Elementary proof of the Syracuse conjecture by Ahmed Idrissi Bouyahyaoui

Abstract :

In application of the Collatz algorithm ($3^{*}+1$) we have :
$x>0, \quad x+V>0 \quad(x+V$ successor of x, V variable of adjustment) and $V<x$ (evaluation of V is in the main text, in first step $V=2$ and $x>2$). And as by hypothesis x gives a sequence of Syracuse $S(x)=[x, \ldots, 1], x-->1$. We deduce the rules :

$$
\begin{gathered}
(x>0)_{\wedge}^{\wedge}(V<x)^{\wedge}(x+V>0)==>(0<x+V<2 x) \\
(0<x+V<2 x)==>[(x-->1)==>(x+V-->1)]
\end{gathered}
$$

The two sequences $S(x)$ and $S(x+V)$ converge to the only trivial cycle : $[4,2,1]$. So by recurrence, every positive integer gives a sequence of Syracuse.

Syracuse conjecture (Collatz conjecture)

Algorithm of Collatz:
Let x a positive integer number.
1 - if x is even then $x:=x / 2$
2 - if x is odd then $x:=x * 3+1$
We repeat 1-2 until obtain a cycle (is only cycle?) or x tends to infinity.
The symbol := means : assign value on right to variable on left.

Representation of numbers:

Let V a variable which, added to variable x , gives the successor $\mathrm{x}+\mathrm{V}$.
The variable V is a variable of adjustment.
Variables x and V are written in the form :
$\mathrm{x}:=\mathrm{a}^{*}(\mathrm{y})$ with $\mathrm{a}:=2^{\alpha}$ and α is integer $>=0, \mathrm{y}$ is an odd positive variable.
$V:=b^{*}(z)$ with $b:=2^{\beta}$ and β is integer $>=0, z$ is an odd positive variable.
$x+V:=a^{*}(y)+b^{*}(z)$.

Application of the algorithm of Collatz :
The coefficient a being power of 2, the algorithm is applied to the odd part y of $\mathbf{x}:=\mathbf{a}^{*}(\mathbf{y})$ giving a sequence of Syracuse $\mathrm{S}(\mathrm{x})=[\mathrm{x}, \ldots, 1]$ and the odd part z of $\mathrm{V}:=\mathrm{b}^{*}(\mathrm{z})$ is multiplied by 3 plus an adjustment.

In operation $3^{*}+1, x:=a^{*}\left(3^{*} y+1\right)=a^{*}\left(y^{\prime}\right), x$ is increased by $(a-1)$ to subtract from V and we have for V in $x+V: V:=b^{*}\left(3^{*} z\right)-(a-1)=b^{\prime *}\left(z^{\prime}\right)$.

So we have the equality
$a^{*}\left(3^{*} y+1\right)+b^{*}\left(3^{*} z\right)-(a-1)=a^{*}\left(3^{*} y\right)+1+b^{*}\left(3^{*} z\right)=3$ * $\left(a^{*}(y)+b^{*}(z)\right)+1$, giving $3^{*}(x+V)+1$, with x and V of before the operation $3^{*}+1$, according to the rule 2 of the algorithm.
a^{\prime} et b^{\prime} are power of 2 which can be equal to $1, y^{\prime}$ and z^{\prime} are odd numbers. In the line $a^{\prime *}\left(y^{\prime}\right)+b^{\prime *}\left(z^{\prime}\right)$, a^{\prime} and b^{\prime} are divided by $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$ according to the rule 1 of the algorithm.
If $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$, the division by $\mathbf{2}$ is deferred.
Evaluation of the variable of adjustment V :
When x is multiplied by 3 then $+1, \mathrm{~V}$ is multiplied by 3 .
When x is divided by $2, V$ is divided by 2 .
When $x=a\left(3^{*} y+1\right), x$ is increased by $(a-1), V$ is decreased by $(a-1)$.
We deduce that V is always less than \mathbf{x}.

Conclusion :

In application of the Collatz' algorithm we have :
$x>0, x+V>0$ and $V<x$ (in first step $V=2$ and $x>2$).
And as by hypothesis x gives a sequence of Syracuse $\mathbf{S}(\mathbf{x})=[\mathbf{x}, \ldots, 1], \mathbf{x}-\mathbf{1}$.
We deduce the rules :
$(x>0)^{\wedge}(V<x)^{\wedge}(x+V>0)=\Rightarrow(0<x+V<2 x)$
$(0<x+V<2 x)==>[(x-->1)==>(x+V-->1)]$
The two sequences $S(x)$ and $S(x+V)$ converge to the only trivial cycle : [4, 2, 1].

So by recurrence, every positive integer gives a sequence of Syracuse.

