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1 Introduction

We begin by considering the exact Wilsonian renormalisation group equation

∂tS =

∫
p
(c+ 2p2)

(
δ2S

δϕpδϕ−p
− δS

δϕp

δS

δϕ−p
+ ϕp

δS

δϕp

)
, (1.1)

where we denote ∫
p
=

∫
ddp

(2π)d

for a more compact notation. As an equation for the action S, this is a non-linear equation,

containing terms quadratic in the action. Note however that if we instead consider the

functional

ψ = e−S ,

then this equation can be rewritten as

∂tψ =

∫
p
(c+ 2p2)

(
δ2ψ

δϕpδϕ−p
+ ϕp

δψ

δϕp

)
, (1.2)

or

∂tψ = Hψ , (1.3)

where

H =

∫
p
(c+ 2p2)

(
δ2

δϕpδϕ−p
+ ϕp

δ

δϕp

)
. (1.4)

This then turns exact RG theory into solving a linear differential equation.
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Note that in the Wilsonian case, the ”Hamiltonian” H is independent of the RG-time

t. This is not the case for generic functional RG equations, like the Polchinski equation. If

however the RG-time dependence of H can be pulled out in a function, so

H(t) = f(t)H0 ,

where H0 is RG-time independent. Then the RG-equation can be written as

∂t̃ψ = H0ψ ,

where the new variable t̃ is defined by

dt̃

dt
= f(t) .

The point is that since (1.3) is a linear equation with a t-independent right hand side, it

can be solved using methods similar to that of quantum mechanics. In particular, (1.3)

looks very much like a Schrödinger type equation.

2 Functional Quantum Mechanics

Inspired by the look of (1.3), we proceed to ”solve” this equation, employing similar meth-

ods to that of Quantum Mechanics. First, let |ψi⟩ be an eigenvector of H, i.e.

H|ψi⟩ = λi|ψi⟩ , (2.1)

and we have gone to bra-ket notation. We assume that the set of eigenvectors {|ψi⟩} is

complete and that the functions can be labeled by an index i. Note that i is not necessarily

discrete.

By completeness, any functional ψ may then be written as

ψ =
∑
i

αiψi . (2.2)

We further assume that we have an inner product ( , ) on the space of functionals, making

it into a Hilbert space. E.g. we can take the inner product to be the path integral

(ψ1, ψ2) = ⟨ψ1|ψ2⟩ =
∫

Dϕ ψ1[ϕ]ψ2[ϕ] ,

where we have allowed for complex valued functionals as well. We assume the eigenfunc-

tionals ψi are normalized with respect to this inner product,∫
Dϕψi[ϕ]ψj [ϕ] = δij , (2.3)

where δij denotes the ”Kronecker delta”. Note that δij can be a functional in general. E.g.,

if we are dealing with a ”free” Hamiltonian, so

H ∝ δ2

δϕδϕ
=

∫
x,y

∆(x, y)
δ2

δϕxδϕy
,
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where we have introduced a ”metric” ∆(x, y) on the space of dummy indices {x, y}. Then
the eigenfunctionals are of the form

ψJ [ϕ] ∝ ei
∫
x ϕxJx .

It follows that

(ψJ , ψJ ′) ∝ δ(J − J ′) ,

i.e. the functional delta-function. Note that in this sense, the currents J behave as con-

jugates to the fields ϕ, just like momenta p conjugate to positions x in usual quantum

mechanics. We assume that H is self-adjoint with respect to the inner product. By com-

pleteness of the set {|ψn⟩}, we can derive the usual decomposition of unity

1 =
∑
n

|ψn⟩⟨ψn| .

Using this, it is further easy to derive the spectral theorem for H,

H =
∑
i

λi|ψi⟩⟨ψi| . (2.4)

One could in principle compute different weights αi,

(ψi, ψ) = αi =

∫
Dϕψiψ . (2.5)

This would then imply that an RG flow of any theory can be represented by a flow of

coefficients multiplying different weights of theories. Plugging (2.2) into (1.3) gives

∂tαi(t) = λiαi(t) ,

or

αi(t) = αi0e
λit .

The action is then formally given by

S = − log

[∑
i

αi0e
λitψi

]
. (2.6)

Solving exact RG theory in this way of course depends crucially on whether we can di-

agonalise the ”Hamiltonian” H. It also depends on whether we can perform the inner

products (2.5), which in general are rather tricky path integrals. Moreover, having found

the spectrum of H and computed the integrals (2.5), it is hard to see how (2.6) can be put

in the usual form as an integralal over space-time. Indeed, we would expect generically the

final action to have non-local interaction terms.

Often, however, we are not interested in the full solution, but rather the IR behavior

of the theory, i.e. when t→ ∞. In this case, the dominant eigenfunctional(s) in (2.6) will

be the ones with highest weight. In the deep IR, the largest λi will dominate completely.1

1We assume H has a maximal eigenvalue. This is different from quantum mechanics, where a minimal

eigenvalue, i.e. the vacuum, is assumed.
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Assuming the original theory overlaps with eigenfunctionals of this eigenvalue, which is

true generically, the action takes the form

S = − log

[∑
max

αmax0e
λmaxtψi

]
,

where the sum now is over eigenfunctionals of maximal eigenvalue λmax.

2.1 One-dimensional case

To get a very crude idea of what is going on, we now restrict ourselves to a toy-model with

one dimension, where the problem reduces to the equation

∂tψ = ∂2xψ + x∂xψ . (2.7)

This equation can be obtained by a very crude form of mean-field approximation, where

we assume that the field is a constant over space-time, i.e. higher derivative modes play a

small effect. In this case, we have the hamiltonian

H = ∂2x + x∂x = ∂2x +
1

2
(x∂x + ∂xx)−

1

2
[∂x, x] = (∂x +

1

2
x)2 − 1

4
x2 − 1

2
.

Note that

∂x +
1

2
x = e−

1
4
x2
∂xe

1
4
x2
.

Let us also perform the rescaling

ψ̃ = e
1
4
x2
ψ .

With this, the equation (2.7) can be rewritten as

∂tψ̃ = −
[
p̂2 +

1

4
x̂2 +

1

2

]
= Ĥψ̃ ,

where we have introduced the usual momentum operator

p̂ = −i∂x .

In particular, note that

Ĥ = −
[
p̂2 +

1

4
x̂2 +

1

2

]
,

is vary close to the hamiltonian of a harmonic oscillator. Indeed, if we define the ladder

operators

â =
1

2
x̂+ ip̂

â† =
1

2
x̂− ip̂ ,

then the hamiltonian takes the form

Ĥ = −(â†â+ 1) .
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Note that this differs from the usual harmonic oscillator by the minus in front, and a one

instead of one half within the bracket.

Note that Ĥ is negative definite, and the highest eigenvalue is E0 = −1, which is

obtained by the vacuum ψ0,

âψ̃0 = 0 (2.8)

Ĥψ̃0 = −ψ0 . (2.9)

Assuming that the initial state ψ̃I overlaps with this vacuum, this will become the dominant

state in the deep IR, where t→ ∞. We therefore want to see what this vacuum looks like.

Note that (2.9) reads

∂2xψ̃0 −
1

4
x2ψ̃0 +

1

2
ψ̃0 = 0 ,

which has the general solution

ψ0(x) = e−
1
2
x2
(
C1 + C2 Ei(x/

√
2)
)

where {C1, C2} are constants, and we have reintroduced the original field ψ = e−
1
4
x2
ψ̃.

Here Ei denotes the imaginary error function. It should be noted that the function

f(x) = e−
1
2
x2
Ei(x/

√
2)

is not a normalizable function, as would be required in usual quantum mechanics. It does

however tend to zero as |x| → ∞.

The corresponding potential then reads

V (x) = − log
[
e−

1
2
x2
(
C1 + C2 Ei(x/

√
2)
)]

=
1

2
x2 − log

(
C1 + C2 Ei(x/

√
2)
)

This has the usual Gaussian quadratic part, corresponding to a free fixed point, plus a

correction. We now consider three cases,

Case I: C2 = 0

Case II: C1 = 0

Case III: C2 = ϵ ,

where ϵ is a small number.

Case I, C2 = 0

This is the trivial case, where the fixed point is just a usual Gaussian, with the potential

V (x) =
1

2
x2 + C ,

where C is some cosmological constant depending on the pre-factor C1, C = − log(C1).
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Figure 1. Generic plot of the error function potential (2.10).

Case II, C1 = 0

This case is more interesting. The fixed point potential now takes the following form

V (x) =
1

2
x2 − log

(
Ei(x/

√
2)
)
+ C , (2.10)

where now C = − log(C2). We plot the generic form of this potential in figure 1. Note that

although the potential has a gaussian term, the correction from the error function makes

the curve distinctly non-gaussian.

Case III, C2 = ϵ

We now consider the most interesting case, where C2 is non-zero, but small compared with

C1. For concreteness, we set C1 = 1, and C2 = ϵ, where we assume ϵ is small. The potential

then reads

V (x) =
1

2
x2 − log

(
1 + ϵ Ei(x/

√
2)
)
. (2.11)

A generic potential of this form is plotted in figure 2.

The conclusion we would like to draw is the following. Assuming that the UV theory

does have a non-zero overlap with both IR theories, then the IR will not only be a Gaussian

fixed point but a fixed point composed of the two theories. The resulting potential looks

rather intriguing - much like a slow-roll inflationary potential. Indeed, the smaller ϵ is, the

flatter the plateau becomes. Moreover, the theory looks Gaussian up until the plateau,

where it suddenly flattens out.

3 Multiple Dimensions and QFT

The next step is to generalize this to higher dimensions and ultimately to QFT, i.e. how

far does the analogy between QM and RG stretch?
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Figure 2. Generic plots of the potential (2.11) for ϵ = 0.1 (solid), ϵ = 10−3 (dahsed), and ϵ = 10−6

(dotted).

4 Inflation

Let us assume that the scalar field is coupled to gravity,

S =
1

2κ2

∫
d4x

√
−g

[
R+ (∂µϕ)

2 + 2V (ϕ)
]
, (4.1)

where κ2 = 8πGN and

V (ϕ) =
1

2
ϕ2 − log C0 − log

[
1 +

C
C0

√
π

2
Ei

(
ϕ/

√
2
)]
. (4.2)

We can expand the potential around ϕ ≈ 0, finding

V (ϕ) = − log (C0)−
C
C0
ϕ+

1

2

(
1 +

C2

C2
0

)
ϕ2 + . . . . (4.3)

We can identify log C0 = Λ, where Λ is the cosmological constant. Furthermore, we notice

that the mass of the scalar field is m2 = 1 + C2e−2Λ, hence

C = ±eΛ
√
m2 − 1. (4.4)

We can rewrite the full action as

S =
1

2κ2

∫
d4x

√
−g

[
R− 2Λ + (∂µϕ)

2 + 2V (ϕ)
]
, (4.5)

where

V (ϕ) =
1

2
ϕ2 − log

[
1±

√
π (m2 − 1)

2
Ei

(
ϕ/

√
2
)]

. (4.6)

In this notation, for small ϕ≪ 1 the potential is

V (ϕ) ≈ ∓
√
m2 − 1ϕ+

m2

2
ϕ2 + . . . , (4.7)
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whereas for large ϕ≫ 1, the potential behaves as

V (ϕ) → log

[
± ϕ√

m2 − 1

]
+ . . . . (4.8)
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5 Derivation

ϕ′(x) = ϕ(x) + σΨ[ϕ] (5.1)

S[ϕ′] = S[ϕ] + σ

∫
d4xΨ[ϕ]

δS

δϕ(x)
(5.2)

Measure: ∫
Dϕ′ =

∫
Dϕ

(
1 + σ

∫
d4y

δΨ[ϕ(y)]

δϕ(y)

)
(5.3)

Partition function

Z =

∫
Dϕ′e−S[ϕ′] =

∫
Dϕ

(
1 + σ

∫
d4y

δΨ[ϕ(y)]

δϕ(y)

)
exp

{
−S[ϕ]− σ

∫
d4xΨ[ϕ]

δS

δϕ(x)

}
(5.4)

=

∫
Dϕ exp

{
−S[ϕ]− σ

∫
d4x

[
Ψ

δS

δϕ(x)
− δΨ

δϕ(x)

]}
(5.5)

Now use

5.1 Polchinski’s Equation

Next, we consider Polchinski’s RG equation

∂tψ = −
∫
p
K ′(p2)

(
δ2ψ

δϕpδϕ−p
+

2p2

K(p2)
ϕp

δψ

δϕp

)
, (5.6)

where K ′(p2) = dK(p2)/dp2. The corresponding ”Hamiltonian”

H = −
∫
p
K ′(p2)

(
δ2

δϕpδϕ−p
+

2p2

K(p2)
ϕp

δ

δϕp

)
also has a free theory as its only bounded eigenvector, but in this case we have

ψ = C exp

(
−
∫
p

p2

K(p2)
ϕ2p

)
,

with eigenvalue

λ =

∫
p
K ′(p2)

2p2

K(p2)
.
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