Elementary proof of the Syracuse‘ conjecture

by Ahmed Idrissi Bouyahyaoui

Syracuse' conjecture (Collatz' conjecture)
Algorithm of Collatz (C):
Let x a positive integer number.
1 - if x is even then $x:=x / 2$
2 - if x is odd then $x:=x * 3+1$
We repeat $1-2$ until obtain a cycle (is only cycle?) or x tends to infinity.
The symbol := means : assign value on right to variable on left.
Representation of numbers :
Let V a variable which, added to variable x, gives the successor $x+V$.
The variable V is a variable of adjustment.
Variables x and V are written in the form :
$x:=a(y)$ with $a:=2^{\alpha}$ and α is integer $>=0, y$ is an odd variable.
$V:=b(z)$ où $b=2^{\beta}$ and β is integer $>=0, z$ is an odd variable.
$x+V:=a(y)+b(z) ; \quad a, b, y, z$ are positive integer variables.
Application of the algorithm of Collatz:
The algorithm is applied to the odd part y of $x:=a(y)$ giving a sequence of Syracuse $C(x)=1$ and the odd part z of $V:=b(z)$ is multiplied by 3 plus an adjustment.
The aim is to prove if $C(x)=1$ then $C(x+V)=1$.
In operation $3^{*}+1, x:=a\left(3^{*} y+1\right)=a^{\prime}\left(y^{\prime}\right), x$ is increased by $(a-1)$ to subtract
from V and we have for V in $x+V: V:=b\left(3^{*} z\right)-(a-1)=b^{\prime}\left(z^{\prime}\right)$.
We have the equality
$a\left(3^{*} y+1\right)+b\left(3^{*} z\right)-(a-1)=a\left(3^{*} y\right)+1+b\left(3^{*} z\right)=3^{*}(a(y)+b(z))+1$
according to the rule 2 of the algorithm.
a^{\prime} et b^{\prime} are power of 2 which can be equal to unity, y^{\prime} and z^{\prime} are odd numbers.
In the line $a^{\prime}\left(y^{\prime}\right)+b^{\prime}\left(z^{\prime}\right)$, a^{\prime} and b^{\prime} are divided by $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)$ according to the rule1 of the algorithm.
If $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$, the division by 2 is deferred.

Let's give an example of calculation :
As initial data of the algorithm:
$x=13, V=2$ et $x+2=15$ is the successor number of x at the first step.

$x:=$	$x+V:=$
$1(13)+2(1)$	$=15=1(15)$
$1(40)+2(3)$	$=46=2(23)$
$8(5)+2(3)$	$=46=2(23)$
$4(5)+1(3)$	$=23=1(23)$
$4(16)+1(9)-3$	$=70=2(35)$
$64(1)+2(3)$	$=70=2(35)$
$32(1)+1(3)$	$=35=1(35)$
$32(4)+1(9)-31$	$=106=2(53)$
$128(1)+2(-11)$	$=106=2(53)$
$64(1)+1(-11)$	$=53=1(53)$
$64(4)+1(-33)-63=160=32(5)$	
$256(1)+32(-3)$	$=160=32(5)$
$8(1)+1(-3)$	$=5=1(5)$
$8(4)+1(-9)-7$	$=16=16(1)$
$32(1)+16(-1)$	$=16=16(1)$
$2(1)+1(-1)$	$=1=1(1)$

When x is multiplied by 3 then $+1, \mathrm{~V}$ is multiplied by 3 .
When x is divided by $2, \mathrm{~V}$ is divided by 2 .
When $x=a\left(3^{*} y+1\right)$, x is increased by $(a-1), V$ is decreased by $(a-1)$.
We deduce that V is always less than x for $\mathrm{x}>1$.
In the application of the algorithm of Collatz :

$$
x>0, x+V>0 \text { et } V<x .
$$

As x gives a sequence of Syracuse, when $C(x) \in[4,2,1]$ (« trivial cycle»), it implies $\mathrm{V}<4$ and, as $\mathrm{x}+\mathrm{V}>0, \mathrm{~V}>-4$ and $\mathrm{C}(\mathrm{x}+\mathrm{V}) \in[7,6,5,4,2,1]$, and ultimately $\mathrm{C}(\mathrm{x}+\mathrm{V}) \in[4,2,1]$.
So by recurrence, every positive integer gives a sequence of Syracuse.

