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Introduction LetM2 (Z) the ring of all square matrices of order 2 with coe�cients in the ring Z. Recall that
GL2 (Z) denotes the unit group ofM2 (Z) and has the following caracterization:

GL2 (Z) =
{
M ∈M2 (Z)

∣∣ det(M) = ±1
}

We will make use of C :=
(
1 0
0 −1

)
∈ GL2 (Z). Let's consider now

SL2 (Z) =
{
M ∈M2 (Z)

∣∣ det(M) = +1
}

which is a subgroup of GL2 (Z); we de�ne A := ( 1 1
0 1 ) and B := ( 1 0

1 1 ) two elements of SL2 (Z). It is well known
(for instance, see [1]) that A and B generates SL2 (Z); and from now on, we will use the following notation:

〈A,B〉 = SL2 (Z)

Other pairs of generators can be considered; one can often �nd in the literature:

S := B−1AB−1 =
(

0 1
−1 0

)
and T := B

Let M :=
(
a b
c d

)
∈ GL2 (Z) and suppose d 6= 0 (the case d = 0 is elementary and will be treated separately). The

aim of this article is to demonstrate, using a funny induction, the following formula:

M =
(
AB−1A

)1−(−1)b j
2csgn(d)

A
( j∏
k=1

A−(2+(−1)knk)B
) (
CA2

) 1−det(M)
2 A(−1)jsgn(d)(pj−1c−qj−1a)B−1A (1)

Here, [n1;n2, . . . , nj ] represents the simple �nite continued fraction associated to the rational b
d ; where n1 ∈ Z

and ni ∈ N∗, ∀i ∈ J2, jK. Since [n1; 1] = [n1 + 1] and [n1;n2, . . . , nj , 1] = [n1;n2, . . . , nj + 1], every rational
number can be represented in two di�erent ways and we will show that formula (1) is independant of this choice of
representation. The terms pj−1 and qj−1 come from the reduced fraction

pj−1

qj−1
:= [n1;n2, . . . , nj−1] with the initial

condition (p0, q0) := (1, 0). By de�nition of [n1;n2, . . . , nj ], one has:

pj
qj

=
b

d
⇐⇒ pjd− qjb = 0 (2)

Also,
ö
j
2

ù
denotes the integer part of j2 so that (−1)b

j
2c = ±1, depending on the residue of j modulo 4. If we note

I := ( 1 0
0 1 ), then we verify by direct calculation that

(
AB−1A

)2
= −I; therefore:

(
AB−1A

)1−(−1)b j
2csgn(d)

=

® (
AB−1A

)0
= I if (−1)b

j
2csgn(d) = +1(

AB−1A
)2

= −I if (−1)b
j
2csgn(d) = −1

(3)

As
(
AB−1A

)1−(−1)b j
2csgn(d)

= ±I, this matrix commutes with any element of GL2 (Z) and we chose to write it
as a factor of the right member of formula (1). The basic theory of continued fractions also ensures that qk > 0,
∀k ∈ J1, jK and so there is no ambiguity regarding the sign of pj−1 in case the ratio

pj−1

qj−1
is negative. Note that

det (M) = +1 ⇐⇒ M ∈ SL2 (Z), then
(
CA2

) 1−det(M)
2 =

(
CA2

)0
= I which means, as expected, that C (which

doesn't belong to SL2 (Z)) vanishes from formula (1) and we retrieve an expression of M as a word in 〈A,B〉.

An explicit example
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1) Let M :=
(−65 17

42 −11
)
; we verify that det (M) = 1 so that M ∈ SL2 (Z). We develop here what we call the �rst

represention of bd = − 17
11 which is [−2; 2, 5]. Explicitely,

−17

11
= −2 +

1

2 +
1

5

=⇒ j := 3 and (n1, n2, n3) = (−2, 2, 5)

Then, (−1)b
j
2csgn(d) = (−1)b

3
2csgn(−11) = (−1)1(−1) = +1. The reduced fraction

pj−1

qj−1
= p2

q2
is then [−2; 2] =

−2 + 1
2 = − 3

2 . As stated in the introduction, q2 is necessarily a positive integer; thus (p2, q2) = (−3, 2). Then

bj = b3 = (−1)3sgn(−11) (−3 · 42− 2 · (−65)) = 4. Also, det(M) = 1 =⇒ 1−det(M)
2 = 0 =⇒

(
CA2

) 1−det(M)
2 =(

CA2
)0

= I. That's it; we have everything to apply formula (1):

M = I ·A
(
A−(2−n1)B

)(
A−(2+n2)B

)(
A−(2−n3)B

)
I ·Ab3B−1A

= A
(
A−(2−(−2))B

)(
A−(2+2)B

)(
A−(2−5)B

)
A4B−1A

= A−3BA−4BA3BA4B−1A (4)

2) Let's consider the same matrix M :=
(−65 17

42 −11
)
but this time, let's use the second representation of b

d =

− 17
11 which is [−2; 2, 4, 1] =⇒ (n1, n2, n3, n4) = (−2, 2, 4, 1). This time, j := 4 and thus (−1)b

j
2csgn(d) =

(−1)b
4
2csgn(−11) = (−1)2(−1) = −1. The reduced fraction

pj−1

qj−1
= p3

q3
is then [−2; 2, 4] = −2+ 1

2+ 1
4

= − 14
9 =⇒

(pj−1, qj−1) = (p3, q3) = (−14, 9). Then, bj = b4 = (−1)4sgn (−11) ((−14)42− 9(−65)) = 3. Then,

M =
(
AB−1A

)2
A
(
A−(2−n1)B

)(
A−(2+n2)B

)(
A−(2−n3)B

)(
A−(2+n4)B

)
Ab4B−1A

=
(
AB−1A

)2
A
(
A−(2−(−2))B

)(
A−(2+2)B

)(
A−(2−4)B

)(
A−(2+1)B

)
A3B−1A (5)

= AB−1A2B−1A2A−4BA−4BA2BA−3BA3B−1A

= AB−1A2B−1A−2BA−4BA2BA−3BA3B−1A (6)

Comparing (4) and (5), we get two di�erent expressions of M in 〈A,B〉 and formula (1) works well in both
representations.

Some basic lemmas We list here all the requiered results used in the demonstration of formula (1).

Lemma 0.1 (Powers of A and B). For all n ∈ Z,

An =

Å
1 n
0 1

ã
Bn =

Å
1 0
n 1

ã
(7)

Proof. Suppose n ≥ 0. For n = 0 or n = 1, (7) are both veri�ed. Suppose (7) true for n > 1; one gets
( 1 1
0 1 )A

n = ( 1 1
0 1 ) (

1 n
0 1 ) =

(
1 n+1
0 1

)
= An ( 1 1

0 1 ) =⇒ A · An = An · A = An+1. Regarding B, we have B · Bn =

( 1 0
1 1 ) (

1 0
n 1 ) =

(
1 0

n+1 1

)
= Bn+1 = Bn ·B. Now let's compute the inverse of An: (An)

−1
= ( 1 n0 1 )

−1
=
(
1 −n
0 1

)
= A−n

and we get something similar for B: B−n =
(

1 0
−n 1

)
which proves (7), ∀n ∈ Z. �

Let's now treat the case d := 0 separately.

Lemma 0.2 (The case d := 0). Let M0 := ( a bc 0 ) ∈ GL2 (Z), then M0 ∈ 〈A,B,C〉

Proof. M0 = ( a bc 0 ) =⇒ det (M0) = −bc = ±1. Thus, there are four possibilities:

(b, c) ∈ {(1, 1), (−1,−1), (1,−1), (−1, 1)}

(i) (b, c) := (1, 1) =⇒ M0 = ( a 1
1 0 ) =⇒ M0 ∈ GL2 (Z) \ SL2 (Z) as det (M0) = −1. We check that, ∀a ∈ Z:

CB−1ABa−1 = ( a 1
1 0 ) ∈ 〈A,B,C〉 (8)

(ii) (b, c) := (−1,−1) =⇒ M0 =
(
a −1
−1 0

)
=⇒ M0 ∈ GL2 (Z) \ SL2 (Z) as det (M0) = −1. Note that

M0 = −
(−a 1

1 0

)
. Using −I = (AB−1A)2 as mentioned in the introduction and point (i), we get:

M0 = AB−1A2B−1ACB−1AB−a−1 ∈ 〈A,B,C〉 (9)
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(iii) (b, c) = (1,−1) =⇒ M0 =
(
a 1
−1 0

)
=⇒ det (M0) = +1 =⇒ M0 ∈ SL2 (Z). We check that, ∀a ∈ Z:

M0 = A1−aB−1A ∈ 〈A,B〉 ⊆ 〈A,B,C〉 (10)

(iv) (b, c) = (−1, 1) =⇒ M0 =
(
a −1
1 0

)
=⇒ det (M0) = +1 =⇒ M0 ∈ SL2 (Z). We check that, ∀a ∈ Z:

M0 = BA−1B1−a ∈ 〈A,B〉 ⊆ 〈A,B,C〉 (11)

Conclusion: as per equations (8), (9), (10) and (11), M0 ∈ 〈A,B,C〉. On top of that, equations (10) and (11) show
that M0 ∈ SL2 (Z) =⇒ M0 ∈ 〈A,B〉, as expected. �

Lemma 0.3 (Some basic results on simple continued fractions). Let [n1;n2, . . . , nj ] a simple and �nite continued

fraction:

pj
qj

= [n1;n2, . . . , nj ] = n1 +
1

n2 +
1

n3 +
1

n4 + . . .
+

1

nj−1 +
1
nj

The convergents are the rational numbers de�ned by pi
qi

:= [n1;n2, . . . , ni], ∀i ∈ J1, jK with the convention (p0, q0) :=

(1, 0). Let's prove the following points:

(i) ∀i ∈ J2, jK, we have pi = nipi−1 + pi−2 and qi = niqi−1 + qi−2

(ii) piqi−1 − pi−1qi = (−1)i, ∀i ∈ J1, jK

(iii) The convergents pi
qi

:= [n1;n2, . . . , ni] are such that pi and qi are coprime numbers, ∀i ∈ J1, jK.

(iv) With q0 := 0, one has q1 := 1 ≤ q2 and q2 < q3 < . . . qj. In particular, qi ≥ 0, ∀i ∈ J0, jK.

(v) pi
qi
− pi−1

qi−1
= (−1)i

qiqi−1
, ∀i ∈ J2, jK

Proof. (i) As p0 = 1, q1 = 1 and p1
q1

= [n1] =
n1

1 = n1, we have p1 := n1. Then, n2p1 + p0 = n2n1 + 1. On the

other side, p2q2 = [n1;n2] = n1 +
1
n2

= n1n2+1
n2

=⇒ (p2, q2) = (n1n2 + 1, n2) and this shows that (i) is valid

for i := 2. Suppose that (i) is valid for i > 2; we have:

pi
qi

= [n1, n2, . . . , ni−1, ni] = n1 +
1

n2 +
1

n3 +
1

n4 + . . .
+

1

ni−1 +
1
ni

And we see directly that
î
n1;n2, . . . , ni−1 +

1
ni

ó
= [n1;n2, . . . , ni−1, ni]. Then,

pi
qi

= [n1;n2, . . . , ni−1, ni] =
î
n1;n2, . . . , ni−1 +

1
ni

ó
=
pi−1

Ä
n1, n2, . . . , ni−1 +

1
ni

ä
qi−1
Ä
n1, n2, . . . , ni−1 +

1
ni

ä
=

Ä
ni−1 +

1
ni

ä
pi−2 + pi−3Ä

ni−1 +
1
ni

ä
qi−2 + qi−3

(by inductive hypothesis)

=
(ni−1pi−2 + pi−3) +

1
ni
pi−2

(ni−1qi−2 + qi−3) +
1
ni
qi−2

=
pi−1 +

1
ni
pi−2

qi−1 +
1
ni
qi−2

(by inductive hypothesis)

=
nipi−1 + pi−2
niqi−1 + qi−2
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(ii) For i := 1, (ii) is veri�ed, as p1q0− p0q1 = n1 · 0− 1 · 1 = −1 = (−1)1. Suppose (ii) is true for i > 1; one gets:

pi+1qi − piqi+1 = (ni+1pi + pi−1) qi − pi (ni+1qi + qi−1) (using (i))

= ni+1piqi + pi−1qi − ni+1qipi − piqi−1 = − (piqi−1 − pi−1qi)
= −(−1)i (by inductive hypothesis)

= (−1)i+1

(iii) Both recurrence relations of point (i) show that ni ∈ Z =⇒ (pi, qi) ∈ Z2, ∀i ∈ J1, jK. Let's write point
(ii) as pi

(
(−1)iqi−1

)
+ qi

(
(−1)i−1pi−1

)
= 1, ∀i ∈ J1, jK which is a Bézout relation. Therefore, pi and qi are

coprime numbers, ∀i ∈ J1, jK.

(iv) Using the recurrence relation qi = n1qi−1 + qi−2, ∀i ∈ J2, jK from point (i) with (q0, q1) = (0, 1), we show,
by induction, that qi ≥ 1, ∀i ∈ J1, jK. Recall that n1 ∈ Z and ni ∈ N∗, ∀i ∈ J2, jK. For i := 2, we get
q2 = n2q1 + q0 = n2 · 1 + 0 = n2 ≥ 1. Suppose that qi ≥ 1 for i > 2, hence qi+1 = ni+1qi + qi−1; by induction
hypothesis, qi−1 ≥ 1, qi ≥ 1 and ni+1 ∈ N∗. Therefore, ni+1qi + qi−1 ≥ 1; i.e, qi+1 ≥ 1 and this shows that
qi ≥ 1, ∀i ∈ J1, jK. Moreover, niqi−1+qi−2 ≥ qi−1+qi−2 when i ≥ 2. Using point (i), we get qi ≥ qi−1+qi−2,
∀i ∈ J2, jK. As qi−2 ≥ 1 whenever i ≥ 3, we get �nally qi ≥ qi−1 + qi−2 > qi−1, ∀i ∈ J3, jK.

(v) Point (iv) showed, in particular, that qi 6= 0, ∀i ∈ J1, jK. Hence, qiqi−1 6= 0, ∀i ∈ J2, jK. It's then possible to
divide point (ii) relation by qiqi−1.

�

We will also make use of the following elementary result:

Lemma 0.4.

(−1)b
k+1
2 c = (−1)k(−1)b

k
2 c ∀k ∈ N

Proof. Recall that ∀x ∈ R and ∀n ∈ Z, one has bx+ nc = bxc + n. Let (k, k′) ∈ N2 such k = 4k′, then⌊
k
2

⌋
=
ö
4k′

2

ù
= 2k′ =⇒ (−1)b

k
2 c = (−1)2k′ = +1. Suppose now (k, k′) ∈ N2 such k = 4k′ + 1; then

⌊
k
2

⌋
=ö

4k′+1
2

ù
=
⌊
2k′ + 1

2

⌋
= 2k′ +

⌊
1
2

⌋
= 2k′ =⇒ (−1)b

k
2 c = (−1)2k′ = +1. Suppose now (k, k′) ∈ N2 such k = 4k′ +2;

then
⌊
k
2

⌋
=
ö
4k′+2

2

ù
= b2k′ + 1c = 2k′ + 1 =⇒ (−1)b

k
2 c = (−1)2k′+1 = −1. Finally, suppose (k, k′) ∈ N2 such

k = 4k′ + 3; then
⌊
k
2

⌋
=
ö
4k′+3

2

ù
=

õ
(4k′+2)+1

2

û
=
⌊
2k′ + 1 + 1

2

⌋
= 2k′ + 1 +

⌊
1
2

⌋
= 2k′ + 1 =⇒ (−1)b

k
2 c =

(−1)2k′+1 = −1. Hence we showed that, ∀k ∈ N:

(−1)b
k
2 c =

ß
1 if k ≡ 0 or 1 mod 4
−1 if k ≡ 2 or 3 mod 4

=⇒ (−1)b
k+1
2 c =

ß
1 if k ≡ 0 or 3 mod 4
−1 if k ≡ 1 or 2 mod 4

(12)

Of course, ∀k ∈ N, we have:

(−1)k =

ß
1 if k ≡ 0 or 2 mod 4
−1 if k ≡ 2 or 3 mod 4

That means (−1)k(−1)b
k
2 c equals +1 when

(
(−1)b

k
2 c, (−1)k

)
= (1, 1) or (−1,−1) and this is the case if and only

if k ≡ 0 or 3 mod 4 and this is exactly what shows equation (12). �

The main result Let M :=
(
a b
c d

)
∈ GL2 (Z) with d 6= 0. Let's de�ne, ∀k ∈ J1, jK,®

αk(b, d) := (−1)b
k
2 c (qkb− pkd+ (−1)k (qk−1b− pk−1d)

)
γk(b, d) := (−1)b

k
2 c (pkd− qkb)

(13)

where, pkqk := [n1;n2, . . . , nk], ∀k ∈ J1, jK are the convergents of the continued fraction b
d = [n1;n2, . . . , nj ]. Let's

also de�ne:

P0 := A−1MA−1B and Pk :=

Å
αk(b, d) αk(b− a, d− c)
γk(b, d) γk(b− a, d− c)

ã
∀k ≥ 1 (14)

Then,

(i) Pk ∈ GL2 (Z), ∀k ∈ J0, jK

(ii) Pj = (−1)b
j
2csgn(d)

(
CA2

) 1−det(M)
2 Abj ; where bj := (−1)jsgn(d) (pj−1c− qj−1a)
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(iii) Pk = B−1A2+(−1)knkPk−1, ∀k ∈ J1, jK

Proof. (i) For k := 0, it is clear, from its de�nition (GL2 (Z) is a group), that P0 ∈ GL2 (Z). Suppose k > 0;
from their de�nitions (13), we see that the coe�cients of Pk are integers. Therefore, the only thing we have
to check is det (Pk) = ±1, ∀k ∈ J1, jK. Let's do it:

det (Pk) =αk(b, d)γk(b− a, d− c)− γk(b, d)αk(b− a, d− c)

= (−1)2b
k
2 c (qkb− pkd+ (−1)k (qk−1b− pk−1d)

)
(pk(d− c)− qk(b− a))

− (−1)2b
k
2 c (pkd− qkb)

(
qk(b− a)− pk(d− c) + (−1)k (qk−1(b− a)− pk−1(d− c))

)
= qkpkb(d− c)− q2kb(b− a)− p2kd(d− c) + pkqkd(b− a) + (−1)kpkqk−1b(d− c)
− (−1)kqkqk−1b(b− a)− (−1)kpkpk−1d(d− c) + (−1)kpk−1qkd(b− a)− pkqkd(b− a) + p2kd(d− c)
− (−1)kpkqk−1d(b− a) + (−1)kpkpk−1d(d− c) + q2kb(b− a)− qkpkb(d− c) + (−1)kqkqk−1b(b− a)
− (−1)kqkpk−1b(d− c)

= (−1)kb(d− c) (pkqk−1 − qkpk−1)− (−1)kd(b− a) (pkqk−1 − pk−1qk)
= (−1)k (pkqk−1 − qkpk−1) (ad− bc)
= (−1)k(−1)kdet (M) (using lemma (0.3), point (ii))

=det (M)

= ± 1 (as M ∈ GL2 (Z))

(ii) Using (2), we get directly γj(b, d) = 0 and this makes Pj upper triangular. We have:

αj(b, d) = (−1)b
j
2c (qjb− pjd+ (−1)j (qj−1b− pj−1d)

)
= (−1)b

j
2c(−1)j (qj−1b− pj−1d) (using equation (2))

= (−1)b
j
2c(−1)j

Å
qj−1

Å
d
pj
qj

ã
− pj−1d

ã
(using equation (2) again)

= (−1)b
j
2c(−1)j (pjqj−1 − pj−1qj)

d

qj

= (−1)b
j
2c(−1)j(−1)j d

qj
(using lemma (0.3), point (ii))

= (−1)b
j
2c d
qj

(15)

From point (i), we know that Pj ∈ GL2 (Z). Therefore, αj(b, d) ∈ Z with d ∈ Z∗ and this means that qj
divides d (let's note this qj | d). Also,

γj(b− a, d− c) =(−1)b
j
2c (pj(d− c)− qj(b− a)) = (−1)b

j
2c (pjd− pjc− qjb+ qja)

=(−1)b
j
2c (qja− pjc) (using equation (2))

=(−1)b
j
2c
(
qja−

(qj
d
b
)
c
)

(using equation (2) again)

=(−1)b
j
2c qj
d
(ad− bc)

=(−1)b
j
2c qj
d
det(M) (16)

Using the same argument as for (15), we get d | qj . So, as qj > 0 (that is lemma (0.3), point (iv)), we have(
qj | d and d | qj

)
=⇒ d = sgn(d)qj . We have found:

αj(b, d) = (−1)b
j
2csgn(d) (17)

And,

γj(b− a, d− c) = (−1)b
j
2csgn(d)det(M) (18)
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Finally,

αj (b− a, d− c) = (−1)b
j
2c
Ä
qj(b− a)− pj(d− c) + (−1)j (qj−1(b− a)− pj−1(d− c))

ä
=− γj(b− a, d− c) + (−1)b

j
2c(−1)j (qj−1(b− a)− pj−1(d− c))

=− γj(b− a, d− c) + (−1)b
j
2c(−1)j

Å
qj−1

Å
d
pj
qj

ã
− qj−1a− pj−1d+ pj−1c

ã
(using eq. (2))

=− γj(b− a, d− c) + (−1)b
j
2c(−1)j

Å
d

qj
(pjqj−1 − qjpj−1) + pj−1c− qj−1a

ã
=− γj(b− a, d− c) + (−1)b

j
2c(−1)j

Å
d

qj
(−1)j + pj−1c− qj−1a

ã
(using lemma (0.3), point (ii))

=− γj(b− a, d− c) + (−1)b
j
2c d
qj

+ (−1)b
j
2c(−1)j (pj−1c− qj−1a)

=− γj(b− a, d− c) + (−1)b
j
2csgn(d) + (−1)b

j
2c(−1)j (pj−1c− qj−1a) (using eq. (15) and (17))

=− (−1)b
j
2csgn(d)det(M) + (−1)b

j
2csgn(d) + (−1)b

j
2c(−1)j (pj−1c− qj−1a) (using eq. (18))

=(−1)b
j
2csgn(d)

Ä
1− det(M) + (−1)jsgn(d) (pj−1c− qj−1a)

ä Ä
as (sgn(d))2 = sgn(d)

ä
(19)

Putting equations (17), (18) and (19) together, we found:

Pj = (−1)b
j
2csgn(d)

Å
1 1− det(M) + (−1)jsgn(d) (pj−1c− qj−1a)
0 det(M)

ã
(20)

Let's write bj := (−1)jsgn(d) (pj−1c− qj−1a), we get:

(1) M ∈ SL2 (Z) =⇒ det (M) = 1; then, using lemma (0.1), equation (20) becomes:

P+
j = (−1)b

j
2csgn(d)

Å
1 bj
0 1

ã
= (−1)b

j
2csgn(d)Abj (21)

(2) M ∈ GL2 (Z)\SL2 (Z) =⇒ det (M) = −1; note that, ∀n ∈ Z, CAn =
(
1 0
0 −1

)
( 1 n0 1 ) =

(
1 n
0 −1

)
. Therefore,

equation (20) becomes:

P−j = (−1)b
j
2csgn(d)

Å
1 2 + bj
0 −1

ã
= (−1)b

j
2csgn(d)CA2+bj (22)

If we want to put equations (21) and (22) together, we note that 1−det(M)
2 = 0 when M ∈ SL2 (Z) and

1−det(M)
2 = 1 when M ∈ GL2 (Z) \ SL2 (Z). Therefore,

Pj =(−1)b
j
2csgn(d)

(
CA2

) 1−det(M)
2 Abj

=
(
AB−1A

)1−(−1)b j
2csgn(d) (

CA2
) 1−det(M)

2 Abj (using equation (3)) (23)

(iii) Recall equation (14); we have, by de�nition, P0 = A−1MA−1B. By direct calculation, we get:

P0 :=

Å
b− d b+ c− (a+ d)
d d− c

ã
(24)

By induction on k ≥ 1, we will show that Pk = B−1A2+(−1)knkPk−1, ∀k ∈ J1, jK.

• Let k := 1; on one side, we have:

B−1A2+(−1)1n1P0 =

Å
1 0
−1 1

ãÅ
1 2− n1

0 1

ãÅ
b− d c+ b− a− d
d d− c

ã
=

Å
1 2− n1

−1 n1 − 1

ãÅ
b− d c+ b− a− d
d d− c

ã
=

Å
b+ d− dn1 −c+ d+ b− a+ (c− d)n1

−b+ dn1 −b+ a+ (d− c)n1

ã
(25)

On the other side,

P1 =

Å
α1 β1
γ1 δ1

ã
= (−1)b

1
2c
Å(
q1b− p1d+ (−1)1 (q0b− p0d)

) (
q1(b− a)− p1(d− c) + (−1)1 (q0(b− a)− p0(d− c))

)
(p1d− q1b) (p1(d− c)− q1(b− a))

ã
=

Å
b− n1d+ d b− a− n1(d− c) + (d− c)
n1d− b n1(d− c)− (b− a)

ã (
using ( p0 p1q0 q1 ) =

(
1 n1
0 1

))
(26)

The initialisation of the induction is valid as equations (25) and (26) are the same.
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• Suppose that Pk = B−1A2+(−1)knkPk−1 is true for k > 1; we will show that it remains true for k + 1:

B−1A2+(−1)k+1nk+1Pk =

Å
1 0
−1 1

ãÅ
1 2 + (−1)k+1nk+1

0 1

ã
Pk

=

Å
1 0
−1 1

ãÅ
1 2 + (−1)k+1nk+1

0 1

ãÅ
αk(b, d) αk(b− a, d− c)
γk(b, d) γk(b− a, d− c)

ã
(by inductive hyp.)

=

Å
1 2 + (−1)k+1nk+1

−1 −1 + (−1)k+2nk+1

ãÅ
αk(b, d) αk(b− a, d− c)
γk(b, d) γk(b− a, d− c)

ã
:=

Å
s t
u v

ã
We will show that ( s tu v ) =

Ä
αk+1(b,d) αk+1(b−a,d−c)
γk+1(b,d) γk+1(b−a,d−c)

ä
:

s = 1 · αk(b, d) +
Ä
2 + (−1)k+1nk+1

ä
γk(b, d)

= (−1)b
k
2 c
Ä
qkb− pkd+ (−1)k (qk−1b− pk−1d) +

Ä
2 + (−1)k+1nk+1

ä
(pkd− qkb)

ä
= (−1)b

k
2 c
Ä
qkb− pkd+ (−1)kqk−1b− (−1)kpk−1d+ 2pkd− 2qkb+ (−1)k+1nk+1pkd− (−1)k+1nk+1qkb

ä
= (−1)b

k
2 c
Ä
pkd− qkb+ (−1)k+1d (nk+1pk + pk−1)− (−1)k+1b (nk+1qk + qk−1)

ä
= (−1)b

k
2 c
Ä
pkd− qkb+ (−1)k+1 (dpk+1 − bqk+1)

ä
(using lemma (0.3), point (i))

= (−1)b
k
2 c(−1)k

Ä
(−1)k (pkd− qkb) + (bqk+1 − dpk+1)

ä
= (−1)b

k+1
2 c
Ä
qk+1b− pk+1d− (−1)k (qkb− pkd)

ä
(using lemma (0.4))

= (−1)b
k+1
2 c
Ä
qk+1b− pk+1d+ (−1)k+1 (qkb− pkd)

ä
= αk+1(b, d)

From this, we get directly:

t = 1 · αk(b− a, d− c) +
(
2 + (−1)k+1nk+1

)
γk(b− a, d− c)

= αk+1(b− a, d− c)

Then,

u = (−1) · αk(b, d) +
(
−1 + (−1)k+2nk+1

)
γk(b, d)

= (−1)b
k
2 c (−qkb+ pkd+ (−1)k+1 (qk−1b− pk−1d) +

(
−1 + (−1)k+2nk+1

)
(pkd− qkb)

)
= (−1)b

k
2 c (pkd− qkb+ (−1)k+1 (qk−1b− pk−1d)− pkd+ qkb− (−1)k+1nk+1pkd+ (−1)k+1qkbnn+1

)
= (−1)b

k
2 c(−1)k+1 (b (nk+1qk + qk−1)− d (nk+1pk + pk−1))

= (−1)b
k+1
2 c (dpk+1 − bqk+1) (using lemma (0.3), point (i) and lemma (0.4))

= γk+1(b, d)

Finally, using above calculation for u:

v = (−1)αk(b− a, d− c) +
(
−1 + (−1)k+2nk+1

)
γk(b− a, d− c)

= γk+1(b− a, d− c)

We just showed:

Pj =
Ä
B−1A2+(−1)jnj

ä Ä
B−1A2+(−1)j−1nj−1

ä
· · ·
Ä
B−1A2+(−1)1n1

ä
P0

=
( j∏
k=1

B−1A2+(−1)j+1−knj+1−k

)
P0

Using equation (23) and the de�nition of P0, we get:

(
AB−1A

)1−(−1)b j
2csgn(d) (

CA2
) 1−det(M)

2 Abj =
( j∏
k=1

B−1A2+(−1)j+1−knj+1−k

)
A−1MA−1B (27)

Solving this for M , we obtain formula (1). Note that we made, in above development, no assumptions on the
continued fraction's length j; this shows that formula (1) is independant of the chosen representation of the
continued fraction associated to the rational bd . �
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As another example, we can retrieve the fact that An = ( 1 n0 1 ), ∀n ∈ Z from lemma (0.1) simply by applying formula
(1) to the matrix ( 1 n0 1 ). Here, j := 1 as n

1 = [n] and b1 = (−1)1sgn(1) (p0 · 0− q0 · 1) = 0 (recall that q0 := 0).
Thus, Å

1 n
0 1

ã
=
(
AB−1A

)1−(−1)b 1
2csgn(1)︸ ︷︷ ︸

=I

AA−(2−n)BA0B−1︸ ︷︷ ︸
=I

A = AAn−2A = An (28)
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