An explicit decomposition formula of a matrix in $G L_{2}(\mathbb{Z})$

D. FOSSE, MSc. Physics
dominique.fosse@a3.epfl.ch

Introduction Let $\mathcal{M}_{2}(\mathbb{Z})$ the ring of all square matrices of order 2 with coefficients in the ring \mathbb{Z}. Recall that $G L_{2}(\mathbb{Z})$ denotes the unit group of $\mathcal{M}_{2}(\mathbb{Z})$ and has the following caracterization:

$$
G L_{2}(\mathbb{Z})=\left\{M \in \mathcal{M}_{2}(\mathbb{Z}) \mid \operatorname{det}(M)= \pm 1\right\}
$$

We will make use of $C:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \in G L_{2}(\mathbb{Z})$. Let's consider now

$$
S L_{2}(\mathbb{Z})=\left\{M \in \mathcal{M}_{2}(\mathbb{Z}) \mid \operatorname{det}(M)=+1\right\}
$$

which is a subgroup of $G L_{2}(\mathbb{Z})$; we define $A:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $B:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ two elements of $S L_{2}(\mathbb{Z})$. It is well known (for instance, see [1]) that A and B generates $S L_{2}(\mathbb{Z})$; and from now on, we will use the following notation:

$$
\langle A, B\rangle=S L_{2}(\mathbb{Z})
$$

Other pairs of generators can be considered; one can often find in the literature:

$$
S:=B^{-1} A B^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad T:=B
$$

Let $M:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}(\mathbb{Z})$ and suppose $d \neq 0$ (the case $d=0$ is elementary and will be treated separately). The aim of this article is to demonstrate, using a funny induction, the following formula:

$$
\begin{equation*}
M=\left(A B^{-1} A\right)^{\left.1-(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\right\rfloor \operatorname{sgn}(d)} A\left(\prod_{k=1}^{j} A^{-\left(2+(-1)^{k} n_{k}\right)} B\right)\left(C A^{2}\right)^{\frac{1-\operatorname{det}(M)}{2}} A^{(-1)^{j} \operatorname{sgn}(d)\left(p_{j-1} c-q_{j-1} a\right)} B^{-1} A \tag{1}
\end{equation*}
$$

Here, $\left[n_{1} ; n_{2}, \ldots, n_{j}\right]$ represents the simple finite continued fraction associated to the rational $\frac{b}{d}$; where $n_{1} \in \mathbb{Z}$ and $n_{i} \in \mathbb{N}^{*}, \forall i \in \llbracket 2, j \rrbracket$. Since $\left[n_{1} ; 1\right]=\left[n_{1}+1\right]$ and $\left[n_{1} ; n_{2}, \ldots, n_{j}, 1\right]=\left[n_{1} ; n_{2}, \ldots, n_{j}+1\right]$, every rational number can be represented in two different ways and we will show that formula (1) is independant of this choice of representation. The terms p_{j-1} and q_{j-1} come from the reduced fraction $\frac{p_{j-1}}{q_{j-1}}:=\left[n_{1} ; n_{2}, \ldots, n_{j-1}\right]$ with the initial condition $\left(p_{0}, q_{0}\right):=(1,0)$. By definition of $\left[n_{1} ; n_{2}, \ldots, n_{j}\right]$, one has:

$$
\begin{equation*}
\frac{p_{j}}{q_{j}}=\frac{b}{d} \Longleftrightarrow p_{j} d-q_{j} b=0 \tag{2}
\end{equation*}
$$

Also, $\left\lfloor\frac{j}{2}\right\rfloor$ denotes the integer part of $\frac{j}{2}$ so that $(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}= \pm 1$, depending on the residue of j modulo 4 . If we note $I:=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then we verify by direct calculation that $\left(A B^{-1} A\right)^{2}=-I$; therefore:

$$
\left(A B^{-1} A\right)^{1-(-1)\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d) \quad=\left\{\begin{array}{cl}
\left(A B^{-1} A\right)^{0}=I & \text { if }(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)=+1 \tag{3}\\
\left(A B^{-1} A\right)^{2}=-I & \text { if }(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)=-1
\end{array}\right.
$$

As $\left(A B^{-1} A\right)^{1-(-1)\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)= \pm I$, this matrix commutes with any element of $G L_{2}(\mathbb{Z})$ and we chose to write it as a factor of the right member of formula (11). The basic theory of continued fractions also ensures that $q_{k}>0$, $\forall k \in \llbracket 1, j \rrbracket$ and so there is no ambiguity regarding the sign of p_{j-1} in case the ratio $\frac{p_{j-1}}{q_{j-1}}$ is negative. Note that $\operatorname{det}(M)=+1 \Longleftrightarrow M \in S L_{2}(\mathbb{Z})$, then $\left(C A^{2}\right)^{\frac{1-\operatorname{det}(M)}{2}}=\left(C A^{2}\right)^{0}=I$ which means, as expected, that C (which doesn't belong to $S L_{2}(\mathbb{Z})$) vanishes from formula (1) and we retrieve an expression of M as a word in $\langle A, B\rangle$.

An explicit example

1) Let $M:=\left(\begin{array}{cc}-65 & 17 \\ 42 & -11\end{array}\right)$; we verify that $\operatorname{det}(M)=1$ so that $M \in S L_{2}(\mathbb{Z})$. We develop here what we call the first represention of $\frac{b}{d}=-\frac{17}{11}$ which is $[-2 ; 2,5]$. Explicitely,

$$
-\frac{17}{11}=-2+\frac{1}{2+\frac{1}{5}} \Longrightarrow j:=3 \text { and }\left(n_{1}, n_{2}, n_{3}\right)=(-2,2,5)
$$

Then, $(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)=(-1)^{\left\lfloor\frac{3}{2}\right\rfloor} \operatorname{sgn}(-11)=(-1)^{1}(-1)=+1$. The reduced fraction $\frac{p_{j-1}}{q_{j-1}}=\frac{p_{2}}{q_{2}}$ is then $[-2 ; 2]=$ $-2+\frac{1}{2}=-\frac{3}{2}$. As stated in the introduction, q_{2} is necessarily a positive integer; thus $\left(p_{2}, q_{2}\right)=(-3,2)$. Then $b_{j}=b_{3}=(-1)^{3} \operatorname{sgn}(-11)(-3 \cdot 42-2 \cdot(-65))=4$. Also, $\operatorname{det}(M)=1 \Longrightarrow \frac{1-\operatorname{det}(M)}{2}=0 \Longrightarrow\left(C A^{2}\right)^{\frac{1-\operatorname{det}(M)}{2}}=$ $\left(C A^{2}\right)^{0}=I$. That's it; we have everything to apply formula (1):

$$
\begin{align*}
M & =I \cdot A\left(A^{-\left(2-n_{1}\right)} B\right)\left(A^{-\left(2+n_{2}\right)} B\right)\left(A^{-\left(2-n_{3}\right)} B\right) I \cdot A^{b_{3}} B^{-1} A \\
& =A\left(A^{-(2-(-2))} B\right)\left(A^{-(2+2)} B\right)\left(A^{-(2-5)} B\right) A^{4} B^{-1} A \\
& =A^{-3} B A^{-4} B A^{3} B A^{4} B^{-1} A \tag{4}
\end{align*}
$$

2) Let's consider the same matrix $M:=\left(\begin{array}{cc}-65 & 17 \\ 42 & -11\end{array}\right)$ but this time, let's use the second representation of $\frac{b}{d}=$ $-\frac{17}{11}$ which is $[-2 ; 2,4,1] \Longrightarrow\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(-2,2,4,1)$. This time, $j:=4$ and thus $(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)=$ $(-1)^{\left\lfloor\frac{4}{2}\right\rfloor} \operatorname{sgn}(-11)=(-1)^{2}(-1)=-1$. The reduced fraction $\frac{p_{j-1}}{q_{j-1}}=\frac{p_{3}}{q_{3}}$ is then $[-2 ; 2,4]=-2+\frac{1}{2+\frac{1}{4}}=-\frac{14}{9} \Longrightarrow$ $\left(p_{j-1}, q_{j-1}\right)=\left(p_{3}, q_{3}\right)=(-14,9)$. Then, $b_{j}=b_{4}=(-1)^{4} \operatorname{sgn}(-11)((-14) 42-9(-65))=3$. Then,

$$
\begin{align*}
M & =\left(A B^{-1} A\right)^{2} A\left(A^{-\left(2-n_{1}\right)} B\right)\left(A^{-\left(2+n_{2}\right)} B\right)\left(A^{-\left(2-n_{3}\right)} B\right)\left(A^{-\left(2+n_{4}\right)} B\right) A^{b_{4}} B^{-1} A \\
& =\left(A B^{-1} A\right)^{2} A\left(A^{-(2-(-2))} B\right)\left(A^{-(2+2)} B\right)\left(A^{-(2-4)} B\right)\left(A^{-(2+1)} B\right) A^{3} B^{-1} A \tag{5}\\
& =A B^{-1} A^{2} B^{-1} A^{2} A^{-4} B A^{-4} B A^{2} B A^{-3} B A^{3} B^{-1} A \\
& =A B^{-1} A^{2} B^{-1} A^{-2} B A^{-4} B A^{2} B A^{-3} B A^{3} B^{-1} A \tag{6}
\end{align*}
$$

Comparing (4) and (5), we get two different expressions of M in $\langle A, B\rangle$ and formula (1) works well in both representations.

Some basic lemmas We list here all the requiered results used in the demonstration of formula (1).
Lemma 0.1 (Powers of A and B). For all $n \in \mathbb{Z}$,

$$
A^{n}=\left(\begin{array}{cc}
1 & n \tag{7}\\
0 & 1
\end{array}\right) \quad B^{n}=\left(\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right)
$$

Proof. Suppose $n \geq 0$. For $n=0$ or $n=1$, (7) are both verified. Suppose (7) true for $n>1$; one gets $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) A^{n}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & n+1 \\ 0 & 1\end{array}\right)=A^{n}\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \Longrightarrow A \cdot A^{n}=A^{n} \cdot A=A^{n+1}$. Regarding B, we have $B \cdot B^{n}=$ $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ n+1 & 1\end{array}\right)=B^{n+1}=B^{n} \cdot B$. Now let's compute the inverse of $A^{n}:\left(A^{n}\right)^{-1}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & -n \\ 0 & 1\end{array}\right)=A^{-n}$ and we get something similar for B : $B^{-n}=\left(\begin{array}{cc}1 & 0 \\ -n & 1\end{array}\right)$ which proves $(7), \forall n \in \mathbb{Z}$.

Let's now treat the case $d:=0$ separately.
Lemma 0.2 (The case $d:=0$). Let $M_{0}:=\left(\begin{array}{cc}a & b \\ c & 0\end{array}\right) \in G L_{2}(\mathbb{Z})$, then $M_{0} \in\langle A, B, C\rangle$
Proof. $M_{0}=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \Longrightarrow \operatorname{det}\left(M_{0}\right)=-b c= \pm 1$. Thus, there are four possibilities:

$$
(b, c) \in\{(1,1),(-1,-1),(1,-1),(-1,1)\}
$$

(i) $(b, c):=(1,1) \Longrightarrow M_{0}=\left(\begin{array}{cc}a & 1 \\ 1 & 0\end{array}\right) \Longrightarrow M_{0} \in G L_{2}(\mathbb{Z}) \backslash S L_{2}(\mathbb{Z})$ as $\operatorname{det}\left(M_{0}\right)=-1$. We check that, $\forall a \in \mathbb{Z}$:

$$
C B^{-1} A B^{a-1}=\left(\begin{array}{cc}
a & 1 \tag{8}\\
1 & 0
\end{array}\right) \in\langle A, B, C\rangle
$$

(ii) $(b, c):=(-1,-1) \Longrightarrow M_{0}=\left(\begin{array}{cc}a & -1 \\ -1 & 0\end{array}\right) \Longrightarrow M_{0} \in G L_{2}(\mathbb{Z}) \backslash S L_{2}(\mathbb{Z})$ as $\operatorname{det}\left(M_{0}\right)=-1$. Note that $M_{0}=-\left(\begin{array}{cc}-a & 1 \\ 1 & 0\end{array}\right)$. Using $-I=\left(A B^{-1} A\right)^{2}$ as mentioned in the introduction and point (i), we get:

$$
\begin{equation*}
M_{0}=A B^{-1} A^{2} B^{-1} A C B^{-1} A B^{-a-1} \in\langle A, B, C\rangle \tag{9}
\end{equation*}
$$

(iii) $(b, c)=(1,-1) \Longrightarrow M_{0}=\left(\begin{array}{cc}a & 1 \\ -1 & 0\end{array}\right) \Longrightarrow \operatorname{det}\left(M_{0}\right)=+1 \Longrightarrow M_{0} \in S L_{2}(\mathbb{Z})$. We check that, $\forall a \in \mathbb{Z}$:

$$
\begin{equation*}
M_{0}=A^{1-a} B^{-1} A \in\langle A, B\rangle \subseteq\langle A, B, C\rangle \tag{10}
\end{equation*}
$$

(iv) $(b, c)=(-1,1) \Longrightarrow M_{0}=\left(\begin{array}{cc}a & -1 \\ 1 & 0\end{array}\right) \Longrightarrow \operatorname{det}\left(M_{0}\right)=+1 \Longrightarrow M_{0} \in S L_{2}(\mathbb{Z})$. We check that, $\forall a \in \mathbb{Z}$:

$$
\begin{equation*}
M_{0}=B A^{-1} B^{1-a} \in\langle A, B\rangle \subseteq\langle A, B, C\rangle \tag{11}
\end{equation*}
$$

Conclusion: as per equations (8), (9), 10) and (11), $M_{0} \in\langle A, B, C\rangle$. On top of that, equations (10) and (11) show that $M_{0} \in S L_{2}(\mathbb{Z}) \Longrightarrow M_{0} \in\langle A, B\rangle$, as expected.

Lemma 0.3 (Some basic results on simple continued fractions). Let $\left[n_{1} ; n_{2}, \ldots, n_{j}\right]$ a simple and finite continued fraction:

$$
\frac{p_{j}}{q_{j}}=\left[n_{1} ; n_{2}, \ldots, n_{j}\right]=n_{1}+\frac{1}{n_{2}+\frac{1}{n_{3}+\frac{1}{n_{4}+.}}}
$$

The convergents are the rational numbers defined by $\frac{p_{i}}{q_{i}}:=\left[n_{1} ; n_{2}, \ldots, n_{i}\right], \forall i \in \llbracket 1, j \rrbracket$ with the convention $\left(p_{0}, q_{0}\right):=$ $(1,0)$. Let's prove the following points:
(i) $\forall i \in \llbracket 2, j \rrbracket$, we have $p_{i}=n_{i} p_{i-1}+p_{i-2}$ and $q_{i}=n_{i} q_{i-1}+q_{i-2}$
(ii) $p_{i} q_{i-1}-p_{i-1} q_{i}=(-1)^{i}, \forall i \in \llbracket 1, j \rrbracket$
(iii) The convergents $\frac{p_{i}}{q_{i}}:=\left[n_{1} ; n_{2}, \ldots, n_{i}\right]$ are such that p_{i} and q_{i} are coprime numbers, $\forall i \in \llbracket 1, j \rrbracket$.
(iv) With $q_{0}:=0$, one has $q_{1}:=1 \leq q_{2}$ and $q_{2}<q_{3}<\ldots q_{j}$. In particular, $q_{i} \geq 0, \forall i \in \llbracket 0, j \rrbracket$.
(v) $\frac{p_{i}}{q_{i}}-\frac{p_{i-1}}{q_{i-1}}=\frac{(-1)^{i}}{q_{i} q_{i-1}}, \forall i \in \llbracket 2, j \rrbracket$

Proof. (i) As $p_{0}=1, q_{1}=1$ and $\frac{p_{1}}{q_{1}}=\left[n_{1}\right]=\frac{n_{1}}{1}=n_{1}$, we have $p_{1}:=n_{1}$. Then, $n_{2} p_{1}+p_{0}=n_{2} n_{1}+1$. On the other side, $\frac{p_{2}}{q_{2}}=\left[n_{1} ; n_{2}\right]=n_{1}+\frac{1}{n_{2}}=\frac{n_{1} n_{2}+1}{n_{2}} \Longrightarrow\left(p_{2}, q_{2}\right)=\left(n_{1} n_{2}+1, n_{2}\right)$ and this shows that (i) is valid for $i:=2$. Suppose that (i) is valid for $i>2$; we have:

$$
\frac{p_{i}}{q_{i}}=\left[n_{1}, n_{2}, \ldots, n_{i-1}, n_{i}\right]=n_{1}+\frac{1}{n_{2}+\frac{1}{n_{3}+\frac{1}{n_{4}+} \cdot}}
$$

And we see directly that $\left[n_{1} ; n_{2}, \ldots, n_{i-1}+\frac{1}{n_{i}}\right]=\left[n_{1} ; n_{2}, \ldots, n_{i-1}, n_{i}\right]$. Then,

$$
\begin{aligned}
\frac{p_{i}}{q_{i}}=\left[n_{1} ; n_{2}, \ldots, n_{i-1}, n_{i}\right] & =\left[n_{1} ; n_{2}, \ldots, n_{i-1}+\frac{1}{n_{i}}\right] \\
& =\frac{p_{i-1}\left(n_{1}, n_{2}, \ldots, n_{i-1}+\frac{1}{n_{i}}\right)}{q_{i-1}\left(n_{1}, n_{2}, \ldots, n_{i-1}+\frac{1}{n_{i}}\right)} \\
& =\frac{\left(n_{i-1}+\frac{1}{n_{i}}\right) p_{i-2}+p_{i-3}}{\left(n_{i-1}+\frac{1}{n_{i}}\right) q_{i-2}+q_{i-3}} \quad \text { (by inductive hypothesis) } \\
& =\frac{\left(n_{i-1} p_{i-2}+p_{i-3}\right)+\frac{1}{n_{i}} p_{i-2}}{\left(n_{i-1} q_{i-2}+q_{i-3}\right)+\frac{1}{n_{i}} q_{i-2}} \\
& =\frac{p_{i-1}+\frac{1}{n_{i}} p_{i-2}}{q_{i-1}+\frac{1}{n_{i}} q_{i-2}} \quad \text { (by inductive hypothesis) } \\
& =\frac{n_{i} p_{i-1}+p_{i-2}}{n_{i} q_{i-1}+q_{i-2}}
\end{aligned}
$$

(ii) For $i:=1,(i i)$ is verified, as $p_{1} q_{0}-p_{0} q_{1}=n_{1} \cdot 0-1 \cdot 1=-1=(-1)^{1}$. Suppose $(i i)$ is true for $i>1$; one gets:

$$
\begin{aligned}
p_{i+1} q_{i}-p_{i} q_{i+1} & =\left(n_{i+1} p_{i}+p_{i-1}\right) q_{i}-p_{i}\left(n_{i+1} q_{i}+q_{i-1}\right) \quad(\operatorname{using}(i)) \\
& =n_{i+1} p_{i} q_{i}+p_{i-1} q_{i}-n_{i+1} q_{i} p_{i}-p_{i} q_{i-1}=-\left(p_{i} q_{i-1}-p_{i-1} q_{i}\right) \\
& =-(-1)^{i} \quad \text { (by inductive hypothesis) } \\
& =(-1)^{i+1} \quad
\end{aligned}
$$

(iii) Both recurrence relations of point (i) show that $n_{i} \in \mathbb{Z} \Longrightarrow\left(p_{i}, q_{i}\right) \in \mathbb{Z}^{2}, \forall i \in \llbracket 1, j \rrbracket$. Let's write point (ii) as $p_{i}\left((-1)^{i} q_{i-1}\right)+q_{i}\left((-1)^{i-1} p_{i-1}\right)=1, \forall i \in \llbracket 1, j \rrbracket$ which is a Bézout relation. Therefore, p_{i} and q_{i} are coprime numbers, $\forall i \in \llbracket 1, j \rrbracket$.
(iv) Using the recurrence relation $q_{i}=n_{1} q_{i-1}+q_{i-2}, \forall i \in \llbracket 2, j \rrbracket$ from point (i) with $\left(q_{0}, q_{1}\right)=(0,1)$, we show, by induction, that $q_{i} \geq 1, \forall i \in \llbracket 1, j \rrbracket$. Recall that $n_{1} \in \mathbb{Z}$ and $n_{i} \in \mathbb{N}^{*}, \forall i \in \llbracket 2, j \rrbracket$. For $i:=2$, we get $q_{2}=n_{2} q_{1}+q_{0}=n_{2} \cdot 1+0=n_{2} \geq 1$. Suppose that $q_{i} \geq 1$ for $i>2$, hence $q_{i+1}=n_{i+1} q_{i}+q_{i-1}$; by induction hypothesis, $q_{i-1} \geq 1, q_{i} \geq 1$ and $n_{i+1} \in \mathbb{N}^{*}$. Therefore, $n_{i+1} q_{i}+q_{i-1} \geq 1$; i.e, $q_{i+1} \geq 1$ and this shows that $q_{i} \geq 1, \forall i \in \llbracket 1, j \rrbracket$. Moreover, $n_{i} q_{i-1}+q_{i-2} \geq q_{i-1}+q_{i-2}$ when $i \geq 2$. Using point (i), we get $q_{i} \geq q_{i-1}+q_{i-2}$, $\forall i \in \llbracket 2, j \rrbracket$. As $q_{i-2} \geq 1$ whenever $i \geq 3$, we get finally $q_{i} \geq q_{i-1}+q_{i-2}>q_{i-1}, \forall i \in \llbracket 3, j \rrbracket$.
(v) Point (iv) showed, in particular, that $q_{i} \neq 0, \forall i \in \llbracket 1, j \rrbracket$. Hence, $q_{i} q_{i-1} \neq 0, \forall i \in \llbracket 2, j \rrbracket$. It's then possible to divide point (ii) relation by $q_{i} q_{i-1}$.

We will also make use of the following elementary result:

Lemma 0.4.

$$
(-1)^{\left\lfloor\frac{k+1}{2}\right\rfloor}=(-1)^{k}(-1)^{\left\lfloor\frac{k}{2}\right\rfloor} \quad \forall k \in \mathbb{N}
$$

Proof. Recall that $\forall x \in \mathbb{R}$ and $\forall n \in \mathbb{Z}$, one has $\lfloor x+n\rfloor=\lfloor x\rfloor+n$. Let $\left(k, k^{\prime}\right) \in \mathbb{N}^{2}$ such $k=4 k^{\prime}$, then $\left\lfloor\frac{k}{2}\right\rfloor=\left\lfloor\frac{4 k^{\prime}}{2}\right\rfloor=2 k^{\prime} \Longrightarrow(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}=(-1)^{2 k^{\prime}}=+1$. Suppose now $\left(k, k^{\prime}\right) \in \mathbb{N}^{2}$ such $k=4 k^{\prime}+1$; then $\left\lfloor\frac{k}{2}\right\rfloor=$ $\left\lfloor\frac{4 k^{\prime}+1}{2}\right\rfloor=\left\lfloor 2 k^{\prime}+\frac{1}{2}\right\rfloor=2 k^{\prime}+\left\lfloor\frac{1}{2}\right\rfloor=2 k^{\prime} \Longrightarrow(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}=(-1)^{2 k^{\prime}}=+1$. Suppose now $\left(k, k^{\prime}\right) \in \mathbb{N}^{2}$ such $k=4 k^{\prime}+2$; then $\left\lfloor\frac{k}{2}\right\rfloor=\left\lfloor\frac{4 k^{\prime}+2}{2}\right\rfloor=\left\lfloor 2 k^{\prime}+1\right\rfloor=2 k^{\prime}+1 \Longrightarrow(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}=(-1)^{2 k^{\prime}+1}=-1$. Finally, suppose $\left(k, k^{\prime}\right) \in \mathbb{N}^{2}$ such $k=4 k^{\prime}+3$; then $\left\lfloor\frac{k}{2}\right\rfloor=\left\lfloor\frac{4 k^{\prime}+3}{2}\right\rfloor=\left\lfloor\frac{\left(4 k^{\prime}+2\right)+1}{2}\right\rfloor=\left\lfloor 2 k^{\prime}+1+\frac{1}{2}\right\rfloor=2 k^{\prime}+1+\left\lfloor\frac{1}{2}\right\rfloor=2 k^{\prime}+1 \Longrightarrow \quad(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}=$ $(-1)^{2 k^{\prime}+1}=-1$. Hence we showed that, $\forall k \in \mathbb{N}$:

$$
(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}=\left\{\begin{array}{ccc}
1 & \text { if } k \equiv 0 \text { or } 1 & \bmod 4 \tag{12}\\
-1 & \text { if } k \equiv 2 \text { or } 3 & \bmod 4
\end{array} \Longrightarrow(-1)^{\left\lfloor\frac{k+1}{2}\right\rfloor}=\left\{\begin{array}{cl}
1 & \text { if } k \equiv 0 \text { or } 3 \\
\bmod 4 \\
-1 & \text { if } k \equiv 1 \text { or } 2
\end{array} \bmod 4\right.\right.
$$

Of course, $\forall k \in \mathbb{N}$, we have:

$$
(-1)^{k}=\left\{\begin{array}{ccc}
1 & \text { if } k \equiv 0 \text { or } 2 & \bmod 4 \\
-1 & \text { if } k \equiv 2 \text { or } 3 & \bmod 4
\end{array}\right.
$$

That means $(-1)^{k}(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}$ equals +1 when $\left((-1)^{\left\lfloor\frac{k}{2}\right\rfloor},(-1)^{k}\right)=(1,1)$ or $(-1,-1)$ and this is the case if and only if $k \equiv 0$ or $3 \bmod 4$ and this is exactly what shows equation 12 .

The main result Let $M:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}(\mathbb{Z})$ with $d \neq 0$. Let's define, $\forall k \in \llbracket 1, j \rrbracket$,

$$
\left\{\begin{array}{l}
\alpha_{k}(b, d):=(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}\left(q_{k} b-p_{k} d+(-1)^{k}\left(q_{k-1} b-p_{k-1} d\right)\right) \tag{13}\\
\gamma_{k}(b, d):=(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}\left(p_{k} d-q_{k} b\right)
\end{array}\right.
$$

where, $\frac{p_{k}}{q_{k}}:=\left[n_{1} ; n_{2}, \ldots, n_{k}\right], \forall k \in \llbracket 1, j \rrbracket$ are the convergents of the continued fraction $\frac{b}{d}=\left[n_{1} ; n_{2}, \ldots, n_{j}\right]$. Let's also define:

$$
P_{0}:=A^{-1} M A^{-1} B \quad \text { and } \quad P_{k}:=\left(\begin{array}{cc}
\alpha_{k}(b, d) & \alpha_{k}(b-a, d-c) \tag{14}\\
\gamma_{k}(b, d) & \gamma_{k}(b-a, d-c)
\end{array}\right) \quad \forall k \geq 1
$$

Then,
(i) $P_{k} \in G L_{2}(\mathbb{Z}), \forall k \in \llbracket 0, j \rrbracket$
(ii) $P_{j}=\left(-1\left\lfloor^{\left\lfloor\frac{j}{2}\right\rfloor}\right\rfloor \operatorname{sgn}(d)\left(C A^{2}\right)^{\frac{1-\operatorname{det}(M)}{2}} A^{b_{j}}\right.$; where $b_{j}:=(-1)^{j} \operatorname{sgn}(d)\left(p_{j-1} c-q_{j-1} a\right)$
(iii) $P_{k}=B^{-1} A^{2+(-1)^{k} n_{k}} P_{k-1}, \forall k \in \llbracket 1, j \rrbracket$

Proof. (i) For $k:=0$, it is clear, from its definition $\left(G L_{2}(\mathbb{Z})\right.$ is a group), that $P_{0} \in G L_{2}(\mathbb{Z})$. Suppose $k>0$; from their definitions (13), we see that the coefficients of P_{k} are integers. Therefore, the only thing we have to check is $\operatorname{det}\left(P_{k}\right)= \pm 1, \forall k \in \llbracket 1, j \rrbracket$. Let's do it:

$$
\begin{aligned}
& \operatorname{det}\left(P_{k}\right)=\alpha_{k}(b, d) \gamma_{k}(b-a, d-c)-\gamma_{k}(b, d) \alpha_{k}(b-a, d-c) \\
& =(-1)^{2\left\lfloor\frac{k}{2}\right\rfloor}\left(q_{k} b-p_{k} d+(-1)^{k}\left(q_{k-1} b-p_{k-1} d\right)\right)\left(p_{k}(d-c)-q_{k}(b-a)\right) \\
& -(-1)^{2\left\lfloor\frac{k}{2}\right\rfloor}\left(p_{k} d-q_{k} b\right)\left(q_{k}(b-a)-p_{k}(d-c)+(-1)^{k}\left(q_{k-1}(b-a)-p_{k-1}(d-c)\right)\right) \\
& =q_{k} p_{k} b(d-c)-q_{k}^{2} b(b-a)-p_{k}^{2} d(d-c)+p_{k} q_{k} d(b-a)+(-1)^{k} p_{k} q_{k-1} b(d-c) \\
& -(-1)^{k} q_{k} q_{k-1} b(b-a)-(-1)^{k} p_{k} p_{k-1} d(d-c)+(-1)^{k} p_{k-1} q_{k} d(b-a)-p_{k} q_{k} d(b-a)+p_{k}^{2} d(d-c) \\
& -(-1)^{k} p_{k} q_{k-1} d(b-a)+(-1)^{k} p_{k} p_{k-1} d(d-c)+q_{k}^{2} b(b-a)-q_{k} p_{k} b(d-c)+(-1)^{k} q_{k} q_{k-1} b(b-a) \\
& -(-1)^{k} q_{k} p_{k-1} b(d-c) \\
& =(-1)^{k} b(d-c)\left(p_{k} q_{k-1}-q_{k} p_{k-1}\right)-(-1)^{k} d(b-a)\left(p_{k} q_{k-1}-p_{k-1} q_{k}\right) \\
& =(-1)^{k}\left(p_{k} q_{k-1}-q_{k} p_{k-1}\right)(a d-b c) \\
& =(-1)^{k}(-1)^{k} \operatorname{det}(M) \quad \text { (using lemma (0.3), point (ii)) } \\
& =\operatorname{det}(M) \\
& = \pm 1 \quad\left(\text { as } M \in G L_{2}(\mathbb{Z})\right)
\end{aligned}
$$

(ii) Using (2), we get directly $\gamma_{j}(b, d)=0$ and this makes P_{j} upper triangular. We have:

$$
\begin{align*}
\alpha_{j}(b, d) & =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\left(q_{j} b-p_{j} d+(-1)^{j}\left(q_{j-1} b-p_{j-1} d\right)\right) \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(q_{j-1} b-p_{j-1} d\right) \quad \text { (using equation (22) } \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(q_{j-1}\left(d \frac{p_{j}}{q_{j}}\right)-p_{j-1} d\right) \quad \text { (using equation (2) again) } \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(p_{j} q_{j-1}-p_{j-1} q_{j}\right) \frac{d}{q_{j}} \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}(-1)^{j} \frac{d}{q_{j}} \quad \text { (using lemma (0.3), point (ii)) } \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \frac{d}{q_{j}} \tag{15}
\end{align*}
$$

From point (i), we know that $P_{j} \in G L_{2}(\mathbb{Z})$. Therefore, $\alpha_{j}(b, d) \in \mathbb{Z}$ with $d \in \mathbb{Z}^{*}$ and this means that q_{j} divides d (let's note this $q_{j} \mid d$). Also,

$$
\begin{align*}
\gamma_{j}(b-a, d-c) & =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\left(p_{j}(d-c)-q_{j}(b-a)\right)=(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\left(p_{j} d-p_{j} c-q_{j} b+q_{j} a\right) \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\left(q_{j} a-p_{j} c\right) \quad \text { (using equation (22) } \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\left(q_{j} a-\left(\frac{q_{j}}{d} b\right) c\right) \quad \text { (using equation (2) again) } \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \frac{q_{j}}{d}(a d-b c) \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \frac{q_{j}}{d} \operatorname{det}(M) \tag{16}
\end{align*}
$$

Using the same argument as for (15), we get $d \mid q_{j}$. So, as $q_{j}>0$ (that is lemma (0.3), point (iv)), we have $\left(q_{j} \mid d\right.$ and $\left.d \mid q_{j}\right) \Longrightarrow d=\operatorname{sgn}(d) q_{j}$. We have found:

$$
\begin{equation*}
\alpha_{j}(b, d)=(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d) \tag{17}
\end{equation*}
$$

And,

$$
\begin{equation*}
\left.\gamma_{j}(b-a, d-c)=(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\right\rfloor \operatorname{sgn}(d) \operatorname{det}(M) \tag{18}
\end{equation*}
$$

Finally,

$$
\begin{align*}
\alpha_{j}(b-a, d-c) & =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\left(q_{j}(b-a)-p_{j}(d-c)+(-1)^{j}\left(q_{j-1}(b-a)-p_{j-1}(d-c)\right)\right) \\
& =-\gamma_{j}(b-a, d-c)+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(q_{j-1}(b-a)-p_{j-1}(d-c)\right) \\
& =-\gamma_{j}(b-a, d-c)+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(q_{j-1}\left(d \frac{p_{j}}{q_{j}}\right)-q_{j-1} a-p_{j-1} d+p_{j-1} c\right) \quad \text { (using eq. (22) } \\
& =-\gamma_{j}(b-a, d-c)+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(\frac{d}{q_{j}}\left(p_{j} q_{j-1}-q_{j} p_{j-1}\right)+p_{j-1} c-q_{j-1} a\right) \\
& =-\gamma_{j}(b-a, d-c)+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(\frac{d}{q_{j}}(-1)^{j}+p_{j-1} c-q_{j-1} a\right) \quad \quad \text { using lemma (0.3), point (ii)) } \\
& =-\gamma_{j}(b-a, d-c)+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \frac{d}{q_{j}}+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(p_{j-1} c-q_{j-1} a\right) \quad \\
& =-\gamma_{j}(b-a, d-c)+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(p_{j-1} c-q_{j-1} a\right) \quad \text { (using eq. (15) and (17)) } \\
& =-(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d) \operatorname{det}(M)+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)+(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}(-1)^{j}\left(p_{j-1} c-q_{j-1} a\right) \quad \text { (using eq. (18)) } \\
& =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)\left(1-\operatorname{det}(M)+(-1)^{j} \operatorname{sgn}(d)\left(p_{j-1} c-q_{j-1} a\right)\right) \quad\left(\operatorname{as} \quad(\operatorname{sgn}(d))^{2}=\operatorname{sgn}(d)\right) \tag{19}
\end{align*}
$$

Putting equations (17), (18) and 19 together, we found:

$$
\left.P_{j}=(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\right\rfloor \operatorname{sgn}(d)\left(\begin{array}{cc}
1 & 1-\operatorname{det}(M)+(-1)^{j} \operatorname{sgn}(d)\left(p_{j-1} c-q_{j-1} a\right) \tag{20}\\
0 & \operatorname{det}(M)
\end{array}\right)
$$

Let's write $b_{j}:=(-1)^{j} \operatorname{sgn}(d)\left(p_{j-1} c-q_{j-1} a\right)$, we get:
(1) $M \in S L_{2}(\mathbb{Z}) \Longrightarrow \operatorname{det}(M)=1$; then, using lemma 0.1), equation 20 becomes:

$$
P_{j}^{+}=(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)\left(\begin{array}{cc}
1 & b_{j} \tag{21}\\
0 & 1
\end{array}\right)=(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d) A^{b_{j}}
$$

(2) $M \in G L_{2}(\mathbb{Z}) \backslash S L_{2}(\mathbb{Z}) \Longrightarrow \operatorname{det}(M)=-1$; note that, $\forall n \in \mathbb{Z}, C A^{n}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & n \\ 0 & -1\end{array}\right)$. Therefore, equation (20) becomes:

$$
\left.P_{j}^{-}=(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}\right\rfloor \operatorname{Sgn}(d)\left(\begin{array}{cc}
1 & 2+b_{j} \tag{22}\\
0 & -1
\end{array}\right)=(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d) C A^{2+b_{j}}
$$

If we want to put equations (21) and (22) together, we note that $\frac{1-\operatorname{det}(M)}{2}=0$ when $M \in S L_{2}(\mathbb{Z})$ and $\frac{1-\operatorname{det}(M)}{2}=1$ when $M \in G L_{2}(\mathbb{Z}) \backslash S L_{2}(\mathbb{Z})$. Therefore,

$$
\begin{align*}
P_{j} & =(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \operatorname{sgn}(d)\left(C A^{2}\right)^{\frac{1-\operatorname{det}(M)}{2}} A^{b_{j}} \\
& =\left(A B^{-1} A\right)^{\left.1-(-1)^{\left\lfloor\frac{j}{2}\right.}\right\rfloor_{\operatorname{sgn}(d)}}\left(C A^{2}\right)^{\frac{1-\operatorname{det}(M)}{2}} A^{b_{j}} \quad \text { (using equation (3)) } \tag{23}
\end{align*}
$$

(iii) Recall equation (14); we have, by definition, $P_{0}=A^{-1} M A^{-1} B$. By direct calculation, we get:

$$
P_{0}:=\left(\begin{array}{cc}
b-d & b+c-(a+d) \tag{24}\\
d & d-c
\end{array}\right)
$$

By induction on $k \geq 1$, we will show that $P_{k}=B^{-1} A^{2+(-1)^{k} n_{k}} P_{k-1}, \forall k \in \llbracket 1, j \rrbracket$.

- Let $k:=1$; on one side, we have:

$$
\begin{align*}
B^{-1} A^{2+(-1)^{1} n_{1}} P_{0} & =\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2-n_{1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
b-d & c+b-a-d \\
d & d-c
\end{array}\right)=\left(\begin{array}{cc}
1 & 2-n_{1} \\
-1 & n_{1}-1
\end{array}\right)\left(\begin{array}{cc}
b-d & c+b-a-d \\
d & d-c
\end{array}\right) \\
& =\left(\begin{array}{cc}
b+d-d n_{1} & -c+d+b-a+(c-d) n_{1} \\
-b+d n_{1} & -b+a+(d-c) n_{1}
\end{array}\right) \tag{25}
\end{align*}
$$

On the other side,

$$
\begin{align*}
P_{1} & =\left(\begin{array}{cc}
\alpha_{1} & \beta_{1} \\
\gamma_{1} & \delta_{1}
\end{array}\right) \\
& =(-1)^{\left\lfloor\frac{1}{2}\right\rfloor}\left(\begin{array}{cc}
\left(q_{1} b-p_{1} d+(-1)^{1}\left(q_{0} b-p_{0} d\right)\right) & \left(q_{1}(b-a)-p_{1}(d-c)+(-1)^{1}\left(q_{0}(b-a)-p_{0}(d-c)\right)\right) \\
& =\left(\begin{array}{cc}
b-p_{1} d+d & b-a-n_{1}(d-c)+(d-c) \\
n_{1} d-b & n_{1}(d-c)-(b-a)
\end{array}\right)
\end{array} \quad\left(\begin{array}{cc}
\left(p_{1}(d-c)-q_{1}(b-a)\right)
\end{array}\right)\right.
\end{align*}
$$

The initialisation of the induction is valid as equations 25 and 26 are the same.

- Suppose that $P_{k}=B^{-1} A^{2+(-1)^{k} n_{k}} P_{k-1}$ is true for $k>1$; we will show that it remains true for $k+1$:

$$
\begin{aligned}
B^{-1} A^{2+(-1)^{k+1} n_{k+1}} P_{k} & =\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2+(-1)^{k+1} n_{k+1} \\
0 & 1
\end{array}\right) P_{k} \\
& =\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2+(-1)^{k+1} n_{k+1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha_{k}(b, d) & \alpha_{k}(b-a, d-c) \\
\gamma_{k}(b, d) & \gamma_{k}(b-a, d-c)
\end{array}\right) \quad \text { (by inductive hyp.) } \\
& =\left(\begin{array}{cc}
1 & 2+(-1)^{k+1} n_{k+1} \\
-1 & -1+(-1)^{k+2} n_{k+1}
\end{array}\right)\left(\begin{array}{cc}
\alpha_{k}(b, d) & \alpha_{k}(b-a, d-c) \\
\gamma_{k}(b, d) & \gamma_{k}(b-a, d-c)
\end{array}\right):=\left(\begin{array}{ll}
s & t \\
u & v
\end{array}\right)
\end{aligned}
$$

We will show that $\left(\begin{array}{ll}s & t \\ u & v\end{array}\right)=\left(\begin{array}{c}\alpha_{k+1}(b, d) \\ \gamma_{k+1}(b, d) \\ \gamma_{k+1}(b-a, d-c) \\ \gamma_{k+1}(b-a, d-c)\end{array}\right)$:

$$
\begin{aligned}
s & =1 \cdot \alpha_{k}(b, d)+\left(2+(-1)^{k+1} n_{k+1}\right) \gamma_{k}(b, d) \\
& =(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}\left(q_{k} b-p_{k} d+(-1)^{k}\left(q_{k-1} b-p_{k-1} d\right)+\left(2+(-1)^{k+1} n_{k+1}\right)\left(p_{k} d-q_{k} b\right)\right) \\
& =(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}\left(q_{k} b-p_{k} d+(-1)^{k} q_{k-1} b-(-1)^{k} p_{k-1} d+2 p_{k} d-2 q_{k} b+(-1)^{k+1} n_{k+1} p_{k} d-(-1)^{k+1} n_{k+1} q_{k} b\right) \\
& =(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}\left(p_{k} d-q_{k} b+(-1)^{k+1} d\left(n_{k+1} p_{k}+p_{k-1}\right)-(-1)^{k+1} b\left(n_{k+1} q_{k}+q_{k-1}\right)\right) \\
& =(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}\left(p_{k} d-q_{k} b+(-1)^{k+1}\left(d p_{k+1}-b q_{k+1}\right)\right) \quad(\text { using lemma 0.3), point }(i)) \\
& =(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}(-1)^{k}\left((-1)^{k}\left(p_{k} d-q_{k} b\right)+\left(b q_{k+1}-d p_{k+1}\right)\right) \\
& =(-1)^{\left\lfloor\frac{k+1}{2}\right\rfloor}\left(q_{k+1} b-p_{k+1} d-(-1)^{k}\left(q_{k} b-p_{k} d\right)\right) \quad(\text { using lemma (0.4) }) \\
& =(-1)^{\left\lfloor\frac{k+1}{2}\right\rfloor}\left(q_{k+1} b-p_{k+1} d+(-1)^{k+1}\left(q_{k} b-p_{k} d\right)\right) \\
& =\alpha_{k+1}(b, d)
\end{aligned}
$$

From this, we get directly:

$$
\begin{aligned}
t & =1 \cdot \alpha_{k}(b-a, d-c)+\left(2+(-1)^{k+1} n_{k+1}\right) \gamma_{k}(b-a, d-c) \\
& =\alpha_{k+1}(b-a, d-c)
\end{aligned}
$$

Then,

$$
\begin{aligned}
u & =(-1) \cdot \alpha_{k}(b, d)+\left(-1+(-1)^{k+2} n_{k+1}\right) \gamma_{k}(b, d) \\
& =(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}\left(-q_{k} b+p_{k} d+(-1)^{k+1}\left(q_{k-1} b-p_{k-1} d\right)+\left(-1+(-1)^{k+2} n_{k+1}\right)\left(p_{k} d-q_{k} b\right)\right) \\
& =(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}\left(p_{k} d-q_{k} b+(-1)^{k+1}\left(q_{k-1} b-p_{k-1} d\right)-p_{k} d+q_{k} b-(-1)^{k+1} n_{k+1} p_{k} d+(-1)^{k+1} q_{k} b n_{n+1}\right) \\
& =(-1)^{\left\lfloor\frac{k}{2}\right\rfloor}(-1)^{k+1}\left(b\left(n_{k+1} q_{k}+q_{k-1}\right)-d\left(n_{k+1} p_{k}+p_{k-1}\right)\right) \\
& =(-1)^{\left\lfloor\frac{k+1}{2}\right\rfloor\left(d p_{k+1}-b q_{k+1}\right) \quad \quad \text { using lemma (0.3), point }(i) \text { and lemma }} \begin{array}{l}
\text { (0.4) }) \\
\end{array} \gamma_{k+1}(b, d)
\end{aligned}
$$

Finally, using above calculation for u :

$$
\begin{aligned}
v & =(-1) \alpha_{k}(b-a, d-c)+\left(-1+(-1)^{k+2} n_{k+1}\right) \gamma_{k}(b-a, d-c) \\
& =\gamma_{k+1}(b-a, d-c)
\end{aligned}
$$

We just showed:

$$
\begin{aligned}
P_{j} & =\left(B^{-1} A^{2+(-1)^{j} n_{j}}\right)\left(B^{-1} A^{2+(-1)^{j-1} n_{j-1}}\right) \cdots\left(B^{-1} A^{2+(-1)^{1} n_{1}}\right) P_{0} \\
& =\left(\prod_{k=1}^{j} B^{-1} A^{2+(-1)^{j+1-k} n_{j+1-k}}\right) P_{0}
\end{aligned}
$$

Using equation (23) and the definition of P_{0}, we get:

$$
\begin{equation*}
\left(A B^{-1} A\right)^{1-(-1)\left\lfloor\frac{j}{2}\right\rfloor \operatorname{sgn}(d)}\left(C A^{2}\right)^{\frac{1-\operatorname{det}(M)}{2}} A^{b_{j}}=\left(\prod_{k=1}^{j} B^{-1} A^{2+(-1)^{j+1-k} n_{j+1-k}}\right) A^{-1} M A^{-1} B \tag{27}
\end{equation*}
$$

Solving this for M, we obtain formula (1). Note that we made, in above development, no assumptions on the continued fraction's length j; this shows that formula (1) is independant of the chosen representation of the continued fraction associated to the rational $\frac{b}{d}$.

As another example, we can retrieve the fact that $A^{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right), \forall n \in \mathbb{Z}$ from lemma (0.1) simply by applying formula (1) to the matrix $\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$. Here, $j:=1$ as $\frac{n}{1}=[n]$ and $b_{1}=(-1)^{1} \operatorname{sgn}(1)\left(p_{0} \cdot 0-q_{0} \cdot 1\right)=0$ (recall that $q_{0}:=0$). Thus,

$$
\left(\begin{array}{ll}
1 & n \tag{28}\\
0 & 1
\end{array}\right)=\underbrace{\left(A B^{-1} A\right)^{1-(-1)}\left\lfloor^{\left.\frac{1}{2}\right\rfloor} \operatorname{sgn}(1)\right.}_{=I} A A^{-(2-n)} \underbrace{B A^{0} B^{-1}}_{=I} A=A A^{n-2} A=A^{n}
$$

References

[1] Kassel C., Dodane O., Turaev V. Braid Groups. Graduate Texts in Mathematics, 247. Springer New York (2008).

