Elementary proof of the Syracuse conjecture

 by Ahmed Idrissi Bouyahyaoui
Abstract :

Variables used in the proof are :
x and $(x+V)$ are positive integer variables. $(x+V)$ is the successor of x.
V is an integer variable of adjustment, at first step $V_{0}=2$ and $x_{0}=y_{0}>2$.
Representation : $x=2^{\alpha}(y)$ and $V=2^{\beta *}(z), \alpha^{*} \beta=0, \alpha$ and β are non negative integer variables, y and z are odd integer variables, $y>0$.

The Collatz algorithm $\left(3^{*}+1\right)$ is applied simultaneously to x and $(x+V)$, so we have for rule $2-(x 3+1)$ - of the algorithm and adjustment :
$(x+V):=\left(2^{\alpha}\left(3^{*} y+1\right)\right)+\left(2^{\beta} *\left(3^{*} z\right)-\left(2^{\alpha}-1\right)\right)=3\left(2^{\alpha} *(y)+2^{\beta} *(z)\right)+1$
That gives :

$$
\begin{equation*}
x:=2^{\alpha} *\left(3^{*} y+1\right)=2^{\alpha^{\prime}} *\left(y^{\prime}\right), V:=2^{\beta} *\left(3^{*} z\right)-\left(2^{\alpha}-1\right)=2^{\beta^{\prime} *}\left(z^{\prime}\right) \tag{1}
\end{equation*}
$$

We deduce the rule :

$$
\left(x:=2^{\alpha} *\left(3^{*} y+1\right)\right)^{\wedge}\left(V:=2^{\beta} *\left(3^{*} z\right)-\left(2^{\alpha}-1\right)\right)=\Rightarrow \mathrm{V}<\mathbf{x}
$$

For $x:=1^{*}\left(y_{0}\right)$ and $V:=V_{0}=2^{*}(1)$, rule $2-(x 3+1)$ - of the algorithm gives :

$$
(x+V):=\left(1^{*}\left(3^{*} y_{0}+1\right)\right)+\left(2^{*}(3)-(1-1)\right)>0=\Rightarrow x+V>0
$$

As $x+V>0$ and $V<x$, we deduce the rule :

$$
(V<x)^{\wedge}(x+V>0)==>\left(0<x+V<2^{*} x\right)
$$

This rule shows that sequence $S\left(x_{0}+2\right)$ is bounded because it is upper bounded by sequence of Syracuse $S\left(2^{*} x_{0}\right)=2 * S\left(x_{0}\right)$ and lower bounded by 0 .
By hypothesis $S\left(x_{0}\right)$ is a sequence of Syracuse.

The bounded sequence $\mathbf{S}\left(\mathrm{x}_{0}+2\right)$ and the sequence of Syracuse $\mathrm{S}\left(2^{*} \mathrm{x}_{0}\right)=2^{*} S\left(x_{0}\right)$ - upper bound - converge to the only trivial cycle : [4, 2, 1].

So by recurrence, every positive integer gives a sequence of Syracuse.

Syracuse conjecture (Collatz conjecture)

Algorithm of Collatz :
Let x a positive integer number.
1 - if x is even then $x:=x / 2$
2 - if x is odd then $x:=x^{*} 3+1$
We repeat 1-2 until obtain a cycle (is only cycle ?) or x tends to infinity. The symbol := means : assign value on right to variable on left.

Representation of variables :

x and $(x+V)$ are positive integer variables. $(x+V)$ is the successor of x.
V is a variable of adjustment, at first step $V_{0}=2$ and $x_{0}=y_{0}>2$.
The variables x and V are written in the form :
$x:=a^{*}(y)$ with $a:=2^{\alpha}$ and $V:=b^{*}(z)$ with $b:=2^{\beta}$.
α and β are non negative integer variables, such as $\alpha * \beta=0$.
y and z are odd integer variables, $y>0$.
$(x+V):=a^{*}(y)+b^{*}(z)=2^{\alpha *}(y)+2^{\beta *}(z)$ and $\alpha^{*} \beta=0$.

Application of the Collatz algorithm :

The Collatz algorithm $\left(3^{*}+1\right)$ is applied simultaneously to x and $(x+V)$.
The coefficient a is power of 2 , the algorithm is applied to the odd part y of $\mathbf{x}:=\mathbf{a}^{*}(\mathrm{y})$ giving a sequence of Syracuse $\mathrm{S}\left(\mathrm{x}_{0}\right)$ and the odd part z of $\mathrm{V}:=\mathrm{b}^{*}(\mathrm{z})$ is multiplied by 3 plus an adjustment.
In operation $3^{*}+1, x:=a^{*}\left(3^{*} y+1\right)=a^{\prime *}\left(y^{\prime}\right), x$ is increased by $(a-1)$ to subtract from V and we have for V in $x+V: V:=b^{*}\left(3^{*} z\right)-(a-1)=b^{\prime *}\left(z^{\prime}\right)$.
a^{\prime} and b^{\prime} are power of $2, y^{\prime}$ and z^{\prime} are odd integer variables.
So we have the equality
$a^{*}\left(3^{*} y+1\right)+b^{*}\left(3^{*} z\right)-(a-1)=a^{*}\left(3^{*} y\right)+1+b^{*}\left(3^{*} z\right)=3^{*}\left(a^{*}(y)+b^{*}(z)\right)+1$, giving $3^{*}(x+V)+1$, with x and V of before the operation $3^{*}+1$, according to the rule $\mathbf{2}$ of the algorithm.
The rule 2 and adjustment give :

$$
\begin{equation*}
x:=2^{\alpha} *\left(3^{*} y+1\right), V:=2^{\beta} *\left(3^{*} z\right)-\left(2^{\alpha}-1\right) \tag{2}
\end{equation*}
$$

We deduce the rule:

$$
\left(x:=2^{\alpha} *\left(3^{*} y+1\right)\right)^{\wedge}\left(V:=2^{\beta *}\left(3^{*} z\right)-\left(2^{\alpha}-1\right)\right)=\Rightarrow \quad V<x
$$

In the line $a^{\prime} *\left(y^{\prime}\right)+b^{\prime *}\left(z^{\prime}\right)$, a^{\prime} and b^{\prime} are divided $b y \operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$ according to the rule 1 of the algorithm.
If $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$ then division by 2 is deferred and then we have :

$$
x:=2^{\alpha^{\prime} *}\left(y^{\prime}\right), \quad V:=2^{\beta^{\prime} *} *\left(z^{\prime}\right) \text { and } \alpha^{\prime *} \beta^{\prime}=0 .
$$

Evaluation of variable of adjustment V :
When x is multiplied by 3 then $+1, \mathrm{~V}$ is multiplied by 3 .
When x is divided by $2, \mathrm{~V}$ is divided by 2 .
When $x=a\left(3^{*} y+1\right)$, x is increased by $(a-1), V$ is decreased by $(a-1)$.
We deduce that V is always less than x .
We deduce the rule :

$$
(V<x)==>\left(x+V<2^{*} x\right)
$$

This rule shows that sequence $S\left(x_{0}+2\right)$ is bounded because it is upper bounded by sequence of Syracuse $S\left(2^{*} x_{0}\right)=2 * S\left(x_{0}\right)$.

By hypothesis $S\left(x_{0}\right)$ is a sequence of Syracuse.
Let $R\left(x_{0}\right)$ the sequence of Syracuse without context of $(x+V)(2)$, division by 2 is done and $R\left(x_{0}\right) \subset S\left(x_{0}\right)$.

Power of 2 is a neutral factor in evolution of sign of $(x+V)$, application of Collatz algorithm without division by 2 gives wth $x=y_{0}$ and $V=V_{0}=2$ (initial data):

$$
\begin{aligned}
(x+V) & =1\left(y_{0}\right)+2(1)>0 \\
& =1\left(3 y_{0}+1\right)+2(3)-(1-1)>0 \\
& =1\left(3^{2} y_{0}+3+1\right)+2\left(3^{2}\right)>0
\end{aligned}
$$

This shows $(x+V)$ is always positive and therefore the sequence $S\left(x_{0}+2\right)$ is lower bounded by 0 :

$$
(x+V)>0
$$

We deduce the rule :

$$
(V<x)^{\wedge}(x+V>0)=\Rightarrow\left(0<x+V<2^{*} x\right)
$$

Conclusion :

The bounded sequence $\mathbf{S}\left(x_{0}+2\right)$ and the sequence of Syracuse $S\left(2 * x_{0}\right)=2 * S\left(x_{0}\right)$ - upper bound - converge to the only trivial cycle : [4, 2, 1].

So by recurrence, every positive integer gives a sequence of Syracuse.

Generation of sequences of Syracuse $S[x]$ and $S[x+2]$:
Application of Collatz algorithm to generate sequences $\mathrm{S}\left[\mathrm{x}_{0}\right]$:
Generation of sequence of Syracuse S [17] : $x_{0}=17$
1(17), 1(52), 4(13), 1(13), 1(40), 8(5), 1(5), 1(16), 16(1), 1(1)
Generation of sequence of Syracuse $\mathrm{S}[19]: \mathrm{x}_{0}=19$
1(19), 1(58), 2(29), 1(29), 1(88), 8(11), 1(11), 1(34), 2(17),
1(17), 1(52), 4(13), 1(13), 1(40), 8(5), 1(5), 1(16), 16(1), 1(1)
Application of Collatz algorithm simultaneously to x and $(x+V)$ to generate sequences of Syracuse $S\left[x_{0}\right]$ and $S\left[x_{0}+V_{0}\right]$:

Generation of sequences of Syracuse $S[17]$ and $S[17+2]=S[19]$:

$$
x_{0}=17 \text { et } x_{0}+V_{0}=17+2=19
$$

$$
\mathrm{S}[17]=\quad \mathrm{S}[17+2]=\mathrm{S}[19]=
$$

$$
1(17)+2(1)=19=1(19)
$$

$$
1(52)+2(3)=58=2(29)
$$

$$
4(13)+2(3)=58=2(29)
$$

$$
2(13)+1(3)=29=1(29)
$$

$$
2(40)+1(9)-1=88=8(11)
$$

$$
16(5)+8(1)=88=8(11)
$$

$$
2(5)+1(1)=11=1(11)
$$

$$
2(16)+1(3)-1=34=2(17)
$$

$$
32(1)+2(1)=34=2(17)
$$

$$
16(1)+1(1)=17=1(17)
$$

$$
16(4)+1(3)-15=52=4(13)
$$

$$
64(1)+4(-3)=52=4(13)
$$

$$
16(1)+1(-3)=13=1(13)
$$

$$
16(4)+1(-9)-15=40=8(5)
$$

$$
64(1)+8(-3)=40=8(5)
$$

$$
8(1)+1(-3)=5=1(5)
$$

$$
8(4)+1(-9)-7=16=16(1)
$$

$$
32(1)+16(-1)=16=16(1)
$$

$$
2(1)+1(-1) \quad=1=1(1)
$$

$$
2(4)+1(-3)-1=4=4(1)
$$

$$
8(1)+4(-1)=4=4(1)
$$

$$
2(1)+1(-1) \quad=1=1(1)
$$

