divided
by 11 with remainder 4, while 77n1 + 4 is the smallest and 77n1 + 70 is the largest.

6) We get 77n1 +2, 77n1 +13, 77n1 +24, 77n1 +35, 77n1 +46, 77n1 +57, 77n1 +68 seven sets which are all divided
by 11 with remainder 2, while 77n1 + 2 is the smallest and 77n1 + 68 is the largest.

From 1), 2), 3), 4), 5), 6), they totally give 11+ 11+ 11+ 7+ 7+ 7 = 54 subsets. The smallest of these sets is 77n1, and
the largest set is 77n1 + 73.

The above 54 subsets are further classified which is divided by 11 with the remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 as follows.
There are only 3 sets with the remainder 0 divided by 11.
There are only 3 sets with the remainder 1 divided by 11.
There are only 3 + 7 sets with the remainder 2 divided by 11.
There are only 3 sets with the remainder 3 divided by 11.
There are only 3 + 7 sets with the remainder 4 divided by 11.
There are only 3 + 7 sets with the remainder 5 divided by 11.
There are only 3 sets with the remainder 6 divided by 11.
There are only 3 sets with the remainder 7 divided by 11.
There are only 3 sets with the remainder 8 divided by 11.
There are only 3 sets with the remainder 9 divided by 11.
There are only 3 sets with the remainder 10 divided by 11.
Totally there are 3× 11 + 3× 7 = 54 sets of an1 + b.
Feature 1: Among the 54 an1 + b sets obtained above, since there are only 3 sets each with remainder 0, 1, 3, 6, 7, 8, 9, 10

divided by 11, at most three groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11
could be formed.

Feature 2: The coefficient n1 of the 54 an1 + b sets are all 77.
Feature 3: The remainder b of the 54 an1 + b sets are in the closed interval 0 to 73.
It could be drawn from Proposition 6.1 that in the p1p2···pk−1

2 − 3 ≤ b ≥ (x− 1)p1p2 · · · pk + p1p2···pk−1
2 closed interval,

there are only equations (5.1), (5.2), (5.3) corresponding to all an1 + b subsets of K ∪ L ∪ S (m,n, k, n1 all take natural
number, p1p2 · · · pk may be identical, but none of them is equal to x. p1p2 · · · pk all take odd prime number).

1) Substituting p1p2 · · · pk = 7, x = 11 into p1p2···pk−1
2 − 3 ≤ b ≥ (x− 1)p1p2 · · · pk + p1p2···pk−1

2 yields 0 ≤ b ≥ 73.
2) Substituting p1p2 · · · pk = 11, x = 7 into p1p2···pk−1

2 − 3 ≤ b ≥ (x− 1)p1p2 · · · pk + p1p2···pk−1
2 yields 2 ≤ b ≥ 71.

Clearly 0 ≤ b ≥ 73 contains 2 ≤ b ≥ 71.
Then the remainder b in the set an1 + b obtained by equations (5.1), (5.2), (5.3) is in the closed interval 0 to 73.
Therefore, there are only 54 sets of an1+ b in K ∪L∪S of which all the remainder b are in the closed interval 0 to 73 and

the coefficient n1 is 77. Since among the 54 sets,there are only 3 sets each with remainder 0,1,3,6,7,8,9,10 divided by 11, at
most three groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11 could be formed.

Also, because the positive integer values of the remainder b in the closed interval 0 to 76 have three more values 74, 75, 76
than the positive integer values of the remainder b in the closed interval 0 to 73.

So the remainder b of K ∪ L ∪ S is in the closed interval from 0 to 73 and the coefficients n1 is all 77, plus the sets
77n1 + 74, 77n1 + 75, 77n1 + 76, it could ensure b is in the closed interval 0 to 76.

Then considering the case of adding three sets 77n1 + 74, 77n1 + 75, 77n1 + 76.
Since among the 54 sets of K ∪L∪ S above, except for the sets with remainder 2, 4, 5 divided by 11,there are only 3 sets

each with remainder 0, 1, 3, 6, 7, 8, 9, 10 divided by 11, at most three groups of complete system of residues with remainder
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11 could be formed. If we add another group of complete system of residues with



remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11, we must add at least each set with remainder 0, 1, 3, 6, 7, 8, 9, 10 divided
by 11, then we must add at least 8 sets. Obviously ,adding the three sets 77n1 + 74, 77n1 + 75, 77n1 + 76,it still could not
reach 8 sets at least.Then it could not add the complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided
by 11.

It means that adding 77n1+74, 77n1+75, 77n1+76 to the above 54 sets of K ∪L∪S still could forms at most 3 groups
of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11.

So all remainder b in K ∪ L ∪ S is in the closed interval from 0 to 73 and coefficient n1 is all 77, which could form at
most 3 groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11.

Step 3: Analyze the 7 sets of 7n, 7n+ 1, 7n+ 2, 7n+ 3, 7n+ 4, 7n+ 5, 7n+ 6 with K ∪ L ∪ S.
From the result of the first step of 7.2 that, if the 7 sets of 7n, 7n+1, 7n+2, 7n+3, 7n+4, 7n+5, 7n+6 are all K∪L∪S

subsets, then there must be 7 groups of complete system of residues in K ∪L∪ S with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
divided by 11, and these 7 groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11
are the ones with remainder b in K ∪L∪S is in the closed interval 0 to 76 and the coefficient n1 is all 77 of an1+ b subsets .

And, since it could be drawn from the second step of 7.2 that the set of all an1 + b sets in K ∪ L ∪ S with remainder b in
the closed interval 0 to 76 and coefficient n1 is all 77, which could form at most three groups of complete system of residues
with remainder 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 divided by 11.

Therefore, at most 3 of the 7 sets of 7n, 7n + 1, 7n + 2, 7n + 3, 7n + 4, 7n + 5, 7n + 6 satisfy the set transitivity by
transferring the corresponding subsets to K ∪ L ∪ S.

So, at most 3 of the 7 sets of 7n, 7n+ 1, 7n+ 2, 7n+ 3, 7n+ 4, 7n+ 5, 7n+ 6 are subsets of K ∪ L ∪ S.
Then, when n ≥ 0 takes natural number, there are at least 4 sets out of the 7 sets 7n, 7n+1, 7n+2, 7n+3, 7n+4, 7n+

5, 7n+ 6 that are not subsets of K ∪ L ∪ S.
According to Proposition 2.3, the set of positive integer not belonging to K ∪ L ∪ S, must be the set containing triple

prime roots.
Then, when n ≥ 0 takes natural number, at least four of the seven sets 7n, 7n+ 1, 7n+ 2, 7n+ 3, 7n+ 4, 7n+ 5, 7n+ 6

are sets containing triple prime roots.
So, when p = 7, Proposition 4.1 holds.

7.3. p ≥ 11 takes prime

Step 1: Analyze the results of pn, pn+ 1, pn+ 2, ..., pn+ p− 1 each modulo 7. Let pn, pn+ 1, pn+ 2, ..., pn+ p− 1
modulo 7 respectively, the theory of complete system of residues yields p groups of complete system of residues with
remainder 0, 1, 2, 3, 4, 5, 6 divided by 7, i.e.,

{pn | n ∈ N+} = {7pn1 | n1 ∈ N+} ∪ {7pn1 + p | n1 ∈ N+} ∪ {7pn1 + 2p | n1 ∈ N+}
∪{7pn1 + 3p | n1 ∈ N+} ∪ {7pn1 + 4p | n1 ∈ N+}
∪{7pn1 + 5p | n1 ∈ N+} ∪ {7pn1 + 6p | n1 ∈ N+}

(38)

{pn+ 1 | n ∈ N+} = {7pn1 + 1 | n1 ∈ N+} ∪ {7pn1 + p+ 1 | n1 ∈ N+} ∪ {7pn1 + 2p+ 1 | n1 ∈ N+}
∪{7pn1 + 3p+ 1 | n1 ∈ N+} ∪ {7pn1 + 4p+ 1 | n1 ∈ N+}
∪{7pn1 + 5p+ 1 | n1 ∈ N+} ∪ {7pn1 + 6p+ 1 | n1 ∈ N+}

(39)

{pn+ 2 | n ∈ N+} = {7pn1 + 2 | n1 ∈ N+} ∪ {7pn1 + p+ 2 | n1 ∈ N+} ∪ {7pn1 + 2p+ 2 | n1 ∈ N+}
∪{7pn1 + 3p+ 2 | n1 ∈ N+} ∪ {7pn1 + 4p+ 2 | n1 ∈ N+}
∪{7pn1 + 5p+ 2 | n1 ∈ N+} ∪ {7pn1 + 6p+ 2 | n1 ∈ N+}

(40)

· · ·

{pn+ p− 1 | n ∈ N+} = {7pn1 + p− 1 | n1 ∈ N+} ∪ {7pn1 + 2p− 1 | n1 ∈ N+} ∪ {7pn1 + 3p− 1 | n1 ∈ N+}
∪{7pn1 + 4p− 1 | n1 ∈ N+} ∪ {7pn1 + 5p− 1 | n1 ∈ N+}
∪{7pn1 + 6p− 1 | n1 ∈ N+} ∪ {7pn1 + 7p− 1 | n1 ∈ N+}

(41)
pn is divided into each set with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7 of the union of seven subsets of 7pn1, 7pn1 +

p, 7pn1 + 2p, 7pn1 + 3p, 7pn1 + 4p, 7pn1 + 5p, 7pn1 + 6p.



pn + 1 is divided into each set with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7 of the union of seven subsets of 7pn1 +
1, 7pn1 + p+ 1, 7pn1 + 2p+ 1, 7pn1 + 3p+ 1, 7pn1 + 4p+ 1, 7pn1 + 5p+ 1, 7pn1 + 6p+ 1.

pn + 2 is divided into each set with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7 of the union of seven subsets of 7pn1 +
2, 7pn1 + p+ 2, 7pn1 + 2p+ 2, 7pn1 + 3p+ 2, 7pn1 + 4p+ 2, 7pn1 + 5p+ 2, 7pn1 + 6p+ 2.
· · ·
pn + p − 1 is divided into each set with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7 of the union of seven subsets of 7pn1 +

p− 1, 7pn1 + 2p− 1, 7pn1 + 3p− 1, 7pn1 + 4p− 1, 7pn1 + 5p− 1, 7pn1 + 6p− 1, 7pn1 + 7p− 1.
Feature 1: It gives a total of 7p sets of an1 + b,coefficient n1 is all 7p, and forms p groups of complete system of residues

with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7.
There are only p sets with the remainder 0 divided by 7;
There are only p sets with the remainder 1 divided by 7;
There are only p sets with the remainder 2 divided by 7;
There are only p sets with the remainder 3 divided by 7;
There are only p sets with the remainder 4 divided by 7;
There are only p sets with the remainder 5 divided by 7;
There are only p sets with the remainder 6 divided by 7;
Total 7p collections.
Feature 2: The coefficient n1 in 7p an1 + b sets is all 7p.
Feature 3: The resulting 7p an1 + b set with remainder b has values in the closed interval from 0 to 7p− 1.
From the above three features and set transitivity, it could be drawn that if the p sets pn, pn+ 1, pn+ 2, · · · , pn+ p− 1

are all subsets of K∪L∪S, then when the p sets of pn, pn+1, pn+2, · · · , pn+p−1 are each modulo 7, the corresponding
p groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7 necessarily in the subsets of an1 + b of
the ones with remainder b in K ∪ L ∪ S is in the closed interval 0 to 76 and the coefficient n1 is all 7p− 1.

So we want to use the p sets of pn, pn+1, pn+2, · · · , pn+ p− 1 each modulo 7 to analyze the relationship between the
p sets of pn, pn+ 1, pn+ 2, · · · , pn+ p− 1 and K ∪ L ∪ S by finding the values of the remainder b in K ∪ L ∪ S is in the
closed interval from 0 to 7p− 1 and coefficients n1 is all 7p of the an1 + b sets.

Step 2: Find the remainder b of K ∪ L ∪ S in the closed interval from 0 to 7p − 1 and the coefficient n1 is 7p of the
an1 + b set. It is clear from equations (5.1), (5.2), (5.3) that when the coefficient n1 is 7p, there are and only two cases, i.e.,
p1p2 · · · pk = 7, x = p and x = 7, p1p2 · · · pk = p.

7.3.1 The case of p1p2 · · · pk = 7, x = p

Substituting p1p2 · · · pk = 7, x = p into equation (5.1) yields: 7pn1 + 3, 7pn1 + 10, 7pn1 + 17, · · · , 7pn1 + 7(p − 1) + 3
total of p sets, and all of the sets are divided by 7 with remainder 3.

Substituting p1p2 · · · pk = 7, x = p into equation (5.2) yields: 7pn1 + 2, 7pn1 + 9, 7pn1 + 16, · · · , 7pn1 + 7(p− 1) + 2
total of p sets, and all of the sets are divided by 7 with remainder 2.

Substituting p1p2 · · · pk = 7, x = p into equation (5.3) yields: 7pn1, 7pn1 + 7, 7pn1 + 14, · · · , 7pn1 + 7(p− 1) total of
p sets, and all of the sets are divided by 7 with remainder 0.

A total of 3p sets obtained.

7.3.2 The case of p1p2 · · · pk = p, x = 7

Substituting p1p2 · · · pk = p, x = 7 into equation (5.1) yields 7pn1 +
p−1
2 , 7pn1 + p+ p−1

2 , 7pn1 +2p+ p−1
2 , 7pn1 +3p+

p−1
2 , 7pn1 + 4p+ p−1

2 , 7pn1 + 5p+ p−1
2 , 7pn1 + 6p+ p−1

2 , which are total 7 sets.
For {7pn1 +

p−1
2 | n1 ∈ N+} ∪ {7pn1 + p + p−1

2 | ∈ N+} ∪ {7pn1 + 2p + p−1
2 | ∈ N+} ∪ {7pn1 + 3p + p−1

2 | ∈
N+}∪{7pn1+4p+ p−1

2 | ∈ N+}∪{7pn1+5p+ p−1
2 | ∈ N+}∪{7pn1+6p+ p−1

2 | ∈ N+} = {pn+ p−1
2 | n ∈ N+},

i.e., 7pn1+
p−1
2 , 7pn1+p+ p−1

2 , 7pn1+2p+ p−1
2 , 7pn1+3p+ p−1

2 , 7pn1+4p+ p−1
2 , 7pn1+5p+ p−1

2 , 7pn1+6p+ p−1
2 .

A decomposed group of complete system of residues each with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7, based on pn+ p−1
2

modulo 7.
Then in 7pn1+

p−1
2 , 7pn1+p+ p−1

2 , 7pn1+2p+ p−1
2 , 7pn1+3p+ p−1

2 , 7pn1+4p+ p−1
2 , 7pn1+5p+ p−1

2 , 7pn1+6p+ p−1
2 :

with remainder 0 divided by 7 occupies a set, with remainder 1 divided by 7 occupies a set, with remainder 2 divided by 7
occupies a set, with remainder 3 divided by 7 occupies a set; with remainder 4 divided by 7 occupies a set, with remainder 5
divided by 7 occupies a set, with remainder 6 divided by 7 occupies a set, for a total of 7 sets.



Substituting p1p2 · · · pk = p, x = 7 into equation (5.2) yields 7pn1 +
p−1
2 − 1, 7pn1 + p+ p−1

2 − 1, 7pn1 + 2p+ p−1
2 +

1, 7pn1 + 3p+ p−1
2 + 1, 7pn1 + 4p+ p−1

2 + 1, 7pn1 + 5p+ p−1
2 + 1, 7pn1 + 6p+ p−1

2 − 1 for a total of 7 sets.
For {7pn1+

p−1
2 −1 | n1 ∈ N+}∪{7pn1+p+ p−1

2 −1 | ∈ N+}∪{7pn1+2p+ p−1
2 −1 | ∈ N+}∪{7pn1+3p+ p−1

2 −1 | ∈
N+}∪{7pn1+4p+ p−1

2 −1 | ∈ N+}∪{7pn1+5p+ p−1
2 −1 | ∈ N+}∪{7pn1+6p+ p−1

2 −1 | ∈ N+} = {pn+ p−1
2 −1 | n ∈

N+}, i.e., 7pn1 +
p−1
2 − 1, 7pn1 + p+ p−1

2 − 1, 7pn1 +2p+ p−1
2 +1, 7pn1 +3p+ p−1

2 +1, 7pn1 +4p+ p−1
2 +1, 7pn1 +

5p + p−1
2 + 1, 7pn1 + 6p + p−1

2 − 1 is pn + p−1
2 − 1. A decomposed group of complete system of residues each with

remainder 0, 1, 2, 3, 4, 5, 6 divided by 7, based on pn+ p−1
2 − 1 modulo 7.

Then in 7pn1+
p−1
2 − 1, 7pn1+ p+ p−1

2 − 1, 7pn1+2p+ p−1
2 +1, 7pn1+3p+ p−1

2 − 1, 7pn1+4p+ p−1
2 − 1, 7pn1+

5p+ p−1
2 − 1, 7pn1 + 6p+ p−1

2 − 1: with remainder 0 divided by 7 occupies a set, with remainder 1 divided by 7 occupies
a set, with remainder 2 divided by 7 occupies a set, with remainder 3 divided by 7 occupies a set; with remainder 4 divided
by 7 occupies a set, with remainder 5 divided by 7 occupies a set, with remainder 6 divided by 7 occupies a set, for a total of
7 sets.

Substituting p1p2 · · · pk = p, x = 7 into equation (5.3) yields 7pn1 +
p−1
2 − 3, 7pn1 + p+ p−1

2 − 3, 7pn1 + 2p+ p−1
2 −

3, 7pn1 + 3p+ p−1
2 − 3, 7pn1 + 4p+ p−1

2 − 3, 7pn1 + 5p+ p−1
2 − 3, 7pn1 + 6p+ p−1

2 − 3 for a total of 7 sets.
For {7pn1+

p−1
2 −3 | n1 ∈ N+}∪{7pn1+p+ p−1

2 −3 | ∈ N+}∪{7pn1+2p+ p−1
2 −3 | ∈ N+}∪{7pn1+3p+ p−1

2 −3 | ∈
N+}∪{7pn1+4p+ p−1

2 −3 | ∈ N+}∪{7pn1+5p+ p−1
2 −3 | ∈ N+}∪{7pn1+6p+ p−1

2 −3 | ∈ N+} = {pn+ p−1
2 −3 | n ∈

N+}, i.e., 7pn1+
p−1
2 −3, 7pn1+p+ p−1

2 −3, 7pn1+2p+ p−1
2 −3, 7pn1+3p+ p−1

2 −3, 7pn1+4p+ p−1
2 −3, 7pn1+5p+

p−1
2 − 3, 7pn1 + 6p + p−1

2 − 3. A decomposed group of complete system of residues each with remainder 0, 1, 2, 3, 4, 5, 6
divided by 7, based on pn+ p−1

2 − 3 modulo 7.
Then in 7pn1+

p−1
2 − 3, 7pn1+ p+ p−1

2 − 3, 7pn1+2p+ p−1
2 − 3, 7pn1+3p+ p−1

2 − 3, 7pn1+4p+ p−1
2 − 3, 7pn1+

5p+ p−1
2 − 3, 7pn1 + 6p+ p−1

2 − 3: with remainder 0 divided by 7 occupies a set, with remainder 1 divided by 7 occupies
a set, with remainder 2 divided by 7 occupies a set, with remainder 3 divided by 7 occupies a set; with remainder 4 divided
by 7 occupies a set, with remainder 5 divided by 7 occupies a set, with remainder 6 divided by 7 occupies a set, for a total of
7 sets.

A total of p+ p+ p+ 7 + 7 + 7 + 7 = 3p+ 21 sets of an1 + b is obtained as described in 7.3.1 and 7.3.2.
The above set of 3p+ 21 is then classified which is divided by 7 with the remainder 0, 1, 2, 3, 4, 5, 6 as follows.
There are only 3 + p sets divided by 7 with the remainder 0.
There are only 3 sets divided by 7 with the remainder 1.
There are only 3 + p sets divided by 7 with the remainder 2.
There are only 3 + p sets divided by 7 with the remainder 3.
There are only 3 sets divided by 7 with the remainder 4.
There are only 3 sets divided by 7 with the remainder 5.
There are only 3 sets divided by 7 with the remainder 6.
Features: A total of 3p + 21 sets of an1 + b is obtained, the most important of which are only 3 sets each divided by 7

with remainder 1, 4, 5, 6, and 3 + p sets each divided by 7 with remainder 0, 2, 3, then three groups of complete system of
residues divided by 7 with remainder 0, 1, 2, 3, 4, 5, 6 could be formed.

It could be drawn from Proposition 6.1 that in p1p2···pk

2 − 3 ≤ b ≥ (x − 1)p1p2 · · · pk + p1p2···pk

2 closed interval,there
are only equations (5.1), (5.2), (5.3) corresponding to all an1 + b subsets of K ∪ L ∪ S (m,n, k, n1 all take natural number,
p1p2 · · · pk may be identical, but none of them is equal to x. p1p2 · · · pk all take odd prime number).

1) Substituting p1p2 · · · pk = 7, x = p into p1p2···pk

2 − 3 ≤ b ≥ (x− 1)p1p2 · · · pk + p1p2···pk

2 yields: 0 ≤ b ≥ 7p− 4

2) Substituting p1p2 · · · pk = p, x = 7 into p1p2···pk

2 −3 ≤ b ≥ (x−1)p1p2 · · · pk + p1p2···pk

2 yields: −3 ≤ b ≥ 6p+ p−1
2

and because when p ≥ 11 takes prime, 0 < p−1
2 − 3, 7p− 4 > 6p+ p−1

2

Then when p ≥ 11 takes prime, 0 ≤ b ≥ 7p− 4 contains p−1
2 − 3 ≤ b ≥ 6p+ p−1

2 .
That is, the remainder b in the set an1 + b from equations (5.1), (5.2), (5.3) is all in the closed interval from 0 to 7p− 4.
So when p1p2 · · · pk = 7, x = p and p1p2 · · · pk = p, x = 7, p ≥ 11 takes prime, the remainder b of K ∪ L ∪ S is in the

closed interval from 0 to 7p− 4 and the coefficient n1 is 7p of the an1 + b set, which has only 3p+ 21.
Clearly the remainder b in the closed interval from 0 to 7p − 1 has three more values 7p − 3, 7p − 2, 7p − 1 than the

remainder b in the closed interval from 0 to 7p− 4.
So, the remainder b of K ∪ L ∪ S is in the closed interval from 0 to 7p − 4 and the coefficients n1 is 7p of an1 + b set

plus 7pn1 +7p− 3, 7pn1 +7p− 2, 7pn1 +7p− 1 three sets, then it could ensure b is in the closed interval from 0 to 7p− 1.



Then considering the case of adding three sets 7pn1 + 7p − 3, 7pn1 + 7p − 2, 7pn1 + 7p − 1 to K ∪ L ∪ S beyond the
3p+ 21 sets.

Since there are only 3 sets in 3p + 21 sets of K ∪ L ∪ S with remainder 1, 4, 5, 6, at most 3 sets of complete system
of residues with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7 could be formed. If one adds another group of complete system of
residues with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7, we must add at least each set with remainder 1, 4, 5, 6 divided by 7,
i.e., at least 4 more sets must be added. Obviously, adding 7pn1 + 7p − 3, 7pn1 + 7p − 2, 7pn1 + 7p − 1 three sets, it still
could not reach 4 sets at least. Then it could not add the complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6 divided
by 7. That is,

It means that adding 7pn1 + 7p − 3, 7pn1 + 7p − 2, 7pn1 + 7p − 1 to the above 3p + 21 sets of K ∪ L ∪ S still could
forms at most 3 groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7.

So, all remainder b in K ∪ L ∪ S is in the closed interval from 0 to 7p − 1 and the coefficient n1 is 7p of an1 + b set,
which could form at most 3 groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7.

Step 3: Analyze the p sets of pn, pn+ 1, pn+ 2, · · · , pn+ p− 1 with K ∪ L ∪ S. From the result of the first step of 7.3
that, if the p sets of pn, pn+ 1, pn+ 2, · · · , pn+ p− 1 are all K ∪ L ∪ S subsets, then there must be p groups of complete
residue in K ∪ L ∪ S with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7, and the p groups of complete residue in K ∪ L ∪ S with
remainder 0, 1, 2, 3, 4, 5, 6 divided by 7 are the ones with remainder b in K ∪ L ∪ S is in the closed interval 0 to 7p− 1 and
the coefficients n1 is all 7p of an1 + b subsets. And, since it could be drawn from the second step of 7.3 that the set of all
an1 + b sets in K ∪ L ∪ S with remainder b in the closed interval 0 to 7p − 1 and coefficient n1 is 7p,which could form at
most three groups of complete system of residues with remainder 0, 1, 2, 3, 4, 5, 6 divided by 7.

So, at most 3 of the p sets of pn, pn+1, pn+2, · · · , pn+p−1 satisfy the set transitivity by transferring the corresponding
subsets to K ∪ L ∪ S.

So, at most 3 of the p sets of pn, pn+ 1, pn+ 2, · · · , pn+ p− 1 are subsets of K ∪ L ∪ S.
Then, when n ≥ 0 takes natural number, at least p − 3 out of the p sets of pn, pn + 1, pn + 2, · · · , pn + p − 1 are not

subsets of K ∪ L ∪ S.
According to Proposition 2.3, the set of positive integer not belonging to K ∪ L ∪ S must be the set containing the triple

prime roots.
Then, when n ≥ 0 takes natural number, at least p − 3 of the p-sets in pn, pn + 1, pn + 2, · · · , pn + p − 1 are sets

containing the triple prime roots.
Then Proposition 4.1 holds when p ≥ 11 takes prime.
Since Proposition 4.1 holds when p = 5 and p = 7 has been proved in 7.1 and 7.2.
Then Proposition 4.1 holds when p ≥ 5 takes prime.
Since Proposition 4.1 was proved above to be an equivalent proposition of the infinity of triple prime, then the infinity of

triple prime holds.
Clearly there is a group of twin prime numbers in every group of triple prime numbers, then there are also infinite many

twin prime numbers, i.e., both the triple and twin prime numbers are infinite.
Also, since the triple prime conjecture is the infinity of triple prime and the twin prime conjecture is the infinity of twin

prime, then the triple prime conjecture and the twin prime conjecture hold.
Certificate completed.
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