Elementary proof of the Syracuse conjecture by Ahmed Idrissi Bouyahyaoui

Abstract :

Variables used in the proof are :

x and (x + V) are positive integer variables. (x + V) is the successor of x. V is an integer variable of adjustment, at first step V₀ = 2 and x₀ = y₀ > 2. Representation : x = $2^{\alpha} *(y)$ and V = $2^{\beta}*(z)$, $\alpha*\beta = 0$, α and β are non negative integer variables, y and z are odd integer variables, y > 0.

The Collatz algorithm $(3^* + 1)$ is applied **simultaneously** to x and (x + V), so we have for rule 2 - (x3 + 1) - of the algorithm and adjustment :

 $(x + V) := (2^{\alpha*}(3^*y + 1)) + (2^{\beta*}(3^*z) - (2^{\alpha} - 1)) = 3(2^{\alpha*}(y) + 2^{\beta*}(z)) + 1$ That gives :

$$x := 2^{\alpha} * (3^* y + 1) = 2^{\alpha'} * (y'), V := 2^{\beta} * (3^* z) - (2^{\alpha} - 1) = 2^{\beta'} * (z')$$
 (1)

We deduce the rule : $(x := 2^{\alpha *}(3^*y + 1)) \wedge (V := 2^{\beta *}(3^*z) - (2^{\alpha} - 1)) = > V < x$

For $x := 1^*(y_0)$ and $V := V_0 = 2^*(1)$, rule 2 - (x3 + 1) - of the algorithm gives :

 $(x + V) := (1^{*}(3^{*}y_{0} + 1)) + (2^{*}(3) - (1 - 1)) > 0 = x + V > 0$

As x + V > 0 and V < x, we deduce the rule :

 $(V < x) \land (x + V > 0) ==> (0 < x + V < 2^*x)$

This rule shows that sequence $S(x_0+2)$ is bounded because it is upper bounded by sequence of Syracuse $S(2^*x_0) = 2^*S(x_0)$ and lower bounded by 0. By hypothesis $S(x_0)$ is a sequence of Syracuse.

The **bounded sequence** $S(x_0+2)$ and the sequence of Syracuse $S(2*x_0) = 2*S(x_0) - upper bound$ - converge to the only trivial cycle : [4, 2, 1].

So by recurrence, every positive integer gives a sequence of Syracuse. ***

Syracuse conjecture (Collatz conjecture)

Algorithm of Collatz : Let x a positive integer number. 1 - if x is even then x := x/22 - if x is odd then x := x * 3 + 1We repeat 1 - 2 until obtain a cycle (is only cycle ?) or x tends to infinity. The symbol := means : assign value on right to variable on left.

Representation of variables :

x and (x + V) are positive integer variables. (x + V) is the successor of x. V is a variable of adjustment, at first step V₀ = 2 and x₀ = y₀ > 2. The variables x and V are written in the form : x := a*(y) with a := 2^{α} and V := b*(z) with b :=2^{β}. α and β are non negative integer variables, such as α * β = 0. y and z are odd integer variables, y > 0. (x + V) := a*(y) + b*(z) = 2^{α}*(y) + 2^{β}*(z) and α * β = 0.

Application of the Collatz algorithm :

The Collatz algorithm $(3^* + 1)$ is applied **simultaneously** to x and (x + V).

The coefficient a is power of 2, the algorithm is applied to the odd part y of $x := a^*(y)$ giving a sequence of Syracuse $S(x_0)$ and the odd part z of $V := b^*(z)$ is multiplied by 3 plus an adjustment.

In operation $3^* + 1_{,x} := a^*(3^*y + 1) = a'^*(y')$, x is increased by (a - 1) to subtract from V and we have for V in x + V : V := $b^*(3^*z) - (a-1) = b'^*(z')$.

a' and b' are power of 2, y' and z' are odd integer variables.

So we have the equality

a*(3*y+1) + b*(3*z) - (a-1) = a*(3*y) +1 + b*(3*z) = 3 * (a*(y) + b*(z)) + 1, giving 3*(x + V) + 1, with x and V of before the operation 3* + 1, according to the rule 2 of the algorithm.

The rule 2 and adjustment give :

x :=
$$2^{\alpha}*(3^*y+1)$$
, V := $2^{\beta}*(3^*z) - (2^{\alpha}-1)$ (2)

We deduce the rule:

$$(x := 2^{\alpha} * (3^*y + 1)) \wedge (V := 2^{\beta} * (3^*z) - (2^{\alpha} - 1)) = V < x$$

In the line a'*(y') + b'*(z'), a' and b' are divided by gcd(a',b') according to the rule 1 of the algorithm.

If gcd(a',b') = 1 then division by 2 is deferred and then we have :

$$\kappa := 2^{\alpha'}*(\gamma'), \quad V := 2^{\beta'}*(z') \text{ and } \alpha'*\beta' = 0.$$

Evaluation of variable of adjustment V :

When x is multiplied by 3 then + 1, V is multiplied by 3.

When x is divided by 2, V is divided by 2.

When x = a(3*y+1), x is increased by (a - 1), V is decreased by (a - 1).

We deduce that V is always less than x.

We deduce the rule :

$$(V < x) ==> (x + V < 2^*x)$$

This rule shows that sequence $S(x_0+2)$ is bounded because it is upper bounded by sequence of Syracuse $S(2^*x_0) = 2^*S(x_0)$.

By hypothesis $S(x_0)$ is a sequence of Syracuse.

Let $R(x_0)$ the sequence of Syracuse without context of (x + V) (2), division by 2 is done and $R(x_0) \subset S(x_0)$.

Power of 2 is a neutral factor in evolution of sign of (x + V), application of Collatz algorithm **without division by 2** gives wth $x=y_0$ and $V=V_0=2$ (initial data): $(x + V) = 1(y_0) + 2(1) > 0$ $= 1(3y_0 + 1) + 2(3) - (1 - 1) > 0$

$$= 1(3^{2}y_{0} + 3 + 1) + 2(3^{2}) > 0$$

.....

This shows (x + V) is always positive and therefore the sequence $S(x_0+2)$ is lower bounded by 0 :

$$(x + V) > 0$$

We deduce the rule :

$$(V < x) \land (x + V > 0) ==> (0 < x + V < 2^*x)$$

Conclusion :

The **bounded sequence** $S(x_0+2)$ and the sequence of Syracuse $S(2*x_0) = 2*S(x_0) - upper bound$ - converge to the only trivial cycle : [4, 2, 1].

So by recurrence, every positive integer gives a sequence of Syracuse. **

ahmed.idrissi@free.fr

January 2023

Generation of sequences of Syracuse S[x] and S[x + 2]: Application of Collatz algorithm to generate sequences $S[x_0]$: Generation of sequence of Syracuse S[17]: $x_0 = 17$ 1(17), 1(52), 4(13), 1(13), 1(40), 8(5), 1(5), 1(16), 16(1), 1(1) Generation of sequence of Syracuse S[19]: $x_0 = 19$ 1(19), 1(58), 2(29), 1(29), 1(88), 8(11), 1(11), 1(34), 2(17), 1(17), 1(52), 4(13), 1(13), 1(40), 8(5), 1(5), 1(16), 16(1), 1(1)

Application of Collatz algorithm simultaneously to x and (x + V) to generate sequences of Syracuse $S[x_0]$ and $S[x_0 + V_0]$:

Generation of sequences of Syracuse S[17] and S[17 + 2]=S[19] :

$x_0 = 17$ et $x_0 + V_0 = 17 + 2 = 19$
S[17] = S[17 + 2] = S[19] =
1(17) + 2(1) = 19 = 1(19)
1(52) + 2(3) = 58 = 2(29)
4(13) + 2(3) = 58 = 2(29)
2(13) + 1(3) = 29 = 1(29)
2(40) + 1(9) - 1 = 88 = 8(11)
16(5) + 8(1) = 88 = 8(11)
2(5) + 1(1) = 11 = 1(11)
2(16) + 1(3) - 1 = 34 = 2(17)
32(1) + 2(1) = 34 = 2(17)
16(1) + 1(1) = 17 = 1(17)
16(4) + 1(3) - 15 = 52 = 4(13)
64(1) + 4(-3) = 52 = 4(13)
16(1) + 1(-3) = 13 = 1(13)
16(4) + 1(-9) - 15 = 40 = 8(5)
64(1) + 8(-3) = 40 = 8(5)
8(1) + 1(-3) = 5 = 1(5)
8(4) + 1(-9) - 7 = 16 = 16(1)
32(1) + 16(-1) = 16 = 16(1)
2(1) + 1(-1) = 1 = 1(1)
2(4) + 1(-3) - 1 = 4 = 4(1)
8(1) + 4(-1) = 4 = 4(1)
2(1) + 1(-1) = 1 = 1(1)