
Strongly disorderedmetals and disorder-driven
metal-insulator transitions in holography

Matthew Stephensona

a Stanford University

Recently, much progress has been made on understanding transport properties of strongly

coupled quantum field theories by employing gauge-gravity duality. However, a theory of

transport at finite density and temperature is still lacking for strongly disordered systems.

We reduce the computation of direct current electrical conductivity, for a wide variety of

strongly disordered holographic systems with no background charge density, to the so-

lution of a linear differential equation dependent only on data on the black hole horizon

of the bulk theory. Some strongly coupled theories in two spatial dimensions have a uni-

versal conductivity, independent of disorder strength. We realize a disorder-driven holo-

graphic metal-insulator transitions through the percolation of poorly-conducting regions

across the black hole horizon. We compare results from our exact realizations of holo-

graphic disorder with simpler approaches to the problem, such as massive gravity.
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1. Conductivity

Let us consider a static, asymptotically anti-de Sitter space with a black hole horizon. Without loss of
generality, we use diffeomorphism invariance to choose the metric

ds2 = L2
[
Pdr2 −Qdt2 +Gijdx

idxj
]
. (1)

i, j indices represent the spatial boundary directions, while M,N represent all dimensions, and L is the
AdS radius. All functions in the metric are functions of r and x. We further choose the bulk coordinate
0 < r <∞, with r = 0 the black hole horizon, and r = ∞ the AdS boundary. We do not need knowledge
of what uncharged matter is required to set up this geometry, but do assume that all energy conditions
are obeyed.

We add a U(1) gauge field to the bulk, so the action of our theory is

S =

∫
dd+2x

√−g
(
Luncharged −

Z

4
F 2

)
. (2)

The two-point functions of this gauge field correspond to calculations of current-current correlation func-
tions in the boundary theory, such as the direct current electrical conductivity matrix σij . The conduc-
tivity may be related, via the membrane paradigm [1], to data on the horizon of the black hole alone. In
particular, the expected value of the boundary current is given by

J i = σijEj = E
[
Z
√
γγij (Ej + ∂jα)

]
, (3)

where Ej is the applied electric field, E[· · · ] denotes a uniform spatial average, γij = Gij(r = 0) is the
induced metric on the horizon, and α obeys the equation

0 = ∂i
(
Z
√
γγij (Ej + ∂jα)

)
. (4)

A proof is given in Appendix A. The membrane paradigm was used in holographic systems in [2], and
similar computations appear in [3, 4] for black holes with translational symmetry broken only in one
direction. These results are special cases of this general formula. This formula may break down if the
black hole horizon fragments and becomes disconnected, as was considered in [5, 6].

In Appendix B we derive remarkable results for theories in d = 2. In particular, if σ[Z; γij ] is the
conductivity matrix with given Z and γij :

det (σ[Z; γij ]) det

(
σ

[
1

Z
; γij

])
=

1

e8
. (5)

This identity can be used to analytically compute σij for a large disordered sample, with (without loss of
generality)

Z(Φ) = e−Φ (6)

and with
Φ = Φ0 + Φ̂(x), (7)

with Φ̂(x) an arbitrary random variable whose distribution is symmetric about Φ̂ = 0. In this case we
conclude as Z → 1/Z simply changes Φ0 → −Φ0:

det (σ[Z; γij ]) =
e−2Φ0

e4
. (8)
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This result holds for a thermodynamically large, self-averaging sample – for any finite size sample there
will be fluctuations.

If we set Z = 1, (5) gives

det(σ) =
1

e4
. (9)

If we expect that on average for a disordered sample, the conductivity matrix is isotropic (σij = σδij),
that fixes the conductivity to be σ = 1/e2, exactly the clean result! A simple way to understand this
result is as follows: suppose that in local coordinates, the metric is given by

γijdx
idxj ≈

(
lx
l0

)2

dx2 +

(
ly
l0

)2

dy2. (10)

Then we expect “locally” σxx ∼ ly/lx and σyy ∼ lx/ly [7]: note (9) is obeyed “locally”. On average ly and
lx should have identical distributions, and thus local fluctuations in the metric wash out.

The robustness of σ in strongly disordered two-dimensional models is remarkable, and deserves further
comments. In models where momentum dissipation is introduced through massive gravity [8] or “Q-
lattice” axions [?], one finds the hydrodynamic result [9]

σ = σq +
Q2τ

ϵ+ P
, (11)

where Q is the charge density, ϵ the energy density, P the pressure, σq the dissipative “quantum critical”
conductivity without disorder, and τ a “momentum relaxation time”, inversely related to the graviton
mass. Before now, it was unclear whether the fact that (11) holds beyond the hydrodynamic limit was an
unrealistic feature of massive gravity or similar theories. Our work confirms this is a sensible prediction of
massive gravity for many systems at Q = 0. (11) further implies another mechanism, τ → 0, by which the
conductivity can reach its lower bound, σq. This is expected to occur at strong disorder. Confirmation
that strongly-disordered charged holographic models have a conductivity no smaller than 1/e2 in d = 2
would be a further non-trivial test of predictions of massive gravity.

Another instructive simplification is to assume that

γij = Σ(x)2δij . (12)

Here it becomes simple to employ insight gained from the equivalence between Markov chains on lattices
and the resistance of a resistor lattice [10]: see Appendix C. For arbitrary Z, we leverage this analogy to
postulate (rather weak) lower and upper bounds to σ, for a self-averaging disordered sample:

1

e2E[1/Z]
≤ σ ≤ E[Z]

e2
. (13)

Let us briefly comment on the d > 2 case. Here, a conformal rescaling of the metric:

γij → γijZ
−2/(d−2), (14)

removes the dilaton coupling entirely, so we may assume Z = 1 henceforth in d > 2. Analogous to (13),
one finds, for a disordered black hole in the thermodynamic limit, with metric (12) (equivalently, choosing
Z = Σd−2 and γij = δij)

Ld−2

e2
1

E[Σ2−d]
≤ σ ≤ Ld−2

e2
E
[
Σd−2

]
(15)

We check these results by numerically solving (4) for various disorder realizations. To solve these
equations and minimize finite size effects, large domains are necessary, and spectral methods are employed,
along with domain decomposition [11]. Good agreement with our exact analytic results and consistency
with our bounds is obtained.
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Figure 1: det(σ) from a black hole horizon for a theory in d = 2; we set e = 1, and use periodic
boundary conditions with |x|, |y| ≤ π, with a discretized spatial grid of 7012 points. We take γij = δij
and Z = exp[−BZ/(1 + 2Z)], where Z =

∑N
j=1 exp(−(sin2(ϕjx + x/2) + sin2(ϕjy + y/2))/2ξ2), with ϕjx

and ϕjy independent random phases, and B > 0 is a random constant. We took various values of B and
fixed ξ = 20π/701. When E[Z] ≳ 0.28 ≡ Z∗, curves at different B approximately collapse, implying that
current avoids the non-conducting bubbles; when E[Z] ≲ Z∗, the value of conductivity is sensitive to B.
In the limit B → ∞ and ξ → 0, a metal-insulator transition appears at Z∗.

2. Metal-Insulator Transition

(13) and (15) constrain σ to deviate from the clean result by the strength of fluctuations. In non-
interacting quantum field theory, the metal-insulator transition occurs at a finite disorder strength [12] in
d > 2, and at arbitrarily small disorder in d ≤ 2. This transition relates to the destructive interference of
matter waves scattering off of the disorder. Apparently, bulk fluctuations of the gauge field in holographic
theories do not suffer from such interference.

Realizing the holographic metal-insulator transition takes more care. A “helical lattice” approach has
generated such a transition in [13, 14], but there is no satisfying physical interpretation. Henceforth, we
focus on the case d = 2, though our discussion readily generalizes. We will also assume a probe limit where
the geometry is described by AdS-Schwarzchild, though we expect our qualitative approach to generalize.

(13) implies that to obtain an insulator with vanishing conductivity, we need E[1/Z] to be paramet-
rically large. A substantial fraction of the horizon must have Z → 0, as in these regions charge cannot
effectively be transported. In fact, the Z → 0 “bubbles” must percolate across the black hole horizon
– this is because otherwise, electrical current can simply flow around these bubbles. When regions of
space where Z is finite become disconnected from each other, charge transport is no longer possible. The
classical percolation transition of these bubbles is a disorder-driven holographic metal-insulator transi-
tion. Mathematical support for this argument can be found in Appendix C. “Metal-insulator” transitions,
similarly driven by the percolation of regions where charge cannot propagate, in a simple random resistor
lattice are well-known [15].

A simple test of this proposal is to simply write down an ansatz for Z where “bubbles” where Z → 0
percolate across the horizon, and to numerically compute the conductivity. Our numerics support this
picture: see Figures 1 and 2.
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Figure 2: Surface plots of Z(x, y) for various bubble densities. Depending on whether regions of high or
low Z percolate across the horizon determines whether we are in the metallic or insulating phase, as is
clear upon comparing with Figure 1.

2.1. Holographic Realizations

We now ask whether percolation mechanism proposed above for a disorder-driven metal-insulator transi-
tion can occur in a “realistic” holographic model: the Einstein-Maxwell-Dilaton theory with action

S =

∫
dd+2x

√−g
(
R− 2Λ

16πG
−Md

[
1

2
(∂Φ)2 − V (Φ)

L2

]
− Z(Φ)

4e2
F 2

)
. (16)

Here M is a mass scale, whose precise value is unimportant – we choose it so that Φ is strictly dimen-
sionless, for simplicity, and

Λ = −d(d+ 1)

2L2
. (17)

We are in a probe limit, so G→ 0. The equations of motion of the dilaton are

1√−g∂M
(√−ggMN∂NΦ

)
=
∂V

∂Φ
. (18)

Let us begin by sourcing the dilaton with δ-like sources on the AdS boundary – analogous to point-like
impurities in the dual theory. More carefully, if the density of the impurities is n, and the width of the
impurity on the boundary is ξ, we need nξ2 ≪ 1. A single impurity will induce an expanding dilaton
bubble, as it propagates into the bulk.

Suppose for simplicity that V is quadratic. The width of the impurity scales as max(ξ, 1/T ) and
the percolation transition thus occurs when n ∼ T 2 – the conductivity will transition from σ ∼ 1/e2 to
σ ∼ min(Z)/e2. If Φ is large in each bubble, min(Z) is small and we find an insulating phase.

In a typical supergravity truncation, however, we find that higher order corrections to Z and V tend to
become non-neligible at the same scale in Φ. Thus for Z to be parametrically small in bubbles, nonlinear
terms in V cannot be neglected.

We argue it’s also possible to obtain a metal-insulator transition from sourcing with plane wave
disorder. Suppose we pick an even V (Φ) with a local maximum at Φ = 0, V (Φ) ≈ −Φ2 + · · · near Φ = 0,
and two global minima at Φ = ±Φ0, and then we pick

Z(Φ) =

(
1 +

Φ

Φ0

)2

. (19)
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Similar choices of V and Z were made in [16] to study translation-invariant insulators. Suppose that
regions where Φ → ±Φ0 persist all the way to the horizon as T → 0. Then we associate a conductivity
of 0 with regions where Φ → −Φ0, and 4Ld−2/e2 with regions where Φ → +Φ0. When the +Φ0 regions
become disconnected, we obtain an insulator; otherwise, we have a metal. The precise nature of disorder
on the boundary tunes the transition between the two phases. We give supporting arguments in Appendix
D.

An alternative mechanism is to choose

Z(Φ) =

(
1−

(
Φ

Φ0

)2
)2

. (20)

In this case both domains give an insulator. But if the amplitude of the dilaton on the boundary is
weak enough, then the potential can be approximated as linear, Φ will be close to 0 at all times, and so
the conductivity will be unaffected. This transition is truly driven by disorder strength, much like the
standard metal-insulator transition in condensed matter physics.

3. Outlook

We have studied electrical transport in strongly coupled holographic quantum field theories at zero charge
density. In particular, we reduced the computation of σij to solving linear differential equations on the
black hole horizon. We found analytic bounds on the resulting conductivity matrix, and proposed a
disorder-driven holographic metal-insulator transition.

There are recent models [17, 18, ?] of (quasi-2d) strange metals where momentum is not conserved
past microscopic time scales. We have explicitly constructed examples of perfect metals in the presence of
strong disorder. Our results may therefore have important implications for the feasibility of more realistic
models of strongly disordered strange metals. We encourage searching for non-holographic field theories
where σq is immune to disorder, and the extension of our holographic approach to charged black holes.

Acknowledgements

We especially thank Ed Witten for providing his code for solving elliptic partial differential equations.
This research was funded through Nvidia.

Appendix A. Membrane Paradigm

In this appendix we derive (3) and (4). To compute the conductivity, we must solve a linear response
problem for the gauge field, in the black hole background (1). As the (uncharged) matter and gravity
sectors will only be sourced at second order in the gauge field, no matter or metric perturbations will be
sourced. We need only solve the bulk Maxwell’s equations:

∇M

(
ZFMN

)
=

1√−g∂M
(
Z
√−gFMN

)
= 0. (21)

Without loss of generality, the asymptotics on the metric ansatz (1) are:

P (x, r → 0) =
S(x)

4πTr
+ · · · , (22a)
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Q(x, r → 0) = −4πTrS(x) + · · · , (22b)

Gij(x, r → 0) = γij(x) + · · · , (22c)

P (x, r → ∞) =
1

r2
+ · · · , (22d)

Q(x, r → ∞) = r2 + · · · (22e)

Gij(x, r → ∞) = δijr
2 + · · · . (22f)

Here T is the Hawking temperature of the black hole, and the temperature of the dual field theory. The
boundary conditions we impose on A are analogous to [4]. We write

A = a(x, r)− Ejtdx
j , (23)

and the boundary conditions on the form a are:

ar(x, r → ∞) = at(x, r → ∞) = 0, (24a)

ai(x, r → ∞) = −Eit, (24b)

4πTrar(x, r → 0) = at(x, r → 0) = α(x), (24c)

ai(x, r → 0) = − Ei

4πT
log(4πTr) + finite. (24d)

The function α(x) is undetermined, and so (24c) demonstrates the proper asymptotics. These boundary
conditions serve to produce a constant electric field E in the boundary theory, and are in-falling at
the horizon. The direct conductivity matrix is found by the standard holographic dictionary [19], by
computing

σijE[∂tAj(r → 0)] = −σijEj =
Ld−2

e2
E[rd∂rAi(r → 0)]. (25)

We also assume that Z(r = 0) = 1. This is generically the case when Z takes the form (6) (or something
analogous), and the dilaton is dual to a relevant operator in the boundary theory.

The holographic membrane paradigm states that σij can be computed by finding a quantity that is
independent of bulk radius r, which equals the conductivity as r → ∞. One then evaluates this quantity
at the horizon and is able to use the boundary conditions to uniquely fix σij in terms of horizon data –
for us, the metric at r = 0, and the dilaton coupling. It is easy to find such a quantity: plugging the
ansatz (23) into (21) we obtain the equations (r and i components respectively):

∂i
(
Z
√−ggrrgij(∂raj − ∂jar)

)
= 0, (26a)

∂r
(
Z
√−ggrrgij(∂raj − ∂jar)

)
+ ∂k

(
Z
√−ggklgij(∂laj − ∂jal)

)
= 0. (26b)

Using the second of these equations we see that

J i ≡ 1

e2
E
[
−Z√−ggrrgij(∂raj − ∂jar)

]
. (27)

is independent of r. And as r → ∞, J i simplifies to

J i =
Ld−2

e2
E
[
−rd∂raj(r → ∞)

]
, (28)

and so we recognize this as the expected value of the spatially averaged current operator in the field
theory.
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When evaluating J i in the limit r → 0, the only nonvanishing terms are

J i =
Ld−2

e2
E
[
−ZS√γ 4πTr

S
γij
(
− Ej

4πTr
− ∂jα

4πTr

)]
=
Ld−2

e2
E
[
Z
√
γγij (Ej + ∂jα)

]
. (29)

Thus, we have recovered (3). (4) follows straightforwardly from (26a):

0 = ∂i

(
ZS

√
γ
4πTr

S
γij
(
− Ej

4πTr
− ∂jα

4πTr

))
= − 1√

γ
∂i
(
Z
√
γγij (Ej + ∂jα)

)
. (30)

Thus α obeys the Poisson equation with a peculiar source. If we compactify our spatial directions, then
up to a constant shift, there is a unique solution to this equation – on the infinite plane, we expect there
is only one solution (up to a constant) which is well-behaved and finite. Physically this constant is simply
a gauge redundancy. It is also worth noting that

J i(x) =
Ld−2

e2
Z
√
γγij(Ej + ∂jα) (31)

is also conserved: ∂iJ i = 0. Though J i ̸= J i, E[J i] = E[J i].
The above derivation is valid for any black hole, with any translational symmetry breaking, regardless

of how strong. There is, however, one exception which we note: if the horizon is disconnected, then it
may be impossible to perform our membrane paradigm inspired calculation without pushing J i through
an event horizon of a “floating black hole” – see Figure ??. Scenarios where this may occur are described
in [5, 6].

A.1. Proof of Symmetry of Conductivity Tensor

[NEED TO UPDATE FOR FINITE Z] An explicit proof of the symmetry of σij , in any d, can be found
by writing down the explicit solution for α in terms of the Green’s functions G(x;y) on the torus:

△xG(x;y) = △yG(x;y) = − 1√
γ
δ(x− y) +

1

Ṽd
, (32)

where

Ṽd =

∫
Td

ddx
√
γ. (33)

We require this additional constant factor so that a single-valued G exists. In any case, standard manip-
ulations demonstrate

σij =
1

Vd

[∫
ddx

√
γγij +

∫
ddxddy

√
γ(x)γ(y)γik(x)γjl(y)

∂2G
∂xk∂yl

]
(34)

which shows that σij is a symmetric matrix for any d.

Appendix B. Two Dimensions

In this appendix we analyze the consequences of (29) and (30). For simplicity we set e = 1, which removes
some clutter. The key observation is as follows: there must exist a differential form “∂jΩ” such that

Z
√
γγij (Ej + ∂jα) = ϵij∂jΩ (35)
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where ϵxy = −ϵyx = 1 is the Levi-Civita “tensor” without any metric pre-factors.

∂iΩ = ψi + ∂iΨ(x), (36)

with Ψ a single-valued function and ψi a set of two constants, the elements of the non-trivial cohomology
group of the torus.

Some simple manipulations, along with the fact that

√
γγij = −ϵik γkl√

γ
ϵlj , (37)

lead to the following “dual” equation:

−ϵij(Ej + ∂jα) =
1

Z

√
γγij (ψj + ∂jΨ) . (38)

We immediately obtain

0 =
1√
γ
∂i

(√
γ

Z
γij (ψj + ∂jΨ)

)
. (39)

This equation is identical to (30), up to the factor Z(x) → 1/Z(x). Since these equations are all linear in
Ej , we may also write

α ≡ αjEj , (40a)

ψi ≡ ψj
iEj , (40b)

Ψ ≡ Ψ iψj
iEj . (40c)

and solve equations for αj , Ψ j and ψj
i . It follows from (29) that

ϵikψj
k = σij [Z, γij ]. (41)

Plugging (40) into (35), we obtain

Z
√
γγij

(
δkj + ∂jα

k
)
= ϵij

(
ψk
j + ψk

l ∂jΨ
l
)
= ϵij

(
δlj + ∂jΨ

l
)
ψk
l (42)

But we can also write

1

Z

√
γγij

(
δkj + ∂jΨ

k
)
= −ϵij

(
δmj + ∂jα

m
) (
ψ−1

)k
m

= −ϵij
(
δmj + ∂jα

m
) (
σ−1

)mn
ϵnk. (43)

The constant term on the right hand side of (43) is the conductivity

σik
[
1

Z
; γ

]
= −ϵij

(
σ[Z, γ]−1

)jn
ϵnk =

σik[Z; γ]

det(σ[Z; γ])
, (44)

from which (5) follows.

Appendix C. Random Resistor Lattices

Here we detail the analogy between our computation of σ and the resistance of a random resistor lattice.
The argument below is not made rigorously, but we emphasize that the bounds on σ that we obtain,
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using intuition from resistor lattices, have been checked numerically and always hold in our simulations.
In this appendix, we take γij = δij , but that the dilaton coupling Z is arbitrary.

We assume that our black hole is disordered and that the thermodynamic limit has been attained, so
that the conductivity matrix is isotropic. Let us suppose that Z is smooth on all length scales smaller
than l. Then we fix a UV length scale a ≪ l, and “discretize” the black hole horizon as a cubic lattice
with spacing a between all points, which we henceforth refer to as vertices, labeled as u, v, etc. Now, we
imagine placing a resistor in between all neighboring vertices, of resistance

Ruv =
e2

Ld−2ad−2

1

Z
, (45)

with Z evaluated “close to the resistor” (since Z is approximately a constant on the length scale a, we will
not worry about making this more precise). The factors of a are necessary to convert between resistivity
and resistance. We choose a so that our sample has a volume (Na)d with N ≫ 1 – the number of vertices
in the lattice is (N + 1)d.

We claim that the conductivity σ must be related to the effective resistance of this resistor lattice, if
each resistor obeys Ohm’s Law:

Vu − Vv = RuvIuv, (46)

where Vu is the voltage at node u, and Iuv is the current flowing from u to v. This equation only need
hold if u and v are connected (we denote as u ∼ v).1 The claim is slightly subtle for two reasons.
Mathematically, we want to obtain a single-valued voltage function V on our lattice to employ theorems
below. This is equivalent (in the continuum language) to asking that boundary coordinates have trivial
topology, so that Ej is the gradient of a scalar function. We employed periodic boundary conditions in
the rest of the paper. Nonetheless, because we are interested in large systems, we expect universal results
to emerge independent of boundary conditions. Physically, there is no local expression on the black hole
horizon for the local current density. Luckily, the “current” J i(x) defined in (31) is expressible in terms
of local horizon data, and, using current conservation for both ⟨J i⟩ and J i, we derive∫

dd−1x⊥ J i(x) = I0 =

∫
dd−1x⊥

〈
J i(x)

〉
. (47)

with the integral running over all directions perpendicular to i, at any fixed value of xi.
Let us define a continuum voltage function

V (x) = −E · x− α, (48)

so that

J i = −L
d−2

e2
Z∂iV. (49)

If xu is the location of the vertex u in the discretized graph, then we expect the resistance Ruv should be
chosen so that (46) is obeyed, as are

Vu = V (xu), (50a)

Iuv = ad−1niuvJ i

(
xu + xv

2

)
, (50b)

where niuv is a unit vector pointing from u to v. Using (49) we obtain (45). In summary, we are simply
discretizing our continuum problem with the resistor lattice.

1Otherwise, we interpret Ruv = ∞ and Iuv = 0, and then Vu − Vv can be arbitrary.
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This will prove sufficient to compute σ, as we physically wish to add a net current of I0 = (Na)d−1E[J ]
to one surface of the cubic lattice, and collect that current at the opposite surface. We achieve this by
adding two special vertices to our graph: a vertex i with an incoming current I0 (from an external source),
and a vertex f with outgoing current I0: see Figure ??b. At all other vertices, we must have current
conservation, so ingoing and outgoing currents balance. We connect the vertex i to every vertex on one
surface of the lattice, and f to every vertex on the opposite surface. Every vertex u connected to i
(denoted with u ∼ i) has Rui = 0; similarly, if f ∼ u then Ruf = 0.

Suppose we set the voltage Vi = V0, and Vf = 0, and that this induces a current

I0 ≡
V0
Reff

. (51)

Then by Ohm’s Law, Vu = V0 if u ∼ i, and Vu = 0 if u ∼ f . I0 is the total current flowing through
the lattice, and thus Reff is the effective resistance of our lattice along the appropriate axis. In the
thermodynamic limit, this resistance must be related to the conductivity as

Reff =
1

(Na)d−2σ
. (52)

Now that we have argued that the computation of the conductivity should be approximated by finding
the effective resistance between the two special resistors above, we may exploit mathematical results to
provide both upper and lower bounds on σ. For more details on this approach, see [10].

C.1. Thomson’s Bound

Let us begin with the lower bound on the conductivity, which is a upper bound on the resistance. This
is found using Thomson’s principle, which mathematically is stated as follows. Define a flow function
Iuv = −Ivu, where u and v are vertices of the lattice. I represents a proposed distribution of electrical
currents through the lattice. We are interested in flows with a net current of I0 flowing between the
vertices i and f . Thus, we demand by current conservation that∑

u∼i

Iiu = I0, (53a)∑
u∼f

Ifu = −I0, (53b)

∑
u∼v, v ̸=i,f

Iuv = 0, (53c)

where i ∼ u implies that i and u are connected by a resistor. One can prove that [10]

R[I] = 1

I20

∑
RuvI2

uv ≥ Reff , (54)

with the bound saturated precisely on the physical flow I, which has the property that one can define a
singly-valued voltage function, with Ohm’s Law obeyed for each resistor. The physical intuition behind
this bound is that any other current flow has a loop of current, and one can show that such a loop
dissipates unnecessary power. As R computes a power dissipated (normalized by the net current), R is
thus larger than the true resistance, due to these spurious loops.

A simple projection for Iuv is:

Iuv =
I0

Nd−1
×


1 u ∼ v oriented parallel to if axis, and f closer to v

−1 u ∼ v oriented parallel to if axis, and f closer to u
0 otherwise

. (55)
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Since Rui = Ruf = 0 we do not care about I(u, i) or I(u, f). Thomson’s bound gives

Reff ≤ R[I] = e2

Ld−2ad−2I20

∑
vertical

1

Z

(
I0

Nd−1

)2

≈ e2

Ld−2ad−2

Nd

N2(d−1)
E
[
1

Z

]
. (56)

Using (52) we obtain our lower bound on the conductivity in (13) and (15).
This is not an optimal projection, because we have assumed that current flows over regions where

Z → 0. If at all possible, the currents will avoid these regions. If the resistors where Z → 0 do not
percolate across the lattice, then one can easily construct a modified flow I which avoids regions of low
Z, as shown in Figure ??. Precisely when it is impossible to find a single path from i to f that avoids
regions where Z → 0, corresponding to the onset of the percolation transition, must our lower bound
scale as σ ∼ min(Z).

C.2. Nash-Williams Bound

Now we obtain our upper bound on the conductivity. To do this, we use a Nash-Williams bound, which
proceeds as follows. Define a cutset C of the edges in our lattice to be a group of edges such that every
path from i to f must pass through at least one edge in C. Suppose that we have a disjoint set of cutsets,
Cα. Then one can prove that [10]

Reff ≥
∑
α

[ ∑
uv∈Cα

1

Ruv

]−1

. (57)

Intuitively, we have found bunches of parallel resistors, and then placed each bunch in series, and assumed
every other resistor in the lattice has zero resistance, which leads to a lower bound. Choosing our disjoint
cutsets to be the N sets of (N + 1)d−1 resistors equidistant from both i and f , and oriented along the if
axis, we obtain

Reff ≥ N

[
(N + 1)d−1L

d−2ad−2

e2
E[Z]

]−1

≈
[
(NLa)d−2

e2
E[Z]

]−1

, (58)

which leads to our lower bound on σ in (13) and (15).

Appendix D. Dilaton Domain Walls

In this appendix, we give arguments that there are choices of V (Φ) for which the domain walls persist all
the way to zero temperature. We make the standard coordinate choice for AdS-Schwarzchild:

ds2 =
L2

z2
[
dz2 − dt2 + dx2

]
. (59)

with

f(z) = 1−
(
z

z0

)d+1

. (60)

Let us suppose that we source the dilaton as

Φ(z → 0) = zA sin(kx) + · · · . (61)

At T = 0, the geometry is AdS4. We wish to argue that there is a solution to the dilaton equation of
motion for which

Φ(z → ±∞) ≈ sign(sin(kx))Φ0. (62)
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To begin with, let us suppose that k → 0, so that A is the only dimensional parameter. Let us note
that the scale at which nonlinear corrections to the equation of motion kick in is at z = z0 ∼ 1/A. And
further, if k → 0, then the thickness of any possible domain wall must be ξ ∼ 1/A.

Now, any solution to the static equation of motion for Φ must be an extremum of the functional

E =

∫
dzddx

1

zd+2

(
z2

2

(
(∂zΦ)

2 + (∂jΦ)
2
)
+ V (Φ)

)
. (63)

After the appropriate addition of counterterms, which are irrelevant for minimization purposes as we
have fixed the boundary conditions on Φ, E is bounded from below. Let us now estimate, the value of E
associated with domain walls. The contributions from the domain walls scale as, per surface area of the
domain wall:

∞∫
z0

dz

zd+2
ξ

(
z2
(
Φ0

ξ

)2
)

∼ Φ2
0

ξzd−1
0

∼ Φ2
0A

d.

The contributions from the domains are (per surface area)

∞∫
z0

dz

zd+2

1

k
V (Φ0) ∼ −|Vmin|

Ad+1

k
.

We need the modulus of this second term to be much larger than the modulus of the first term.
We also need to ensure that once z ∼ 1/k, it does not become favorable for these domains to merge

back together.
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