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Abstract

We wish to systematically construct Wilsonian renormalisation group procedure of integrating infinitesimally thin

momentum shells on the brane QFT directly from the bulk physics. To achieve this we will combine holographic

renormalisation and establish a precise dictionary between a hard Wilsonian cut-off and quantities in the bulk.



2

I. INTRODUCTION

Holographic duality or AdS/CFT [1–3] has beside its fundamental conceptual importance to physics provided us
with a very useful tool for the study of strongly coupled quantum (conformal) field theories with an aid of their weakly
coupled classical gravity duals.
We wish to systematically construct Wilsonian renormalisation group procedure of integrating infinitesimally thin

momentum shells on the brane QFT directly from the bulk physics. To achieve this we will combine holographic
renormalisation as constructed in [6] and establish a precise dictionary between a hard Wilsonian cut-off and quantities
in the bulk.
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II. FROM HOLOGRAPHIC TO WILSONIAN RENORMALISATION IN ASYMPTOTICALLY ANTI-DE

SITTER SPACE WITH SCALARS

We begin our construction of Wilsonian renormalisation holography by considering scalar field theories in the bulk
with dual holographic scalar operators, as dictated by the AdS/CFT dictionary [2, 3]. Bulk metrics gMN in d + 1
dimensions will throughout this work be taken to be asymptotically Anti-de Sitter with a boundary at r = 0, where r
is the d+1’th radial coordinate. Capital latin indices run over d+1 dimensions, whereas we reserve greek indices for d
lorentzian brane dimensions with translational symmetry. Branes where dual quantum field theories live are parallel
to the AdS boundary as well as a black brane horizon in the interior of the bulk. In this section we will, however, only
study asymptotically AdS spaces without horizons or other kinds of singularities in the bulk. All boundary duals will
therefore be at zero temperature.
To systematically construct Wilsonian renormalisation group flow of the brane theory from holographic renormali-

sation and integration of bulk geometry we need to first set up the language of holographic renormalisation [6]. The
starting point from which we wish to flow is a field theory defined at the AdS boundary. Now since the metric at
the boundary diverges, so does the boundary action from which dual correlation functions are extracted. In order to
regulate this infinity, we instead of defining the boundary theory at r = 0, define it at r = ρ0 with ρ0 ≪ 1 very close to
AdS infinity. The value ρ0 will become dual to some initial Wilsonian UV cut-off Λ0. We will use variable ρ to specify
the radial position of the brane on which dual QFT lives. This regulated bare boundary action, SB[ρ0] ≡ Sreg

B [ρ0],
can be thought of as coming from the infinitesimally thin slab of geometry, the UV regime of the brane physics, where
0 ≤ r ≤ ρ0. In the limit when cut-off at ρ0 is taken to 0, the bare SB diverges. The existence of a well defined limit
is, however, essential for the AdS/CFT duality, as dual quantum field theory is defined at AdS infinity. We therefore
renormalise SB using holographic renormalisation whereby a counter-term action is introduced. Counter-terms are
taken to exactly equal divergent pieces of SB as ρ0 → 0, resulting in a ”minimal-subtraction” scheme, which we will
be using throughout this work. Subtracting counter-terms from initial SB[ρ0] therefore makes the overall on-shell
action finite in the ρ0 → 0 limit and removes all contact terms. The subtracted boundary action is then

Ssub
B [ρ0] ≡ SB[ρ0] − Sc.t.

B [ρ0]. (1)

A definition of the renormalised action, which is by construction finite in the ρ0 → 0 limit, naturally follows from the
subtracted action via relation

Sren
B ≡ lim

ρ0→0
Ssub
B [ρ0]. (2)

The regulated bare scalar boundary action at r = ρ0 coming from the UV is

SB[ρ0] = −1
2
∫

r=ρ0

ddx
√
−ggrrΦ∂rΦ. (3)

We will write the induced d-dimensional metric on a brane as γµν , which implies
√
−γ =

√
−g
√
grr. Note that we are

only considering theories with two-derivative terms in the kinetic energy of the Lagrangians. In principle, however,
higher derivative terms may arise in supergravity theories.
Treating the radial coordinate as time we can define a canonical conjugate to Φ by

Π ≡
δSsub

B

δΦ
. (4)

We similarly define a bare canonical conjugate momentum as

ΠB ≡
δSB

δΦ
= −
√
−ggrr∂rΦ. (5)

Given that we are working with two-derivative theories, this means that counter-terms will only involve terms with
quadratic powers of Φ:

Sc.t.
B [ρ0] = − ∫

r=ρ0

ddx
√
−γ (∆−

2
Φ2
+
1

2

∞

∑
n=1

cnΦ ◻
n
γ Φ) . (6)

We ignore possible terms arising from conformal anomaly. Subtracted boundary action (1) is then

Ssub
B [ρ0] = 1

2
∫

r=ρ0

ddxΠΦ, (7)
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which enables us to rewrite the original regulated bare action SB at initial ρ0 = ρ0 as

SB[ρ0] = 1

2
∫

r=ρ0

ddxΠΦ + Sc.t.
B [ρ0] = 1

2
∫

r=ρ0

ddx
√
−γ [ Π√

−γ
Φ −∆−Φ

2
−

∞

∑
n=1

cnΦ ◻
n
γ Φ] . (8)

We have for convenience suppressed constants in front of the action, such as Newton’s constant. It is however
important to keep in mind that these constant must always become large in the large N limit of the AdS/CFT
duality.
We now turn our attention to showing how Wilsonian effective action on the brane arises as a result of integrating

out infinitesimally thin slabs of bulk geometry [7]. Following the setup of Faulkner, Liu and Rangamani we write the
total bulk action for a scalar field with a boundary at ρ0 = ρ0 as

S = SB[ρ0] + ∫
r≥ρ0

dd+1x
√
−gL (Φ, ∂MΦ) , (9)

where L (Φ, ∂MΦ) = −1
2
∂MΦ∂MΦ−V (Φ). We assume a polynomial potential V (Φ) = 1

2
m2Φ2

+∑∞n=3 1
n
bnΦ

n, with the
mass term kept explicit. Further following [7] we can derive a functional flow equation for the bare boundary action,
which must be obeyed at any d-dimensional brane with a fixed r = ρ coordinate. The equation describes a flow of the
bare brane action from initial ρ0 = ρ0 into the bulk. It is obtained by varying position of the brane ρ → ρ + δρ and
insisting that the overall bare action (9) remains constant at any r = ρ:

∂ρSB[ρ] = −∫
r=ρ

ddxH = −∫
r=ρ

ddx(δSB

δΦ

∂Φ

∂r
−
√
−gL (Φ, ∂MΦ)) . (10)

The term ∂ρSB comes from the variation of the metric. Since we are neglecting the metric backreaction, components
of gMN can simply be treated as functions of r.
The procedure by which we obtained (10) is completely analogous to Wilsonian integration of momentum shells

by insisting that partition function of the bare action remains constant. Since we are only working with large N
theories, this is equivalent to insisting that the bare action remains constant. This is sufficient as all actions that our
analysis applies to become dominated by classical saddle points of the path integral in the large N limit. (10) is the
Hamiltonian evolution with time replaced by the radial coordinate.
Equation (10) can be rewritten as

√
grr(ρ)∂ρSB = −∫

r=ρ

ddx
√
−γ ( 1

2γ
(δSB

δΦ
)2 + 1

2
γµν∂µΦ∂νΦ + V (Φ)) . (11)

We will now impose the Dirichlet boundary conditions on the bare Φ at each step of the flow. We also keep its
dependence on ρ fixed all along the bulk. This condition is also motivated by Wilsonian procedure where bare fields
initially defined up to Λ0 also remain fixed after integration. If new cut-off is now some Λ1, then anomalous dimension
only enters when rescale Λ1 back to Λ0 to extract the flow of parameters in the effective action. Similarly in our setup
wavefunction renormalisation will enter
We use the Fourier representation

Φ(x, r ≥ ρ) = ∫ ddk(2π)d eik⋅xfk(r)φ0(ρ0, k), with fk(ρ) = 1, ∀ρ, (12)

where φ0(ρ0, k) is the non-renormalised boundary value of the scalar field. It is well known that in the standard

Dirichlet quantisation φ0 contains explicit cut-off dependence φ0(ρ0, k) ∝ ρ∆−0 in the leading term, near the AdS
boundary.
Flow equation will cause the coupling constants in SB to run as we move the boundary into the bulk and change

ρ. This must occur in order for the combination of SB and the integrated-out bulk to stay independent of the cut-off
ρ, which is analogous to the procedure of Wilsonian renormalisation group. There we study the flow of an action,
defined with a cut-off, by integrating out degrees of freedom just below the cut-off. The procedure results in obtaining
an effective action, which must after renormalisation give physical observables independent of the new cut-off ρ. In
flowing from ρ0 = ρ0 it is therefore clear that initial SB[ρ0] as written in (3), with the addition of Dirichelt boundary
conditions (12), will not be able to stay invariant under the change of geometry, unless new terms appear in the
Lagrangian to compensate for that. Since we could write SB at ρ0 = ρ0 as a combination of Ssub

B and Sc.t.
B in (8) we

can treat this combination as the definition of the bare SB at an arbitrary position ρ along the radial coordinate.

SB[ρ] ≡ Ssub
B [ρ] + Sc.t.

B [ρ] (13)
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Integrating out consecutive slices of geometry while keeping the total action as well as the boundary value of non-
renormalised field fixed will cause couplings as well as the wavefunction renormalisation to run. So to prevent
the renormalised correlation functions in the dual QFT from running, we must also take into account appropriate
wavefunction renormalisation. This can be done by noticing that at ρ0 = ρ0, Φ(ρ0, k) = ρ∆−0 Φren(ρ0). Now if ρ is

to replace the initial cut-off ρ0 we can anticipate that Φ(ρ, k) ∝ ρ∆−Z1/2(ρ, k), where Z is the usual wavefunction
renormalisation.
We define

Φ(ρ, k) ≡ ρ∆−Z1/2(ρ, k)Φren(ρ, k). (14)

When we apply the AdS/CFT prescription to calculate physical renormalised correlators, we will have take functional
derivatives of a finite renormalised Sren

B with respect to the renormalised field.
Flow of the renormalised boundary action from ρ0 = 0 along the radial coordinate will give us an effective boundary

theory at r = ρ where we can interpret ρ as a quantity corresponding to a Wilsonian cut-off of the dual effective field
theory. Initial theory at ρ0 = 0 should therefore corresponds to a UV complete QFT (CFT) with its cut-off taken to
infinity, without our running into problems such as a Landau pole.
Allowing for various terms to run in (8) we now use the definition (13) to write

SB[ρ] = α(ρ) + ∫
r=ρ

ddx
√
−γ [1

2
J(r, x)Φ − ∞∑

n=2

1

n
λn(r)Φn

−
1

2

∞

∑
n=1

κn(r)Φ ◻nγ Φ] . (15)

with higher order polynomial terms that may arise from potential V (Φ) terms in solving the RG equation (11). We
also included a possible scalar term α(ρ). We may interpret α an effective cosmological constant, which will only
affect the vacuum energy of the theory. No derivative terms with higher powers of Φ are expected as a result of our
working with two-derivative scalar actions.
We solve (11) in momentum space by imposing (12) at each boundary and matching coefficients of terms with

different powers of φ0 []. Various coefficients must take their initial values at ρ0 = ρ0: α(ρ0) = 0, J(ρ0, k) = Π(ρ0,k)√
−γ(ρ0)

,

λ2(ρ0) = ∆−, λn(ρ0) = 0, for n ≥ 3, and κn(ρ0) = cn. We can then take the ρ0 → 0 limit. It should be noted that
because J(r, k) involves derivatives of Φ it is important to Fourier transform it as a field and not simply treat it as a
coupling constant like λn or κn. This is a consequence of the Dirichlet boundary condition (12) allowing for non-trivial
derivatives of Φ with respect to the radial coordinate at different ρ. From initial condition at ρ0 and the finiteness of

Π(ρ0, k) it is clear that limρ0→0 J(ρ0, k) must vanish. It is natural to write J(ρ, k) on the flowing boundary as Π(ρ,k)√
−γ(ρ)

thus directly determining the value of the subtracted canonical conjugate momentum Π(ρ, k) at each step of the RG
flow.
The RG flow equations are given by the following set of differential equation

√
grr∂ρΠ = −2Π(λ2 +

∞

∑
n=1

κn (−kµkµ)n) , (16)

1√
−g

∂ρ (√−γλ2) = − λ2
2 + kµk

µ
+m2

+
2√
−γ

Πλ3 − 2λ2

∞

∑
n=1

κn (−kµkµ)n
−

1√
−g

∞

∑
n=1

[∂ρ (√−γκn) (−kµkµ)n] − ∞∑
n=1

∞

∑
m=1

κnκm (−kµkµ)n (−kµkµ)m (17)

1√
−g

∂ρ (√−γλn) = − n

2

∞

∑
m=2

n−m≥0

λmλn+2−m +
n√
−γ

Πλn+1 − nλn

∞

∑
m=1

κm (−kµkµ)m + bn (18)

and

1√
−g

∂ρα = −
1

2γ
∫ ddk(2π)dΠ(k)Π(−k). (19)

All equations are written in terms of finite renormalised quantities so we can go to r=0

On the gauge theory side the running of λn and κn corresponds to various multi-trace operators that turn on
in the effective Wilsonian action. The corresponding operators will be of form On and O(∂2)nO. As a result of
our restriction to two-derivative bulk theory there will be no terms like Ol(∂)mOn, which can in principle exist in
Wilsonian effective lagrangians and would come from a complete bulk supergravity.
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III. TWO-POINT CORRELATION FUNCTIONS IN PURE ANTI-DE SITTER SPACE

To make a connection between the RG equations (16) - (19) coming from the bulk and the boundary physics we use
the fact that a two-point correlation function is completely determined by Π. [][Iqbal,Liu] In the standard AdS/CFT
prescription we look for a flux factor F(r, k), which gives a subtracted action

Ssub
B = −

1

2
∫ ddk(2π)dφ0(ρ0, k)F(ρ, k)φ0(ρ0,−k)∣ρ=rH

ρ=ρ0

, (20)

with rH the position of the horizon, giving us the dual correlator. Boundary condition (12) fixes φ0(ρ0, k) along the
flow. Equation (7) implies

F(ρ, k) = − Π(ρ, k)
φ0(ρ0, k) , (21)

where φ0(ρ0, k) is the non-renormalised cut-off dependent boundary field. A two-point correlation function is then
given by

G(k) ≡ ⟨O(k)O(0)⟩ = −F(ρ, k) (22)

where the type of the two-point function (retarded, advanced, etc.) is determined by the boundary conditions imposed
on Φ and consequently on Π. When removing the cut-off by taking ρ0 → 0, the canonical conjugate momentum Π is
well defined and finite by construction of holographic renormalisation. However, this does not mean that the limit
is well defined for correlation functions computed via standard AdS/CFT procedure in which we take functional
derivatives of Ssub

B . An important subtlety in a complete removal of ρ0 dependence from the correlation functions
comes precisely from the fact that φ0(ρ, k) is not renormalised. The wavefunction renormalisation must, as discussed
in section II, be taken into account to obtain cut-off independent renormalised correlators.
Let us now for simplicity look at a case of pure AdSd+1 spacetime with a metric in Poincare coordinates

ds2 =
R2

r2
(−dt2 + dx⃗2

d−1 + dr
2) , (23)

where we henceforth set R = 1. A scalar field solution near the boundary can be written as Φ = ρ∆−0 φ1 + .... To

completely remove cut-off dependence we need to write, as in II, φ0 = ρ
∆−
0 φren

0 , which gives

Gren(k) = δ

δφren
0

δ

δφren
0

Sren
B = lim

ρ0→0
ρ2∆−0

δ

δφ0

δ

δφ0

Ssub
B = lim

ρ0→0
ρ2∆−0 G(ρ0, k) (24)

at the initial cut-off.
In a calculation of a two-point function for a scalar field in pure AdS space we know that after all the divergent

contact terms are removed, the two-point function has a G(ρ0, k) ∼ ρ−2∆−0 dependence. This is exactly cancelled by

the ρ2∆−0 above coming from renormalised φ0, making the renormalisation limit ρ0 → 0 possible. A combination of
counter-terms and wavefunction renormalisation therefore, as in the usual quantum field theory, renders correlation
functions finite and cut-off independent. In flowing into the bulk we can then write, using (14), φ0 = ρ

∆−Z1/2(ρ)φren
0 ,

which gives

Ssub
B = −

1

2
∫ ddk(2π)dφren

0 (k) [ρ2∆−Z(ρ)F(ρ, k)]φren
0 (−k)∣rH

ρ
. (25)

We can define a renormalised flux factor

F
ren(ρ, k) ≡ ρ2∆−Z(ρ)F(ρ, k), (26)

which equivalently to equation (22) gives a renormalised two-point correlation function in the dual QFT

Gren(k) ≡ ⟨O(k)O(0)⟩ren = −F ren(ρ, k). (27)

To see how wavefunction renormalisation fits into our renormalisation group picture we solve equation (16) in
AdSd+1 with all κn = 0. This is allowed when we are interested in the IR behaviour of correlation functions and
because the series of counter-terms naturally stops at some cn, depending on the operator dimension ∆O [][Skenderis].



7

We know that λ2 can be written, using the initial conditions, as λ2(ρ) =∆− + γ(ρ), where γ(ρ0) = 0. We first rewrite
(16) in a more suggestive way as

(ρ ∂

∂ρ
+ 2∆− + 2γ(ρ))Π(ρ) = 0. (28)

Its solution with some initial Π(ρ0) is
Π(ρ) = Π(ρ0) exp{−2∫ r=ρ

r=ρ0

(∆− + γ(r))d ln r}
= Π(ρ0) (ρ0

ρ
)2∆− exp{−2∫ r=ρ

r=ρ0

γ(r)d ln r} . (29)

Using (21), (22) and the fact that the non-renormalised φ0(k) is independent of ρ at each boundary, as specified by
the Dirichlet boundary condition (12), it is clear that

d

dρ
( Π(ρ, k)
φ0(ρ0, k)) =

1

φ0(ρ0, k)
d

dρ
Π(ρ, k). (30)

This implies that the same renormalisation group equation describes both the flow of Π and the non-renormalised
two-point function. Its solution is similarly

G(ρ, k) = G(ρ0, k) (ρ0
ρ
)2∆− exp{−2∫ r=ρ

r=ρ0

γ(r)d ln r} . (31)

Now using (24) and the fact that G(ρ0, k) ∼ ρ−2∆−0 we see that cut-off dependence will be replaced by dependence
on position of the d-dimensional brane on which the dual QFT is defined. This corresponds to dependence on the
physical scale Λ, which is a function of ρ. The new ρ dependence is consistent with original ρ0 dependence at initial
ρ0 = ρ0. In the limit ρ0 → 0 therefore

Gscl(ρ, k) = Gscl
0 (k) exp{−2∫ r=ρ

r=0
γ(r)d ln r} , (32)

where we define a scale-ρ dependent correlator, Gscl(ρ, k) ≡ G(ρ, k)ρ2∆− . However Gscl
0 , despite being independent of

ρ∆− , cannot be the renormalised two-point function on the QFT side because of its scale/Wilsonian cut-off dependence.
To clarify this point let us look for a differential equation describing Gscl. Given that G(k) must satisfy the same

RG equation as Π, we can use G(ρ, k) = ρ−2∆−Gscl(ρ, k) to obtain

(ρ ∂

∂ρ
+ 2γ(ρ))Gscl(ρ, k) = 0. (33)

This is precisely the Callan-Symanzik equation we would expect from Wilsonian renormalisation group procedure for
a bare two-point function with an anomalous operator dimension γ(ρ) when Gscl contained no explicit dependence on
coupling constants in the effective action. Position of the brane ρ plays the role of the running Wilsonian cut-off scale.
Its solution is (32). All coupling dependence is either written explicitly in terms of ρ or the anomalous dimension.
This is not unexpected as we are deriving running couplings on the QFT side directly from the bulk physics. No
perturbative treatment of correlation functions in terms of the coupling is necessary. It is also a well known fact that
a beta function for a double-trace coupling in large-N QFT is directly determined by the anomalous dimension of the
operator [].
We now wish to see how physical renormalised two-point functions behave in this setup. Using the flow of Π we

write

1

ρ2∆−Z(ρ)ρ ∂

∂ρ
[ρ2∆−Z(ρ)G(ρ, k)] = (ρ ∂

∂ρ
+ 2∆− + 2γ(ρ))G(ρ, k) = 0, (34)

where, as usual, γ(ρ) ≡ 1
2
d lnZ
d lnρ

. Note that in our case Z(ρ) is expressed explicitly as a function of ρ so partial

derivative with respect to ρ is the same as a total derivative. Finally using (26) and (27), equation (34) implies that
for a renormalised two-point function, also expressed explicitly as a function of ρ,

∂

∂ρ
Gren(k) = 0. (35)
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It is therefore, as required, independent of the renormalisation procedure and the running Wilsonian cut-off.
sectionTwo-point correlation functions in asymptotically Anti-de Sitter spaces at non-zero temperature
We now generalise the discussion from section III to asymptotically Anti-de Sitter spaces with holographic duals

at finite temperature. We will focus on brane geometries with the following form of Poincare coordinate metrics and
AdS infinity at r = 0:

ds2d+1 = gtt(r)dt2 + gij(r)dxidxj + grr(r)dr2, (36)

so that gtt and grr include a thermal factor f(r). As a specific example we first consider a near-extremal D3 brane
in 10 dimensions

ds2 =
r40
R2

1

r2
(−f(r)dt2 + dx⃗2) + R2r20

r2f(r)dr2 +R2dΩ2
5, with f(r) = 1 − r4

r40
. (37)

We set the AdS radius to R = 1 and neglect the spherical dΩ5 space so that we are left with a d + 1 = 5 dimensional
spacetime. Horizon of the black brane is at r0. We are interested in behaviour of two-point Green’s functions dual
to a scalar field propagating in this geometry. Setting as before in low momentum regime all κn to zero and writing
λ2 =∆− + γ, equation (16) becomes

⎛⎝ρ ∂

∂ρ
+ 2

∆− + γ2(ρ)√
f(ρ)

⎞⎠Π(ρ, k) = 0. (38)

A new feature, compared to pure AdS, is the appearance of the thermal factor in the anomalous dimension term. To
see that this makes sense we analyse operator dimensions by solving the equation of motion of a massive scalar field
in thermal AdS background. [] The equation of motion is 1√

−g
∂r (√−ggrr∂rΦ)+gµν∂µ∂νΦ−m2Φ = 0. We need to find

solutions near the AdS boundary (r ≪ 0). In pure AdS spacetime we assume a power-series expansion of Φ which
gives us Bessel function solutions. Near boundary the leading term proportional to r∆ gives a relation ∆(∆−d) =m2

where in our Dirichlet (standard) quantisation we take d −∆ ≡ ∆+ to be the dimension of the dual operator O to Φ.
The other, smaller, solution is our ∆− ≡∆.

If we use the D3 thermal metric (37) and assume as before that the leading term is r∆− , where ∆− is independent
of r we get the leading order condition ∆(∆ − d)f(r) =m2. Now of course in the limit r → 0, f(r) → 1 so dimension
of the dual operator at AdS infinity stays independent of the thermal factor. But this identity suggests that thermal
factor will play a role in the scaling dimension of operators as we flow into the bulk towards the horizon. Assuming

instead that Φ ∼ r∆−/
√

f(r) for small, but non-zero r, we have ∂rΦ =
∆−√
f
r∆−/

√
f−1
−

∆− ln r∂rf

2f3/2 r∆−/
√

f . The value of

initial r is in fact 0 ≠ ρ0 ≪ 1, which is consistent with this discussion. Using ∂rf ∼ r
3 then the two terms scale as r∆−−1

and r∆−+3 ln r, respectively, showing that first term remains the leading contribution. We can therefore neglect the
second term coming from the differentiation of the thermal factor near the boundary. Hence dimensions ∆± rescaled
to ∆̃± =

∆±√
f(r) for r ≪ 1 give the original ∆̃−∆̃+ = −m

2 in the presence of non-zero temperature. It is therefore not

surprising that anomalous operator dimension will receive the same thermal correction.
Using analysis of section III, we can remove the ∆−/√f term from equation (38) by interpreting it as initial cut-off

dependence term. We write the thermal field as

Φ(ρ, k) ≡ ρ∆−/√f(ρ)Z1/2
T (ρ, k)Φren(ρ, k). (39)

and the new anomalous dimension with a thermal factor as γ(ρ)√
f(ρ) ≡

1
2
d lnZT

d lnρ
. The scale dependent two-point correlator

becomes

Gscl
T (ρ, k) = Gscl

0T (k) exp
⎧⎪⎪⎨⎪⎪⎩−2∫

r=ρ

r=0

γ(r)√
f(r)d ln r

⎫⎪⎪⎬⎪⎪⎭ (40)

whereas the fully renormalised thermal correlator Gren
T (k) remains, as required, independent of the Wilsonian cut-off

scale ρ.
This discussion can easily be generalised to Dp branes as well as M2 and M5 brane backgrounds. Specific solutions

of the anomalous dimension and beta functions will of course vary depending on the specific metric.



9

IV. HYDRODYNAMIC TRANSPORT COEFFICIENTS

We now turn our attention to hydrodynamics and attempt to see what can be learnt about transport coefficients
using our insights from the connection between Wilsonian and holographic renormalisation groups. A physical renor-
malised hydrodynamic transport coefficient χ is defined using Kubo formula as

χ = − lim
ω→0

lim
k⃗→0

1

ω
ImG

ren,R
T (ω, k⃗). (41)

As the simplest example we can study the shear viscosity of a holographic CFT. The relevant correlator to be used
in (41) is the retarded energy-momentum ⟨[Txy, Txy]⟩. Its dual bulk excitation is the hxy component of a massless
graviton field, which satisfies the massless scalar field equation in the bulk. [] This enables us to directly apply the
analysis from section II. The dimension of T is ∆ = d, which implies that ∆− = 0. As a result a new term proportional
to lnρ0Φ ◻ Φ enters into the counter-term action. The term vanishes in the zero-momentum limit faster then the
logarithm blows up as ρ0 → 0. It is also important that we take the limit of vanishing momentum before removing
cut-off ρ0. We can therefore neglect the term, leaving us with a simple RG equation for anomalous dimension

1√
−g

∂ρ (√−γλ2) = −λ2
2, (42)

with initial condition λ2(ρ0) = 0, coming from the vanishing ∆−.
Scale dependent running of a bare, non-renormalised, transport coefficient χ is

χ(ρ) = − lim
ω→0

lim
k⃗→0

1

ω
Im

⎡⎢⎢⎢⎢⎣G
scl,R
0T (ω, k⃗) exp⎧⎪⎪⎨⎪⎪⎩−2∫

r=ρ

r=0

γ(r, ω, k⃗)√
f(r) d ln r

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎦ , (43)

where the fact that we are using a retarded two-point function will result in imposing the appropriate infalling
boundary condition on Π(ρ, k).
Entropy density is s = −V ∂TF . Bare free energy on the moving brane can be viewed as scale dependent in the same

way χ(ρ) is.
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V. DOUBLE TRACE DEFORMATIONS

In this section we study the renormalisation group equations describing the radial evolution of anomalous operator
dimension induced by effective double-trace deformations. We may safely neglect all higher-trace deformations in our
study of large-N flows, as all such deformations are sub-dominant in the large-N limit [11]. Another reason is that
by working in the standard (Dirichlet) quantisation, the smallest possible operator dimension is ∆O = d/2 implying
that any triple-or higher-order operator would be irrelevant. Even in the alternative (Neumann) quantisation with a
scalar operator obeying the unitarity bound, the smallest dimension would be ∆O = d/2 − 1. Such an operator could
only have a marginal triple-trace deformation in d = 6 dimensions. The relevant renormalisation group equation is
then given by

1√
−g

∂ρ (√−γλ2) = −λ2
2 − (d2 − ν)(d2 + ν) + kµkµ, (44)

which we will analyse in various asymptotically AdS backgrounds.

A. Duality in pure AdSd+1 spacetime

As for our first example let us find the anomalous dimension of a scalar operator dual to a massive scalar in pure
AdSd+1 with the metric in Poincare coordinates given by

ds2 =
L2

r2
(−dt2 + dx⃗2

d−1 + dr
2) . (45)

We set the AdS radius to L = 1 throughout this work. Writing λ2(ρ) = ∆− + η(ρ), equation (44) for the flow of η
becomes

ρ
∂η

∂ρ
= −η (η − 2ν) + k2ρ2. (46)

From our construction of holographic renormalisation we know that at AdS infinity η must vanish, η(0) = 0, so that
∆−Φ

2 term can cancel the bare divergence. All quantities appearing in renormalisation group equations (16) and (44)
are finite in the limit of ρ0 → 0. The starting point of all RG flows will therefore be at ρ = 0.

We will impose two conditions on the behaviour of η: firstly that η be monotonically increasing as ρ runs into the
bulk, and secondly that η, as well as λ2, be real and non-singular throughout the flow. This means that ∂η

∂ρ
≥ 0, which

immediately implies the positivity η ≥ 0 for all ρ. These conditions are, as we will see, very natural for a well-behaved
flow of anomalous dimension between two fixed points of the theory. In particular, flowing to a complex operator
dimension would imply an unstable theory. Such dynamical symmetry breaking would inevitably break conformal
symmetry [11].
For timelike physical momenta, k2 < 0, we have k2ρ2 ≤ 0. This in combination with the above conditions conse-

quently imposes a strict constraint on the allowed values of η. Since ρ∂η

∂ρ
≥ 0, the only way for the right-hand side

of (46) to be non-negative is if η − 2ν remains sufficiently negative while ρ increases. To see this note that at ρ = 0,
η(η − 2ν) = 0 as well as k2ρ2 = 0. Now as ρ increases the first term −η(η − 2ν) ≥ 0 grows larger until η > 2ν. At that
point the overall sign of the first term flips and becomes negative. The second term however decreases monotoni-
cally into negative values and may quickly begin to dominate over the first term, running the entire righ-hand-side
of (46) into negative values before η = 2ν. Function η(ρ) therefore reaches its maximal value η× at some ρ× when

−η× (η× − 2ν) + k2ρ2× = 0. The two possible solutions, η× = ν ±
√
ν2 + k2ρ2

×
, can only be real if

√
−k2ρ× ≤ ν. But

given that we seek maximal ρ× this inequality implies that ρ× = ν/√−k2. The largest possible value of η, given some
timelike momentum and ν, is therefore η× = ν irrespective of our choice of solution. Despite this, the correct solution
would be the (−) one because at ρ× = 0, required when −k2 → ∞, η× should vanish for it to be consistent with the
initial condition. Only in this case can η and its derivative be continuous and non-singular. Furthermore, since the
right-hand-side of (46) vanishes at ρ× > 0, we clearly have a maximum ∂η×

∂ρ
= 0 for any timelike operator momentum

at the point where the RG flow terminates. Note that we did not impose the vanishing derivative in our conditions.
The solution of equation (46) can be written in terms of Bessel functions as

η(ρ) =√−k2ρYν−1(ν)Jν−1(√−k2ρ) − Jν−1(ν)Yν−1(√−k2ρ) − Yν(ν)Jν−1(√−k2ρ) + Jν(ν)Yν−1(√−k2ρ)
Yν−1(ν)Jν(√−k2ρ) − Jν−1(ν)Yν(√−k2ρ) − Yν(ν)Jν(√−k2ρ) + Jν(ν)Yν(√−k2ρ) , (47)
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with range of 0 ≤ ρ ≤ ν√
−k2

. Note that this solution is well defined for all real ν > 0, above the Breitenlohner-Freedman

bound [12]. For non-integer values of ν, (47) can be simplified to give

η(ρ) =√−k2ρ [J−ν−1(ν) + J−ν(ν)]Jν−1(
√
−k2ρ) + [Jν−1(ν) − Jν(ν)]J1−ν(√−k2ρ)[J−ν−1(ν) + J−ν(ν)]Jν(√−k2ρ) + [Jν(ν) − Jν−1(ν)]J−ν(√−k2ρ) . (48)

Conditions which allowed us to find a solution to the RG flow of η also give a clear interpretation of the induced
momentum cut-off. If we reverse the argument and insist on integrating out geometry between 0 ≤ ρ ≤ ρ×, then there

is a limited interval of timelike momenta that operators can take after integration. The relation is
√
−k2 ≤ ν/ρ×, which

implies the presence of a hard momentum cut-off on the brane side of holographic duality, induced by the sliding

brane. In fact this is exactly analogous to a hard Wilsonian UV cut-off with a Lorentzian signature
√
−k2 ≤ Λ, defining

the energy scale up to which an effective field theory is valid. The situation is somewhat different from the Euclidean
field theory case, since we are effectively integrating out energy-momentum regions above floating hyperbolae in a
light-cone diagram, down to asymptotically lightlike momenta. An exact k2 = 0 can nevertheless not be reached
and we need to treat that case separately. The same inequality holds for any chosen momentum scale k2 of an
operator as well as any chosen scale ρ× where we decide to terminate the integration. We can therefore find an exact
correspondence between parameters describing the bulk physics and their dual Wilsonian UV cut-off Λ(ρ, d,m, ...). It
is also important for this identification that the operator ρ∂/∂ρ is invariant under ρ → aρ, for constant a. Hence the
boundary energy scale is Λ = ν/ρ. Λmin = ν/ρ× is then the lowest possible scale down to which we can integrate from
Λ→∞, given some momentum k at which we wish to evaluate the operator. It is important to note that the constant
of proportionality ν is merely a result of bulk coordinates we used in (45) to establish the dictionary between that
particular bulk space and its boundary dual. We could easily redefine r → νr to give us a metric

ds2 =
1

ν2r2
(−dt2 + dx⃗2

d−1) + dr2

r2
. (49)

In this background we obtain
√
−k2ρ× ≤ 1 and hence Λ = 1/ρ. For a general Poincare-like AdS chart we can therefore

conclude that the Wilsonian energy scale, and cut-off, of a boundary theory is related to the radial bulk coordinate
by

Λ =
C(r, d,m, ...)

r
, (50)

where C is a constant which depends on the bulk quantities describing the background metric and can be found
exactly following the above procedure. Our analysis is thus consistent with the long anticipated relationship Λ∝ 1/r
[4, 5]. In addition, it also uniquely determines the proportionality constant for a given pair of holographically dual
theories.
At the Breitenlohner-Freedman bound with ν = 0, and for arbitrary momentum, the RG flow analysis breaks down

unless ρ× = 0. This is also apparent from the metric (49) which is singular at ν = 0. The only option to have an RG
flow compatible with such an operator at the UV fixed point is when O has lightlike on-shell momentum k2 = 0. The
solution is still η(ρ) = 0 and the anomalous dimension does not run, but it is well defined for all ρ.
In a lightlike case with k2 = 0, equation (46) drastically simplifies for all operator dimensions. To satisfy the

monotonicity condition, the anomalous dimension must behave as η× → 2ν when ρ× →∞. Solution of equation (46)
that satisfies the required conditions is then

η(ρ) = 2νχρ2ν

1 + χρ2ν
, (51)

as previously found by [7, 8]. Constant χ cannot be determined from the boundary conditions we set, but needs to
be matched with the normalisation of the corresponding two-point correlator.
For spacelike momenta k2 > 0 the energy scale becomes pure imaginary. Having found that radial coordinate is

proportional to the energy of the dual theory, it is therefore natural to take r → ir. The analysis of (46) then goes
through in exactly the same way as for timelike momenta. We obtain k2 ≤ Λmin = ν/ρ× and Λ = C/r.
Anomalous dimension is momentum dependent, where highest energy modes have always the same

anomalous dimenision. Theory is truly conformal as it looks the same at all scales. Conformal, since

we can connect the vanishing beta function to the vanishing derivative of anomalous dimenions, as has

to be made clear in previous section.
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B. GPPZ flow from N = 4 to N = 1

The GPPZ flow [9] describes a flow from an N = 4 theory in the UV, to an N = 1 in the IR. This is achieved
by deforming the N = 4 theory with a relevant mass deformation. The theory then flows between two fixed points
as shown in [9, 10]. The bulk supergravity for this construction consists of type IIB scalar modes deforming the
original AdS5×S

5 metric. This 10-dimensional type IIB theory is then truncated on S5 to give a 5-dimensional N = 8
supergravity with 42 scalars. The scalars transform as 1, 20 and 10 under the N = 4, SU(4)R, R-symmetry. The
masses of these fields are m2

= 0, −4 and −3, respectively. The GPPZ flow then describes the metric deformation
resulting from the backreaction with scalars of m2

= −3. This corresponds to a dual deformation of dimension 3
by scalar operator in 4 spacetime dimensions, which can be identified as a fermion bi-linear operator with coupling
constant of mass dimension 1 [9]. We further truncate the theory to only account for the large-N -dominant effective
double-trace deformations and consider the background as static. We also set the supergravity scalar coupling constant
to a value which cancels the scalar potential contribution V = −3 at φ = 0. This results in the same scalar theory we
have been considering so far with mass m2

= −3 and a 5-dimensional metric

ds2 =
1

r2
(1 − r2

r20
)(−dt2 + dx⃗2) + dr2

r2
. (52)

By r0 we denote the radial position where the flow terminates at the IR N = 1 fixed point. Note that this metric is
simply obtained from its original form in [9] by defining y = − ln r and λ = + ln r0.

We can now analyse the renormalisation group flow of a scalar operator deformed by both effective double-trace and
a relevant mass deformation. Mass deformation being provided by the GPPZ flow of the supergravity metric through
its r dependence and double-trace deformation being ensured by the quadratic term in the bulk scalar potential.
Writing as before λ2 = 2 − ν + η, the renormalisation group equation (44) for η in background (52) becomes

ρ(1 − ρ2

r20
) ∂η
∂ρ
= −(1 − ρ2

r20
)η (η − 2ν) + 4ρ2

r20
(2 − ν + η) + ρ2k2, (53)

with ν = 1 in the GPPZ flow. We may however keep ν, as well as m, general for now, restricting it only to relevant
and marginal deformations with ν ≤ 2 so that (2 − ν + η) ≥ 0. We use the same reasoning as in the pure AdS case in
section VA to determine where the flow terminates given some timelike momentum k2 < 0. Given that the pure AdS
scenario corresponds to an undeformed conformal N = 4 theory it is especially interesting to compare its RG flow
with the RG flow in this section. For a monotonically increasing, positive and non-singular η, the only term which
can run the right hand side of (53) into negative values for η < 2ν is ρ2k2. As before, to find the maximal η× at ρ×,
the right-hand side of (53) has to vanish. The two solutions are

η× = ν +
2ρ2
×

r20 − ρ
2
×

±
r20

r20 − ρ
2
×

GHHI
ν2 (1 − ρ2

×

r20
)2 + ρ2

×
k2 (1 − ρ2

×

r20
) + 8ρ2×

r20
(1 − ρ2

×

r20
) + 4ρ4×

r40
. (54)

For η× to be real when ρ× is maximal, the expression under the square-root needs to be non-negative. The term
∼ ρ2
×
k2 < 0 will however cause the expression to inevitably flow towards 0. We could at this point impose a condition

whereby the entire expression under the square-root need be non-negative. This is however insufficient in case ρ× = r0,
when despite the vanishing square-root, the second term in η×, 2ρ2

×
/ (r20 − ρ2×), blows up, thus violating the non-

singularity condition we imposed on λ2. To remedy this problem we, as before, select the (−) solution and impose

ν2 (1 − ρ2

×

r2
0

) + ρ2
×
k2 + 8

ρ2

×

r2
0

≥ 0, which at maximal ρ× turns into an equality and enables the 4ρ4
×
/r40 term under the

square-root to cancel the diverging second term in η× as ρ× → r0. Rewriting the inequality we can determine the
allowed momentum range under the scale set by some maximum ρ or equivalently Λmin. In other words we can
determine the range of consecutive momentum shell integrations given some operator momentum

−k2 ≤
ν2

ρ2
+
4 −m2

r20
, (55)

where 4 −m2
= 8 − ν2 and in the case of GPPZ flow −k2 ≤ 1/ρ2 + 7/r20. In the limit of ρ→ r0,

√
−k2 ≤ 2

√
2/r0.
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C. Black brane in AdSd+1

The metric of a black brane in a d + 1-dimensional AdS space is given by

ds2 =
L2

r2
(−f(r)dt2 + dx⃗2

d−1 +
dr2

f(r)) , with f(r) = 1 − rd

rd0
. (56)

It is convenient to write λ2(ρ) = √f(ρ) (d
2
− ν + η(ρ)). Note that the condition λ2(0) = ∆− is still satisfied, since

f(0) = 1 and we, as before, require that η(0) = 0. Renormalisation group flow equation (44) then becomes

fρ
∂η

∂ρ
= −η (η − 2ν) + ρd

rd0
(d
2
− ν + η)2 − ρ2ω2

f
+ ρ2k⃗2. (57)

Although it may be very difficult to find an analytic solution to (57) for all energies and momenta, we can still extract
a relationship between Wilsonian cut-off and the bulk. Using the same monotonicity and positivity conditions as in
VA we obtain

η(ρUV) = ν + d

2

ρd

rd0 − ρ
d
−

rd0
rd0 − ρ

d

GHHId2

4

ρd

rd0
+ ν2 (1 − ρd

rd0
) − ρ2ω2 + ρ2k⃗2 (1 − ρd

rd0
) (58)

Impose

d2

4

ρd

rd0
+ ν2 (1 − ρd

rd0
) − ρ2ω2

+ ρ2k⃗2 (1 − ρd

rd0
) ≥ d2

4

ρ2d

r2d0
(59)

reduces to

ω2

f(ρ) − k⃗2 ≤ ν2

ρ2
+
d2

4

ρd−2

r20
=
ν2

ρ2
(1 + ρd

rd0
) − m2

ρ2
ρd

rd0
(60)
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VI. SUMMARY

● Find all holographic counter-terms invariant under the diffeomorphism group of bulk isometries needed to renor-
malise the boundary action at AdS infinity, ρ0 → 0.
● Rewrite the bare boundary action in terms of the renormalised boundary action and a complete set of holographic

counter-terms. Holographic counter-terms in the bare action directly correspond to additional Wilsonian terms in the
effective QFT action coming from integrating out high-momentum modes.
● Holographic counter-terms are invariant under d + 1-dimensional bulk isometry group. Therefore all terms in

Wilsonian d-dimensional effective action also transform under the same group. This is consistent with the AdS/CFT
dictionary, which equates the group of bulk isometries to the group of symmetries of the dual boundary quantum field
theory.
● Use the Hamiltonian evolution equation, with radial direction treated as time, to derive the renormalisation group

equations for couplings and anomalous dimensions of the Wilsonian effective action.
● For a conformal field theory flowing between two fixed points find the value of the radial coordinate ρ where,

in dependence of physical momentum, the evolution terminates. From this value, we can extract the exact relation

between a hard Wilsonian cut-off
√
−k2 ≤ Λ and quantities describing the bulk physics Λ(ρ, d,m, ...). Λ is as expected

proportional to 1/ρ in Poincare coordinates.

VII. NOTES

We have proven that monotonically increasing η automatically implies a flow between two fixed points.
All theories we study are conformal in the single-trace sector. This is controlled by the large-N limit.Quantum

corrections to mass in the bulk would give single-trace running. ν(ρ)⇒m(ρ)
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