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Abstract The purpose of our work is to achieve a new for-
mulation which always ensures the convergence of the scat-
tering matrix in such a way of preventing overlapping di-
vergences of the scattering matrix in principle. We present a
new nonperturbative representation of the scattering matrix
in terms of so-called global time-evolution operator that is
based on the improved Heisenberg picture. Our study demon-
strates that there does not exist the infinity problem within
the framework of our formulation that employs the global
time-evolution operator and importantly the formulated the-
ory satisfies all requirements of scattering. This interesting
result is obtained successfully at the level of both quantum
mechanics and quantum field theory. Ultimately, we draw
the successful conclusion that it is possible to formulate a
new scattering theory irrelevant to the infinity problem.

1 Introduction

The core of quantum scattering theory is the Dyson series
and the Feynman diagram method. Dyson’s formula for the
scattering matrix (S-matrix) and Feynman’s diagram rule
had promoted quantum scattering theory to an elaborated
theory [1,2,3]. However, we usually encounter formidable
divergence problems when calculating the scattering matrix
based on the Feynman diagram. For this reason, our main
concern is to construct a new formulation which is consis-
tent and perfect.

Renormalization acknowledged as an astounding math-
ematical trick enables one to overcome some overlapping
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divergences due to the Feynman diagrams. This sophisti-
cated formulation provides an approach to calibrating fun-
damental physical quantities so that computational results of
the scattering matrix could coincide with experiments. John
Ward’s approach, the Yang-Mills method and Salam’s stud-
ies on the problem of overlapping divergences contributed
to the early development of renormalization theory [4,5,6].
Subsequently, Stueckelberg, Green, Bogoliubov and Para-
siuk’s contribution developed renormalization theory into a
systematized theory with more solid foundation [7,8]. On
the other hand, Wolfhart Zimmermann, Bogoliubov and oth-
ers’ iterative method was finalized as Bogoliubov, Parasiuk,
Hepp and Zimmermann’s (BPHZ) method [9,10].

The recent researches show the ramifications of renor-
malization technique that covers a wide range of the stud-
ies: renormalization group flow [11,12,13], renormalization
group function and equation [14,15,16,17], renormalized
perturbation theory [18], renormalization theory on the per-
turbative Feynman graph expansion [19], and on the other
hand, connections between these different techniques of renor-
malization [20]. The coverage of renormalization contin-
ues to extend inasmuch as it should satisfy the Lorentz and
gauge symmetry and the requirement for cosmological space-
time as well [21,22,23,24].

Renormalization theory of dominant status has enjoyed
so much successes in dealing with overlapping divergences
of the scattering matrix. Nevertheless, the heart of renormal-
ization theory still has not been completed and the center of
research continues to shift [25,26]. The facts, in a sense, in-
dicates that it is necessary to explore for a new sphere of
scattering theory without infinity in parallel with the devel-
opment of renormalization [27,29,28]. The best way is to
find out a general method without the infinity problem avail-
able to all cases of calculations of the scattering matrix. In
this regard, it is remarkable that there are attempts to con-



2 Chol Jong1∗ et al.

struct new formulations of scattering theory without infinity
[27,29].

In our view, one of the key questions of quantum field
theory is whether renormalization theory is able to reach the
ultimate goal to resolve the divergence problem of scatter-
ing matrix in a general way within the present theoretical
framework. Such an opinion seems paradoxical and chal-
lenging but the present situation of research showing Odys-
sei in renormalization naturally causes it to burgeon. With
this understanding, we present the theory on the scattering
matrix based on the consistent time-evolution operator called
the global time-evolution operator which, in essence, builds
the improved Heisenberg picture. This operator is immune
to the problem of overlapping divergence, thus not needing
renormalization.

2 Consistent time-evolution operator and convergence
of scattering matrix

2.1 Consistent time-evolution operator

The Heisenberg picture is an important mathematical for-
mulation for investigating the time evolution of quantum
states together with the Schrödinger picture. In particular,
the Heisenberg picture plays a key role in the case of investi-
gating the scattering problem. This is because the scattering
operator essentially should be the time-evolution operator in
the Heisenberg picture if the Heisenberg picture possesses
generality.

Let us consider why and how to improve the Heisenberg
picture. The state function ΦS in the Schrödinger picture is
determined by the Schrödinger equation:

i~
∂ΦS

∂t
= ĤΦS . (1)

The formal solution to this equation is considered to be

ΦS = e−
i
~ ĤtΦH , (2)

where ΦH as a time-independent function is defined as the
wave function in the Heisenberg picture. Here, subscript H
refers to the Heisenberg picture. Operator Ŝ = e−

i
~ Ĥt is con-

sidered to be the unitary operator making transformation
from the Heisenberg pictures to the Schrödinger picture.

Let us examine whether the Heisenberg picture is gen-

eral. If exp
(
−

i
~

Ĥt
)
Φ0(q) does not satisfy the time-dependent

Schrödinger equation, then this is sufficient to confirm that
the Heisenberg picture is not general.

Substituting exp
(
−

i
~

Ĥt
)
Φ0(q) into the Schrödinger equa-

tion, we get

i~
∂

∂t

[
exp

(
−

i
~

Ĥt
)
Φ0(q)

]
=

[
Ĥ + t

∂Ĥ
∂t

]
ΦS (q, t)

, ĤΦS (q, t). (3)

Obviously, the formal solution of the Schrödinger equation,
exp

(
− i
~
Ĥt

)
Φ0(q) does not satisfy the wave equation in case

the Hamiltonian is time dependent. Therefore, it is a matter
of course to obtain the generalized formal solution of the
Schrödinger equation in a rigorous way.

We aim to obtain a consistent time-evolution operator
which satisfies all requirements for the scattering operator.

These requirements are as follows.
• The scattering operator should give the finite solution

of the Schrödinger equation.
• It should satisfy the causality condition of time evolu-

tion.
From now on, we derive a consistent time-evolution op-

erator alternative to the Dyson series in three ways.
As the first approach, we can derive a scattering oper-

ator in such a way of obtaining a formal solution of the
Schrödinger equation. Let the wave function be set as

ΦS (q, t) = f̂ (q, t)ϕ(q), (4)

where f̂ (q, t) is an operator dependent on time and position,
and ϕ(q) an arbitrary function. Inserting Eq. (4) into Eq. (1)
yields

i~
∂
[
f̂ (q, t)ϕ(q)

]
∂t

= Ĥ(q, t)
[
f̂ (q, t)ϕ(q)

]
. (5)

If there exists f̂ (q, t) satisfying Eq. (5), then the solution of
the Schrödinger equation, ΦS (q, t) is to be determined. Since
operator i~ ∂

∂t is applied only to f̂ (q, t), we have

i~
(
∂ f̂ (q, t)
∂t

)
ϕ(q) = Ĥ(q, t) f̂ (q, t)ϕ(q). (6)

For Eq. (6) to hold for arbitrary ϕ(q), the operator equation:

i~
∂ f̂ (q, t)
∂t

= Ĥ(q, t) f̂ (q, t) (7)

should be an identical relation. On the other hand, the iden-
tical relation (7) is a sufficient condition for Eq. (6) to hold.
Therefore, Eq. (7) is a necessary and sufficient condition for
Eq. (6) to hold for arbitrary ϕ(q). To obtain operator f̂ (q, t)
in the form of an algebraic expression, we assume it to be
able to be operated algebraically. Thus, through the follow-
ing algebraic operations beginning with Eq. (7):

i~
∂ f̂ (q, t)
∂t

·
1

f̂ (q, t)
= Ĥ(q, t),
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i~
∂ ln f̂ (q, t)

∂t
= Ĥ(q, t),

we immediately obtain

f̂ (q, t) = exp

− i
~

t∫
t0

Ĥ(q, t′)dt′

 f̂ (q, t0). (8)

Eventually, the solution of the Schrödinger equation is rep-
resented as

ΦS (q, t) = exp

− i
~

t∫
t0

Ĥ(q, t′)dt′

 f̂ (q, t0)ϕ(q). (9)

Clearly, for the initial condition t = t0, we have

ΦS (q, t0) = f̂ (q, t0)ϕ(q).

Accordingly, we write the exact formal solution as

ΦS (q, t) = exp

− i
~

t∫
t0

Ĥ(q, t′)dt′

 ΦS (q, t0). (10)

By taking the time-independent function:

ΦH(q) = ΦS (q, t0), (11)

we may also write Eq. (10) as

ΦS (q, t) = exp

− i
~

t∫
t0

Ĥ(q, t′)dt′

 ΦH(q). (12)

Finally, we adopt the time-evolution operator as

U(t, t0) = exp

− i
~

t∫
t0

Ĥ(q, t′)dt′

 . (13)

We shall refer to U(t, t0) as the global time-evolution oper-
ator, since it gives an analytical representation of time evo-
lution from an initial time to a final time, i.e., on the whole
interval of time, [t0, t]. For the scattering problem, the global
time-evolution operator becomes the scattering operator. Thus,
we write as

ΦS (q, t) = U(t, t0)ΦS (q, t0) = S (t, t0)ΦS (q, t0). (14)

Evidently, Eq. (13) becomes the generalized time-evolution
operator which comprises the Heisenberg picture as a spe-
cial case. Thus, we confirm the improvement of the Heisen-
berg picture.

This operator is represented by the Maclaurin expansion
as

S (t, t0) =

∞∑
n=0

1
n!

− i
~

t∫
t0

Ĥ(t′)dt′


n

. (15)

The fact that the formal solution, Eq. 12 is exact is verified
easily. Let us consider whether Eq. 12 satisfies the Schrödinger
equation. Setting x̂(t) = − i

~

∫ t
t0

Ĥ(q, t′)dt′ and using formally

the chain rule, ∂
∂t =

∂x̂(t)
∂t

∂
∂x̂(t) , we calculate

i~
∂

∂t
ΦS (q, t) = i~

∂x̂(t)
∂t

∂

∂x̂(t)
ΦS (q, t)

= Ĥ(q, t)exp

− i
~

t∫
t0

Ĥ(q, t′)dt′

ΦH(q)

= Ĥ(q, t)ΦS (q, t).

Thus, we confirm

i~
∂

∂t
ΦS (q, t) = Ĥ(q, t)ΦS (q, t).

This is nothing but the Schrödinger equation. Therefore, we
verify that the global time-evolution operator is exact. In the
end, it is concluded that the generalized time-evolution oper-

ator should be exp
[
−

i
~

∫ t
t0

Ĥ(q, t′)dt′
]

instead of exp
(
−

i
~

Ĥt
)
.

As the second approach, we can obtain the scattering op-
erator, Eq. (13) by using the method of power series expan-
sion, . Suppose that the scattering operator is represented as
a function of an unknown operator x̂(t), i.e.,

S (t, t0) = S (x̂(t, t0)). (16)

Then the scattering operator can be expanded into the Maclau-
rin series:

S (x̂(t, t0)) = S (0) + S ′(0)x̂(t, t0) +
1
2!

S ′′(0)[x̂(t, t0)]2 + · · ·

+
1
n!

S (n)(0)[x̂(t, t0)]n + · · · .

(17)

To determine Eq. (17), it is necessary to consider the solu-
tion of the Schrödinger equation in the first-order approxi-
mation:

|Φ(t)〉 ≈ |Φ(0)〉 −
i
~

t∫
t0

Ĥ(t′)dt′|Φ(0)〉. (18)

Comparing Eq. (17) and Eq. (18), we immediately identify

S (0) = 1, S ′(0) = 1, x̂(t, t0) = −
i
~

t∫
t0

Ĥ(t′)dt′.

Combining S (0) = 1 and S ′(0) = 1, we can take

∂S (x̂(t, t0))
∂x̂(t, t0)

1
S (x̂(t, t0))

∣∣∣∣∣
x̂(t,t0)=0

= 1. (19)
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This is supposed to be the equation for finding the form of
the scattering operator S (t, t0). Eq. (19) is recast as

∂ ln S (x̂(t, t0))
∂x̂(t, t0)

∣∣∣∣∣
x̂(t,t0)=0

= 1. (20)

Obviously, the sufficient condition for Eq. (20) to hold is

∂ ln S (x̂(t, t0))
∂x̂(t, t0)

= 1. (21)

Hence, we obtain

S (t, t0) = S (x̂(t, t0)) = exp[x̂(t, t0)]

= exp

− i
~

t∫
t0

Ĥ(t′)dt′

 . (22)

Here, for the purpose of obtaining the scattering operator
in the form of an algebraic formula, we dealt with x̂(t, t0)
like an algebraic quantity. In fact, if an obtained result needs
only the sums and products of operators, such an algebraic
operation for operators is valid. From Eq. (22), it is obvious
that S (0) = 1, S ′(0) = 1, S ′′(0) = 1 · · · , S (n)(0) = 1, · · · .
As a consequence, the scattering operator, Eq. (13) has been
derived in another way.

As the third approach, we can obtain the scattering oper-
ator, Eq. (13) based on the causality of scattering. From the
physical point of view, the scattering operator should satisfy
the causal product relation:

S (tN , t0) = S (tN , tN−1) · · · S (t2, t1)S (t1, t0). (23)

Evidently, Eq. (13) is valid, since it satisfies the key causality
axiom of scattering. Eq. (23) can be viewed as a functional
equation for finding S (t, t0). It is possible to obtain the scat-
tering operator, based on the causality axiom. Eq. (23) tells
us that for time interval, the rule of sum must be satisfied,
while for the scattering operator, the rule of product must be
satisfied.

Hence, it is obvious that the scattering operator has to
take the form of S (t, t0) = exp(x̂(t, t0)). Here, the condition:

x̂(tN , t0) = x̂(tN , tN−1) + · · · + x̂(t2, t1) + x̂(t1, t0). (24)

should be satisfied. Substituting the formal solution Φ(t) =

S (t, t0)Φ(t0) into the Schrödinger equation, we get

i~
∂S (t, t0)
∂t

Φ(t0) = Ĥ(t)S (t, t0)Φ(t0).

From this, we immediately determine

x̂(t, t0) = −
i
~

t∫
t0

Ĥ(t′)dt′.

Obviously, this result satisfies Eq. (24). Thus, we arrive at

S (t, t0) = exp

− i
~

t∫
t0

Ĥ(t′)dt′

 .
In the end, we again confirm that Eq. (13) is valid from the
point of view of causality.

The above result derived from the causality relation of
scattering may be obtained by using the successive approxi-
mation. If one partitions the time interval equally and makes
staged time evolution in every time interval instead of ap-
plying the successive approximation for the whole time in-
terval, then the desired convergence can be achieved. We
begin with the formal solution of the Scrödinger equation:

|Φ(t)〉 = |Φ(t0)〉 −
i
~

t∫
t0

Ĥ(t′)Φ(t′)dt′. (25)

To write

|Φ(t1)〉 ≈ |Φ(t0)〉 −
i
~

t1∫
t0

Ĥ(t′)dt′|Φ(t0)〉, (26)

t1 should be in a close proximity of t0. Actually, only for
sufficiently short integration interval, Eq. (26) is meaning-
ful. The violation of this condition may lead to the diver-
gence of solution. Let us partition the interval, [t0, t] into
n equal elementary subintervals defined by a set of points
{t0, t1, t2, · · · tn} such that t0 < t1 < t2, · · · < tn = t. From Eq.
(25), we take as the first time-evolution

|Φ(t1)〉 ≈

1 − i
~

t1∫
t0

Ĥ(t′)dt′

 |Φ(t0)〉, (27)

and as the second time-evolution

|Φ(t2)〉 ≈ |Φ(t1)〉 −
i
~

t2∫
t1

Ĥ(t′)dt′|Φ(t1)〉

=

1 − i
~

t2∫
t1

Ĥ(t′)dt′

 |Φ(t1)〉

≈

2∏
k=1

1 − i
~

tk∫
tk−1

Ĥ(t′)dt′

 |Φ(t0)〉. (28)

Then, the state function, in general, is written as

|Φ(tn)〉 ≈
n∏

k=1

1 − i
~

tk∫
tk−1

Ĥ(t′)dt′

 |Φ(t0)〉. (29)
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Here,
∫ tk

tk−1
Ĥ(t′)dt′ is termed the local time-evolution oper-

ator in the sense that it is represented by integrals in short-
time intervals. Thus, the time-evolved state function is rep-
resented, using the local time-evolution operator, as

|Φ(t)〉 = lim
n→∞

n∏
k=1

1 − i
~

tk∫
tk−1

Ĥ(t′)dt′

 |Φ(t0)〉. (30)

This procedure of using the local time-evolution is self-consistent.
Thus, the time-evolution operator is represented as

S (t, t0) = lim
n→∞

n∏
k=1

1 − i
~

tk∫
tk−1

Ĥ(t′)dt′

 . (31)

Now, let us elucidate the relationship between Eq. (13)
and Eq. (30). According to the theorem of mean value of
integral calculus, we can write

tk∫
tk−1

Ĥ(t′)dt′ = Ĥ(t̄k)(tk − tk−1) = Ĥ(t̄k)4t, (32)

where t̄k is between [tk−1, tk]. From Eq. (30), the n-th order
approximation of the time-evolution operator is taken as

S (n)(t, t0) =

n∏
k=1

1 − i
~

tk∫
tk−1

Ĥ(t′)dt′

 . (33)

By the mean value theorem of calculus, we have

tk∫
tk−1

Ĥ(t′)dt′|Φ(t0)〉 = 4tĤ(t̄k)|Φ(t0)〉 = 4tĒk |Φ(t0)〉,

namely,

Ĥ(t̄k)|Φ(t0)〉 = Ēk |Φ(t0)〉,

where 4t = (t − t0)/n. To clarify this, it is necessary to take
into consideration that for an element of the scattering ma-
trix, it holds that

〈Φ(t̄k)|Ĥ(t̄k)|Φ(t0)〉 = 〈Ĥ(t̄k)Φ(t̄k)|Φ(t0)〉

= Ēk〈Φ(t̄k)|Φ(t0)〉,

where we took into consideration that Ĥ(t̄k) is Hermitian and
the following eigenvalue equation for it should hold:

Ĥ(t̄k)Φ(t̄k) = E(t̄k)Φ(t̄k).

Therefore, we in the sense of the scattering matrix can set
Ĥ(t̄k)|Φ(t0)〉 = Ēk |Φ(t0)〉. In the end, Eq. (33) yields

S (n)(t, t0)|Φ(t0)〉 =

n∏
k=1

(
1 −

i
~

Ēk4t
)
|Φ(t0)〉. (34)

By geometric average, there exists Ē that satisfies

n∏
k=1

(
1 −

i
~

Ēk4t
)

=

(
1 −

i
~

Ē4t
)n

. (35)

Then setting A = − i
~
Ē(t − t0), we have

(
1 −

i
~

Ē4t
)n

=

(
1 +

A
n

)n

. (36)

Putting x = n/A in Eq. (36), we immediately obtain

lim
x→∞

(
1 +

1
x

)xA

= eA.

Taking into consideration

t∫
t0

Ĥ(t′)dt′|Φ(t0)〉 = (t − t0)Ĥ(t̄)|Φ(t0)〉

= (t − t0)Ē|Φ(t0)〉,

we obtain

S (t, t0) = exp

− i
~

t∫
t0

Ĥ(t′)dt′

 .

In the end, Eq. (30) is identical to Eq. (13). Thus, once again
the scattering operator, Eq. (13) has been validated.

Let us consider whether the Dyson series satisfies the
causality axiom or not. Evidently, the causality axiom of
scattering is a criterion to ascertain whether an obtained scat-
tering operator is correct or not. Let us start with the Dyson
series

S (t, t0) =

∞∑
n=0

(
−

i
~

)n t∫
t0

dt1

t1∫
t0

dt2 · · ·

tn−1∫
t0

dtn·

Ĥ(t1)Ĥ(t2) · · · Ĥ(tn).
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Calculating its second-order term, we get

2

t∫
t0

dt1

t1∫
t0

dt2Ĥ(t1)Ĥ(t2)

=

t∫
t0

dt1

t1∫
t0

dt2Ĥ(t1)Ĥ(t2) +

t∫
t0

dt2

t2∫
t0

dt1Ĥ(t2)Ĥ(t1)

=

t∫
t0

dt1

t1∫
t0

dt2Ĥ(t1)Ĥ(t2) +

t∫
t0

dt2

t2∫
t0

dt1Ĥ(t1)Ĥ(t2)

−

t∫
t0

dt2

t1∫
t0

dt1Ĥ(t1)Ĥ(t2) +

t∫
t0

dt2

t2∫
t0

dt1Ĥ(t2)Ĥ(t1)

=

t∫
t0

dt1

t∫
t0

dt2Ĥ(t1)Ĥ(t2)

+

t∫
t0

dt1

t1∫
t0

dt2
[
Ĥ(t1)Ĥ(t2) − Ĥ(t2)Ĥ(t1)

]
.

Thus, we finalize the above relation as

t∫
t0

dt1

t1∫
t0

dt2Ĥ(t1)Ĥ(t2)

=
1
2


t∫

t0

Ĥ(t′)dt′


2

+ R(2)(t),

where R(2)(t) is the term relative to the noncommutativity of
the Hamilton operators distinguished by time. Generalizing
this result, we can write the Dyson series as

S (t, t0) =

∞∑
n=0

1
n!

(
−

i
~

)n t∫
t0

dt1

t∫
t0

dt2 · · ·

t∫
t0

dtn

Ĥ(t1)Ĥ(t2) · · · Ĥ(tn) +

∞∑
n=2

R(n)(t)

=

∞∑
n=0

1
n!

− i
~

t∫
t0

Ĥ(t′)dt′


n

+ R(n)(t)

= exp

− i
~

t∫
t0

Ĥ(t′)dt′

 +

∞∑
n=2

R(n)(t). (37)

Obviously, the scattering operator in this form cannot satisfy
the causal relation of scattering, S (tN , t0) =

∏N−1
n=0 S (tn+1, tn).

From this, it follows that the Dyson series satisfies the causal-
ity axiom of scattering only if

∑∞
n=2 R(n)(t) which is related

to the characteristic of approximate calculation can be ig-
nored. Otherwise, the Dyson series is meaningless because

it does not satisfy the axiom of causality as a main require-
ment of the scattering operator. This fact also explains the
relationship between the global time-evolution operator and
the Dyson series. In fact, if

∑∞
n=2 R(n)(t) vanishes, the Dyson

series coincides with the global time-evolution operator.

2.2 Convergence of scattering matrix

Let us consider whether the scattering matrix in terms of the
global time-evolution operator is always convergent. Obvi-
ously, a finite order approximation of Eq. (15) is conver-
gent. Now, let us examine whether the infinite series of the
global time-evolution operator is convergent. According to
the mean value theorem of integral calculus, we set

t∫
t0

Ĥ(q, t′)dt′ = Ĥ(q, t̄)(t − t0), (38)

where t̄ ∈ [t0, t] becomes a parameter. Eq. (38) enables us to
eliminate the integral symbol from the time-evolution oper-
ator to get

S (t, t0) = exp

− i
~

t∫
t0

Ĥ(q, t′)dt′


= exp

[
−

i
~

(t − t0)Ĥ(q, t̄)
]
. (39)

Next, Eq. (39) is expanded into the Maclaurin series:

S (t, t0) =

∞∑
n=0

1
n!

− i
~

t∫
t0

Ĥ(q, t′)dt′


n

=
∑

n

1
n!

(
−

i
~

(t − t0)Ĥ(q, t̄)
)n

. (40)

The solution of the time-dependent Schrödinger equation is
represented with the help of the time-evolution operator as

ΦS (q, t) =

∑
n

1
n!

(
−

i
~

(t − t0)Ĥ(q, t̄)
)n Φ0(q). (41)

From the finiteness condition of the state function, ΦS (q, t),
it is possible to suppose that there exists a definite number,
E which satisfies

|ΦS (q, t)| =

∣∣∣∣∣∣∣∑n

1
n!

[
−

i
~

(t − t0)
]n [

Ĥ(q, t̄)
]n

Φ0(q)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∑n

1
n!

[
−

i
~

(t − t0)E
]n

Φ0(q)

∣∣∣∣∣∣∣ . (42)
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Then the transition probability becomes

W = |S (t, t0)|2

≤

∣∣∣∣∣∣∣∑n

1
n!

[
−

i
~

(t − t0)E
]n
∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣exp
(
−

i
~

(t − t0)E
)∣∣∣∣∣∣2 = 1. (43)

This is in agreement with our common knowledge that the
transition probability always should be less than one. Even-
tually, the scattering matrix as well as the scattering operator
is convergent. Thus, it is proved that using the global time-
evolution operator leads to the scattering matrix without di-
vergence.

Let us consider the case where the Hamiltonian is ex-
pressed by the use of the Hamiltonian density HI as ĤI =∫
HI(x)d3x. The wave equation in the Dirac interaction pic-

ture is

i~
∂ΦI

∂t
= ĤIΦI . (44)

Since Eq. (44) takes the same form as Eq. (1), the solution
of Eq. (44) becomes

ΦI(t) = exp

− i
~

t∫
t0

ĤI(t′)dt′

 ΦI(t0). (45)

As an example, in the case of the interaction between electron-
positron field and electromagnetic field, the Hamiltonian den-
sity of interaction is written by the use of field operators as

HI = − jµ(x)Aµ(x) = −
e
2

[
ψ̄γµψ

]
Aµ = eN

(
ψ̄γµψ

)
Aµ. (46)

By Eqs. (15) and (46), the scattering operator is given as

S (t, t0) =

∞∑
n=0

1
n!

(
−

i
~

)n [∫
eN

(
ψ̄γµψ

)
Aµd4x

]n

. (47)

Obviously, the first approximation eN
∫ (
ψ̄γµψ

)
Aµd4x, in

general, is convergent. Therefore, the Maclaurin expansion,
Eq. (47) is always convergent and thus the transition proba-
bility from an initial state to a final state:

W(t, t0) = |S (t, t0)|2 (48)

is the same too. Thus, the global time-evolution operator
gives the scattering matrix without divergence. Hence, it is
concluded that within the framework of our formulation,
there is not the infinity problem.

3 Discussion

The main aim of our work has been to present an alterna-
tive mathematical formulation which enables us to avoid the
divergence problem of the scattering matrix. A new time-
evolution operator independent of the Dyson series has been
derived in several ways and its convergence has been proved.
Our time-evolution operator satisfies the conditions of finite-
ness and causality. The construction of a new formulation
without the infinity problem indubitably would lead to ver-
ifying that the scattering theory without renormalization is
possible as well.

Of course, it is well known that the time-evolution oper-
ator in the Schrödinger picture is the Dyson series. However,
this fact does not mean that the Dyson series is a unique se-
lection. Unfortunately, the Dyson series encounters the in-
finity problem due to the time-ordering operator. Moreover,
the Dyson series does not satisfy the axiom of causality as
a trivial reason: S (t2, t0) = S (t2, t1)S (t1, t0). This shows that
the Dyson series is not an exact scattering operator which
fulfils the physical requirement. On the other hand, this means
that even if we might obtain a convergent scattering matrix
using a refined renormalization method, it would not be per-
fect because it does not satisfy the causality of scattering. In
our view, the situation that the Dyson series does not satisfy
indispensable physical requirements needs a new selection.
In this work, we showed an alternative time-evolution op-
erator without the time ordering and infinity. It is possible
to find a new scattering operator able to avoid the time-
ordering operator responsible for the infinity problem. In
fact, it is obvious to be able to avoid the infinity problem
by relying on our formulation.

As an essential problem, it is necessary to discuss whether
it is inevitable that the infinity problem in the scattering ma-
trix arises. We presuppose that the Schrödinger equation,

i~
∂ΦS

∂t
= ĤΦS (49)

has a correct solution. It means that its solution,

ΦS (q, t) = S (t, t0)ΦS (q, t0) (50)

represented in terms of the scattering operator should be fi-
nite.

Through a simple consideration, we can understand the
truth of the infinity problem. Let us start from Eq. (25). By
the mean value theorem of integral calculus:

b∫
a

f (x)g(x)dx = f (c)g(c)(b − a) (c ∈ [a, b]) ,

it is possible to take

|Φ(t)〉 = |Φ(t0)〉 −
i
~

(t − t0)Ĥ(t̄)|Φ(t̄)〉, (51)
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where t̄ ∈ [0, t].
For Ĥ(t̄)|Φ(t̄)〉, we can imagine an eigenvalue equation

with parameter t̄:

Ĥ(t̄)|Φ(t̄)〉 = E(t̄)|Φ(t̄)〉. (52)

Then, we have

|Φ(t)〉 = |Φ(t0)〉 −
i
~

(t − t0)E(t̄)|Φ(t̄)〉. (53)

Since the Schrödinger equation presupposes the finiteness of
solution, Eq. (52) is finite and thus Eq. (53) is finite as well.

In this case, in a formal manner, the scattering operator
can be taken as

S (t, t0) = 1 −
i
~

(t − t0)E(t̄)
Φ(t̄)
Φ(t0)

. (54)

Of course, since |Φ(t̄)〉 is unknown, the solution is formal
but Eq. (54) is enough to verify that the scattering operator
should be finite. In fact, according to the definition of the
Schrödinger equation, |Φ(t̄)〉, |Φ(t0)〉 and E(t̄) should be fi-
nite and nonzero valued. Consequently, the scattering matrix
is finite. Considering in this way, we can draw the conclu-
sion that there is no infinity problem as far as Ĥ is defined
correctly.

The infinity problem of scattering matrix, in a sense, is
an instance demonstrative of the imperfection of the adopted
mathematical language for quantum field theory. Purely from
the point of view of mathematics, such a mathematical the-
ory that one must separate a finite quantity from a given in-
finity cannot be justified. We can understand the truth of the
infinity problem purely based on mathematical logic. Obvi-
ously, Eqs. (49) and (50) should be considered to be math-
ematically identical. If the scattering matrix is divergent, it
means that the scattering operator is not exact. Therefore, in
this case, we should ascribe the infinity problem to the scat-
tering operator. This fact shows that it is necessary to review
the validity of the adopted scattering operator. The new for-
malism we propose is not related to these problems, since it
is free of infinity.

4 Conclusion

We have presented a new mathematical representation of
scattering matrix in terms of the global time-evolution oper-
ators, based on the generalized Heisenberg picture. Using a
mathematically rigorous method, the global time-evolution
operator, Eq. (13) has been derived. The derived time-evolution
operator satisfies all the requirements for the scattering oper-
ator, so it is consistent. Within the framework of our formu-
lation using this time-evolution operator, there is no neces-
sity of dealing with the Feynman diagram and thus the over-
lapping divergence problem of the scattering matrix. Thus,

it is demonstrated that it is possible to formulate a consistent
scattering theory avoiding overlapping divergences.

What is best is to obtain a time-evolution operator which
in any case is irrelevant to infinity. With this aim, we con-
ceived of a consistent time-evolution operator independent
of the Dyson series, beginning with a new starting point.
Our study has elucidated the imperfect aspects of the Dyson
series by arguing the fact that the Dyson series does not sat-
isfy the causality of scattering is fatal. The obtained time-
evolution operator is the nonperturbative expression, whereas
the Dyson series is a perturbative expansion. The Dyson se-
ries which is given by perturbative expansion is impossi-
ble to satisfy the causality condition of scattering. However,
these two time-evolution operators are related as seen in Eq.
(37), which apparently explains the relation between the two
operators. The fact that our theory with a different starting
point from the Dyson series satisfies all the requirement for
the scattering operator shows that the new selection distin-
guished from the Dyson series is valid.
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